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Whereas classical scheduling methods like priority scheduling can efficiently support the
execution of various type of applications, fair-share scheduling methods do not provide good
results for I/O bound and interactive processes execution. This paper presents a novel im-
plementation of the fair-share scheduling method called stride scheduling and its extension
using a more classical priority scheduler to support both compute bound and interactive ap-
plications. Evaluation results show that it improves fair-share allocation of CPU time among
users and processes compared to strict fair-share scheduling methods and that the execution
of interactive processes is not degraded. It is also shown that the scheduling overhead is
bounded and does not depend on the number of runnable processes.

1. Introduction

We have been doing a research on the Com-
puter Colony, a cluster of physically distributed
computers behaves like a single system 7) if nec-
essary for parallel processing, while preserving
the autonomy of each computers. Not like a
rack mounted PC cluster for application ser-
vices, individual computer nodes of the Com-
puter Colony may also work as a ordinal desk-
top computer for programming, text editing,
Web browsing and so forth, executing some
parallel and/or time consuming applications in
back ground. Thus, a new scheduling method is
needed to support such workload and especially
to implement a fair-share allocation of process-
ing time among users, without degrading the
respondability to interactive and I/O intensive
processes.
Recent research works have produced sev-

eral specialized scheduling method implement-
ing a fair-share allocation of processing time like
stride-scheduling. However, most of these only
perform well for compute bound applications,
degrading the response time of interactive and
I/O bound processes.
In this paper, we propose a fair-share CPU

scheduling method based on a new implementa-
tion of stride scheduling reducing the overhead
of fair-share allocation of cpu time. This imple-
mentation is enhanced with a classical priority
scheduler which can provide the desired control
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over process scheduling in order to efficiently
executes interactive processes and also to im-
prove the overall fairness.
The rest of this paper is organized as follows.

Section 2 discusses background related to our
scheduling scheme. Section 3 presents the pro-
posed scheduling algorhithm and its implemen-
tation. Section 4 shows some experiment re-
sults, and section 5 concludes this paper.

2. Background

Operating systems tries to execute various
type of applications efficiently by using general
scheduling policies. Such policies may however
favor one class of processes over another. Prior-
ity scheduling is certainly the most commonly
used policy because it can implement several
policies with the same mechanism. Some op-
erating systems also uses more simple schemes
like the round robin policy. The following sec-
tions briefly discusses some general schedul-
ing policies which consider fair-share allocation,
and then mentions about some related works in
more detail.

2.1 Round-Robin Scheduling
A simple approach of the process schedul-

ing problem is the Round-Robin policy (RR).
This policy defines a small time unit called time
quantum (or time slice). Processes are chosen
in the order of arrival and allowed to run only
for one time quantum. If a process do not com-
plete its CPU burst during this time, it is put
back at the end of the ready queue and another
process if one is available is chosen.
The perfomance of this policy depends

greatly on the length of the time quantum. If
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it is too long, RR behaves like First Come First
Service (FCFS) and shows poor performance
results for I/O bound processes, whereas turn
around time of compute bound processes can
be improved. On the contrary, if the time slice
is too short, response time is improved by get-
ting closer to the results provided by the Short
Job First (SJF) policy. From the user point
of view, if the time quantum is too short, this
policy is seen as if each of the n runnable pro-
cesses are each executed on their own processor
running at 1/n the speed of the real processor,
thus it is called processor sharing. However,
processor sharing is never used because the ra-
tio of time spent performing context switches
becomes very high, increasing system overhead.

2.2 Priority Scheduling
Priority scheduling associates a priority (that

defines an order of importance) to each process.
The process with the highest priority is always
chosen first for execution. Other policies are
needed to make a choice between processes of
the same priority. The resulting scheme is the
more general multilevel feedback queue schedul-
ing policy, where the priority scheduling being
used between queues and processes of equal pri-
ority are scheduled using different policies.
Several methods can be used to calculate pri-

orities, depending on various parameters. A
widely used scheme calculates priorities de-
pending on the run-time behavior of processes.
In particular an approximation of the SJF pol-
icy that can be implemented by assigning a high
priority and a small time quantum to processes
which often release the processor voluntary to
perform I/O, whereas compute bound processes
having a lot of long CPU bursts are assigned a
low priority and a longer time quantum.
Classes of priorities can also be implemented

depending on the type of processes. For ex-
ample, the SVR4 version of the Unix operating
system defines a real-time priority class 9),19) for
processes with time constraints, a system pri-
ority class for system processes and the lowest
priority class for users applications.
However, a major problem of the priority

scheduling policy is that none of the runnable
processes is guaranteed to receive some proces-
sor time in a finite time interval. This problem
known as the CPU starvation problem can be
solved simply by recomputing regularly process
priorities, which can greatly increase the over-
head of the system.

2.3 Fair-share Scheduling
Systems guaranteeing that the CPU starva-

tion problem will not occur are usually said to
be fair. However, a user is not guaranteed at all
to receive as much CPU time as another one. In
fact, all the scheduling policies presented previ-
ously will allocate more CPU time to users run-
ning several processes at the expense of users
running only few processes.
Fair-share scheduling (or proportional fair-

share) policies try to address this problem by
scheduling processes using the share of CPU
time defined for a user or his processes. Shares
are generally calculated using a currency, for
example tickets so that a user or a process with
t tickets in a system with a total of T tickets
is allocated t/T of the processing time. A hi-
erarchical definition of tickets and share is also
possible to define both a user share and a pro-
cess share.

2.3.1 Priority-based Fair-share
Scheduling

The first fair-share schedulers were priority
based. In this scheme, priorities are calcu-
lated depending on both the share of CPU time
allocated to users or processes and the past
CPU usage. Famous works in this area are the
fair-share scheduler of AT&T 15), the work pre-
sented in Ref. 8) or the event based fair-share
scheduler described in Ref. 6).
Priority-based fair-share schedulers can pro-

vide good results, but usually realize a fair
allocation of CPU time over long time inter-
vals. Moreover, their priority calculation meth-
ods are generally difficult so that it makes such
scheme inflexible and difficult to tune. The
work presented in Ref. 8) recomputes all pro-
cess priorities every 4 seconds, with fairness re-
alized over hours or days. In the work presented
in Ref. 6), priorities are recalculated on event
occurrence. In this case, since one event (I/O
completion, preemption, . . .) only concerns one
or few processes in general, the overhead of pri-
ority calculation can be reduced. This approach
is called event-based scheduling, and provides
better results for fairness. However, it is not
precise because it must consider a lot of param-
eters to penalize or boost processes execution
depending on their CPU usage.

2.3.2 Lottery Scheduling
More recent works in the area of fair-share

scheduling have produced several interesting
methods, like lottery scheduling 16). In lottery
scheduling, each process is assigned a number
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of tickets proportional to its share. The sched-
uler selects a ticket randomly using a lottery
and the process owning the selected ticket is
executed for one time quantum.
However, lottery scheduling only provides a

probabilistic fairness over a certain time inter-
val. Also, as the run time behavior of a process
is not considered at all, in its basic implemen-
tation, lottery scheduling performs poorly for
the execution of interactive and I/O bound pro-
cesses. The dispatch latency on wake up☆ un-
der this policy depends highly on the number of
tickets owned by a process and may be longer
compared with the priority-based approarches.

2.3.3 Stride Scheduling
Stride scheduling 17) is a deterministic fair-

share scheduling scheme using an algorithm
similar to rate-based network flow control al-
gorithms. Like lottery scheduling, tickets are
used to define the share of CPU time allocated
to a process.
In stride scheduling, the basic idea is to com-

pute the time (or stride) a process must wait
before receiving its next time quantum. The
stride of a process is thus inversely proportional
to its share: the higher the share is, the shorter
the stride is. A pass parameter is associated
to each process and incremented by its stride
each time it is scheduled. The scheduler always
chooses the process with the smallest pass for
execution.

Figure 1 shows an example where three pro-
cesses (process A to C) are allocated respec-
tively 200, 300 and 500 tickets, resulting in
shares of 20%, 30% and 50%. Process strides
calculated as 3/share are respectively 15, 10
and 6. At start time, all processes pass are null.
Processes are thus first scheduled in the A, B,
C order. At this moment, since process C has
the smallest pass (6), it is scheduled agin. Now,
the pass value of process B becomes smallest,
then process B is scheduled next. After that
process C is scheduled agin. Over the sequence
of this example in Fig. 1, processes A, B, and C
are scheduled twice, three times and five times,
respectively, resulting in the desired 2 : 3 : 5
ratio. At the end of this sequence, all processes
have the same pass value, the same schedul-
ing pattern will then be repeated again. Stride
scheduling thus allow to achieve fairness over
☆ The dispatch latency on wake up stands for the la-
tency between the time a process becomes runnable
maybe after the completion of the requested I/O
and the time this process resumes its execution.

Time

Process C :
500 tickets

Stride 6

Process B:
300 tickets
Stride 10

Process A :
200 tickets
Stride 15

Pass parameter 6 2015 12 1810 30 24 30 30

A B C C B C A C B C

A B C

Fig. 1 Stride scheduling.

very short time intervals.
To allow a great precision of this mechanism

even for very small differences of process shares,
the authors proposed a simple method for stride
calculation. Even if the stride of each process
can be defined as a floating point value, for sim-
plicity an integer type was used. The stride of
each process is calculated as follows.

process stride = rint

(
stride constant

process share

)

Where rint() is the function rounding a float-
ing point to the nearest integer. In the original
paper, the stride constant was 220 which is big
enough so that the process stride value round
error to the nearest integer becomes negligible
compared to the stride value itself, making such
error practically undetectable.
The ready queue structure used here is a

sorted list in increasing pass order. The result-
ing overhead of this method is thus not negligi-
ble for systems with a high load. At best this
overhead is in O(log(n)), where n is the num-
ber of processes, depending on the sort algo-
rithm. Moreover, as stride scheduling does not
consider the run-time behavior of processes, it
suffers from several problems, as same as lottery
scheduling.
• The dispatch latency on wake up depends
highly on the share of CPU a process was
alloted. Indeed, to preserve fairness, both
stride and lottery scheduling are not pre-
emptive, so that a process waking up after
waiting for I/O completion cannot preempt
the currently running process.

• The straightforward implementation of
stride scheduling (and lottery scheduling)
implements only a strict fair-share alloca-
tion of CPU time. As a result, a process
sleeping waiting for I/O completion cannot
be allocated its fair-share of CPU time be-
cause the time slept is lost and is not com-
pensated by allocating more CPU time on
wake-up.

Several modifications of the basic algorithm
of both stride and lottery scheduling are pos-
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sible to improve fairness and responsiveness.
These improvements are presented in the Sec-
tion 3.

2.4 Related Works
Recent works (presented in Refs. 2) and 14))

have added support to improve the interac-
tivness of strict fair-share scheduling methods.
These modifications are mainly based on dy-
namic share adjustment using ticket allocation.
As for stride scheduling, an improvement pre-

sented in Ref. 2) uses exhausting tickets (tick-
ets whose validity is timely limited) with a loan
and borrow mechanism. With this extension,
runnable processes can borrow the tickets of
the sleeping ones to increase their share. But
they must pay back the lent processes when
they wake up, increasing their share and thus
their chances to be scheduled quickly. Another
more simple method is based on system cred-
its: where the system gives more tickets to a
sleeping process in proportion to the slept time.
Another improvement presented in Ref. 17) uses
non-uniform time quantum. A process using
a fraction f < 1 of its time quantum has its
pass increased by only f ∗ pass. As interactive
and I/O bound processes generally do not use
all their time quantum, their pass are less in-
creased so that they are scheduled sooner. How-
ever, all these methods do not implement a pre-
emptive scheme and they increase the dispatch
latency of processes on wake up. Also, if there
are a lot of interactive processes, they cannot
anyway be handled efficiently because interac-
tive processes’ CPU burst is usually too short
compared to the time needed to benefit from
those dynamic ticket adjustments. The over-
head introduced is also not negligible.
Some enhancement of the basic lottery

scheduling method uses similar methods. If a
process sleeps waiting for I/O, it is granted a
timely limited ticket boost on wake up, increas-
ing its chances to be scheduled quickly. The
work presented in Ref. 14) uses this modifica-
tion. It combines the system level priorities of
the FreeBSD scheduler 11) with lottery schedul-
ing. The response time of interactive processes
can thus be minimized by scheduling them de-
pending on their priority on wake up, whereas
user level processes are assigned the lowest pri-
ority and chosen with lottery scheduling. This
method thus improve both fairness and respon-
siveness. However, the difficult dynamic ad-
justment of tickets allocation increases the total
overhead and makes its implementation difficult

to tune.
Recently, many works 1),3),5),12),13),18) have

been done on fair-share or QoS scheduling for
server like environment, but most of these do
not concern interactive jobs. Among those,
remarkable works for us are the Borrowed-
Virtual-Time (BVT) scheduling 5) and the
Virtual-Time Round-Robin (VTRR) schedul-
ing 13). Both of the BVT and the VTRR
schedulings are based on the concept of virtual
time, a complemental concept to the pass in
stride scheduling, where the virtual time of each
process advances inversely proportional to its
share when they spend real CPU time and the
process with minimum virtual time is selected
for execution.
The BVT scheduling was proposed almost

same time as our first proposal 10). This scheme
provides low latency dispatch of latency sensi-
tive processes, while maintaining middle term
fair-share, thus the behaviour of the BVT
scheduler can be quite similar to ours. For this
purpose, latency sensitive processes may bor-
row some amount of virtual time and use it to
rewind their own virtual time so that they gain
dispatch preference. This mechanism has a sim-
ilar effect as our boosting scheme mentioned in
Section 3.2 but it differs in a sense that the bor-
rowed virtual time will never be returned and
that the only explicitly specified processes may
have a chance of this time warping.
The VTRR scheduler is interesting in that

it realizes O(1) scheduling overhead like ours.
The VTRR scheduler combines the benefit of
low overhead round-robin scheduling with the
high accuracy mechanisms of virtual time (VT)
and virtual finishing time (VFT) used in fair
queueing algorithm 4). The data structure used
in the VTRR scheduler is a simple doubly-
linked list in which runnable processes are
stored in descending order of share. A selection
of the next process is done in round-robin man-
ner as long as the VFT of the candidate process
is earlier than that of the previous process. If an
VFT inversion occurs, the scheduler skips the
remaining processes in the linked list and starts
selecting processes from the beginning of the
list. Such a simple selection mechanism make
VTRR possible to realize O(1) selection time
but its fairness is achieved only after relatively
long period. And as well as other recent work
on fair share scheduling, VTRR scheme is de-
signed for server like environment so that it nei-
ther considers latency sensitivity nor supports
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preemption.

3. Enhanced Stride Scheduling

Extending fair-share scheduling using prior-
ity scheduling can provide the desired control
over processes execution order while fairly al-
locating processor time among users and pro-
cesses. However, in its basic implementation,
stride scheduling does not support process pre-
emption and has a high overhead. This sec-
tion first presents our implementation of stride
scheduling which solves these problems. The
overall CPU time allocation policy to improve
both fairness and responsiveness is then dis-
cussed. Finally, the scheduling algorithm im-
plementing this policy is presented in more de-
tail.

3.1 Stride Scheduling Implementation
This section presents our implementation of

stride scheduling. It avoids sorting processes in
pass order and is also modified to support pro-
cess preemption without degrading the strict
fair-share allocation of CPU time provided by
the basic algorithm.
The data structure used to choose processes

is a circular array of linked lists. Each list
contains processes with equal pass. A pointer
called “head” indicates the list of processes with
the smallest pass. All dequeue operations are
thus done in the head list. Figure 2 shows
how the example of Fig. 1 is scheduled using this
data structure. Three states of the stride queue
are represented: the initial state, the state after
three schedule operations and after nine sched-
ule operations.
The head pointer is forwarded to the next

non-empty list each time the head list becomes
empty. A process consuming all its time quan-
tum without sleeping is put back at the end of
the list with an index equal to the current head
list increased by the current stride of this pro-
cess. Thus, the circular array indexes are used
as a pass parameter, moving a process into a
higher index list virtually increments this pro-
cess pass by its stride. The pass parameter is
not needed any more and sorting processes is
avoided as lists are naturally ordered in increas-
ing pass order from the list pointed to by the
head.
A different enqueue operation is used for pre-

empted processes. Such process are inserted at
the beginning of the current head list, and their
time quantum is set to the remaining time of
the previous run. Doing so, the relative share
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Fig. 2 Example of Fig. 1 using our implementation of
stride scheduling.

allocation of CPU time between processes in the
stride queue can be preserved.
The stride calculation proposed by the au-

thors of stride scheduling generates big integers.
When the stride is calculated using the defined
share, the rounding error becomes negligible,
allowing a great precision. Such stride values
cannot be practically used to calculate an ar-
ray index. Smaller values of processes stride,
but yet precise, are necessary.
We simply calculate the stride of a process

using the formula
process stride = rint(1/process share)

where rint() is the function rounding a float-
ing point to the nearest integer. As shown in
Fig. 3, the error generated by the rounding op-
eration is recorded and increased by the initial
error each time a process is put back into the
stride queue. If the total error becomes higher
than one, the displacement into the stride queue
defined by the stride is increased by one.
As the stride queue size is fixed, a resolution

problem can appear for processes with a stride
bigger than the stride queue size (i.e., with a
small share): all these processes will get a stride
equal to the size of the stride queue, thus the
same share. This size must then be big enough
to support very small shares precisely. The size
of the stride queue is 1,024 so that the possible
minimal share is equal to 1/1,024 ≈ 0.001 =
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Fig. 3 Effect of the stride calculation method on pro-
cess scheduling. The circled index values are
incremented with the stride plus the correction.

0.1%.
This implementation reduces stride schedul-

ing overhead but still only provides a strict fair-
ness and do not consider the run-time behavior
of processes. A more flexible CPU time alloca-
tion policy is needed. This matter is discussed
in the next section.

3.2 Scheduling Policy
Processes waking up after waiting for I/O

completion should be scheduled quickly and al-
lowed to receive temporarily more than their
defined share. Moreover, the scheduling pol-
icy should support preemption to minimize the
wait time in ready queue on wake up. Such be-
havior is desirable to emulate the short-job-first
policy by allowing a process to complete a short
CPU burst ahead of other processes. It can also
improve kernel contention as kernel shared re-
sources can be released quickly.
In such cases, the allocated CPU time may be

higher than the defined share of a process on a
certain interval of time. Depending on the past
CPU usage, basically the following two cases
should be considered.
• The process completes its CPU burst
within the allocated share on wake up and
sleeps before consuming more than its de-
fined share.

• The process has a longer CPU burst and
is still runnable after receiving its defined
share on wake up. In this case, the boost as
a result of the over share allocation should
be compensated with a “unboost” to pre-
serve the overall fairness. However, other
processes should not be penalized for hav-
ing used the share of processor time unused
by sleeping processes.

To be reactive to such situations, the sched-
uler should not only consider the total CPU

Fig. 4 I/O bound processes must be boosted on wake
up. When having a longer CPU burst, the
boost must be compensated to preserve the
overall fairness.

Fig. 5 A process having a long CPU burst and sleep-
ing only very short intervals can still be allo-
cated its defined share.

time allocation over the life time of a process,
but also should measure the recently allocated
share over shorter intervals. An accounting
window recording the past CPU allocation of
a process can be used for this purpose. The al-
located share aw(t) of a process at time t over
a window of time length w can be calculated
simply with the following formula.

aw(t) =
CPU time allocated from (t−w) to t

w
Figure 4 shows the allocated share of an hy-

pothetical I/O bound process measured over
such accounting window. The two cases dis-
cussed above are represented.
Measuring the allocated share over the ac-

counting window can provide a precise mecha-
nism to control process boosts and compensa-
tions. As a result, slept time shorter than the
window length can be easily overlapped by a not
compensated boost, allowing processes sleeping
for I/O to receive their fair share. Figure 5
shows such behavior. The allocated share of
the represented process decreases as the pro-
cess sleeps. On wake up, it is boosted without
compensation. The resulting overall share allo-
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cation matches the defined share.
However, such mechanism should be precisely

controlled to avoid a process sleeping a long
time to be boosted inconsiderably on wake up.
In fact as stated above, in such case, the boost
received on wake up should be compensated
such that other processes are not penalized for
having used the share of processor time unused
by sleeping processes.
The next section presents in more detail the

scheduling algorithm which implements this
policy.

3.3 Priority and Stride Scheduling
Combination

The core idea is to combine a classical prior-
ity scheduler with our implementation of stride
scheduling. Priority scheduling allows to simply
implement a preemption control mechanism on
wake up. It also allows to implement the boost
on wake up by scheduling a process with a high
priority until it is allocated its defined share.
Stride scheduling can implement the fair alloca-
tion of CPU time without any difficult priority
calculation method. Its deterministic behavior
also allows a precise control of the process “un-
boost.”
The ready queue has a classical multilevel

feedback queue structure, as shown in Fig. 6.
The stride scheduling queue presented in Fig. 2
is assigned the second lowest priority (priority
1). All other priority levels use a RR policy with
different time quantum. Processes are chosen in
decreasing priority order. On wake up, a pro-
cess is always assigned a priority higher than
1 so that it is scheduled ahead of all processes
in the stride queue. Stride scheduling is used
only if no process has a higher priority than
the stride queue.

Figure 7 shows the table used as a base to
calculate priorities and time quantums☆. For
each priority level, this table defines 1) the next
priority Pexp when a process uses all its time
quantum, 2) the priority on wake up Pslp if a
process sleeps waiting for an event from this pri-
ority level and 3) finally the time quantum TQ
for this level. If a process is preempted before
using up its time slice, its priority is decreased
depending on the used ratio of its time quan-
tum so that processes tend to stay more priority
levels.

☆ This table was based on Solaris 2.5 but with some
modifications through trial and error in our experi-
mental environment.

Fig. 6 The ready queue is a classical multilevel feed-
back queue structure using priority scheduling
between queues. The stride queue is assigned
a fixed priority (priority 1).

 

        
 

Fig. 7 Priority table.

High priority processes are assigned a short
time quantum (for example, 20ms) when sched-
uled. This time quantum is longer for lower pri-
ority levels and is set to 100ms for the stride
scheduling queue level. By assigning a high
priority to processes on wake up, this method
allows a good emulation of the short-job-first
policy which is probably optimal for interactive
systems.
The scheduler recomputes priorities on event

occurrence, when processes are preempted ei-
ther at the end of their time quantum by the
last clock tick or by a higher priority process
waking up. Unlike priority based fair-share
scheduler, the calculation method used is sim-
ple. The accounting window used to precisely
measure CPU time allocation is separated in
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Table 1 Summary of the scheduler action.

Current Allocated Used Time Event Next Priority Next Time Rem.
Priority(P) Share (SA) Quantum (TQused) Quantum
P �= 1 SA ≥ SD — — 1 TQ1 × penalty †1
(Priority SA < SD TQused = TQP — Pexp(P) TQPexp(P )

Queue) TQused < TQP Sleep Pslp(P) TQPslp(P )

Preemption Ppre(P,TQused) TQPpre(P,T Qused)

P = 1 SA ≥ SD TQ1’ — 1 TQ1× penalty †2
(Stride SA < SD TQ1’ — 1 TQ1

Queue) — TQused < TQ1’ Sleep Pslp(1) TQPslp(1) †3
Preemption 1 TQ1 - TQused †4

†1 : Move to Stride Queue with unboosting, †2 : unboost, †3 : Move to Priority Queue,
†4 : Position in the stride queue unchanged.

SD : defined share
Ppre(P,TQused) = P - int[(P - Pexp(P)) × TQused

TQP
]

penalty : Assuming that the sweeping window is logically divided into N sections, currently we choose N as 4,
boosting effect in one section is going to be compensated during the succeeding N − 1 sections by means of
reducing the time quantum during these sections with the following penalty function.

penalty = f(SD, SA, N) = max{0, N×SD−SA

(N−1)×SD
}, (0 ≤ penalty ≤ 1.0)

TQ1’ =

{
TQ1 (ordinary section)
TQ1× penalty (unboosting section)

two intervals of equal length. Depending on the
CPU allocation measured over the most recent
interval, the following two cases can occur.
• If the preempted process was allocated less
than its defined share over the most recent
interval, its priority is decreased using the
priority table depending only on its current
priority, and on its time quantum usage. In
this case, the priority is never decreased to
1.

• On the contrary, if the preempted process
was allocated its fair-share or more, its pri-
ority is set to 1 so that it will be scheduled
using stride scheduling from the next time.

A boosting process will thus be scheduled
ahead of processes in the stride queue using
priority scheduling until it is allocated its fair-
share. Then, a process can receive the pro-
cessing time consecutively to match his defined
share. This can result in a over share allo-
cation over the entire window when the pro-
cess enters the stride queue. If a process is
still runnable when entering the stride queue,
its time quantum may be decreased depending
on the past CPU allocation to implement the
“unboost”. This penalty will be thus recorded
in the most recent interval of the window, the
boost recorded being shifted to the end of the
window. Doing so, fairness can be precisely
controlled over the total window.
However, with this scheme, I/O bound pro-

cesses which always release the CPU before the
end of their time quantum may be able to use
more than their defined share. As a solution

to this problem, a control point is added on re-
turn from system call, where a process is about
to return to user space. If the allocated share
is higher than the defined share, the process is
preempted as soon as it returns to user space,
and its priority is decreased to 1. This also pre-
vents a process from boosting several times in a
short interval, which may happen if the process
always sleeps just at the end of its boost while
it is scheduled in the priority queue.
The overview of our scheduler action is sum-

marized a little bit in detail in Table 1. The
next section presents some evaluation results
explaining in more detail the effect of the win-
dow time length on the scheduler behavior.

4. Evaluation Results

The results presented in this section were
measured using an emulator of a distributed
operating system actually developed in our lab-
oratory. This emulator simulates program ex-
ecution state change depending on parameters
defining the distribution of CPU and I/O bursts
of processes. First we discuss the scheduling
overhead and then we argue the feature of our
scheduler showing some experimental results.

4.1 Scheduling Overhead
We have compared the relative overhead of

stride scheduling queue manipulation for our
implementation and for the original implemen-
tation proposed in Ref. 17). Figure 8 shows
the cost of put and get operations for both
implementations depending on the number of
runnable processes. Those measurements were
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Fig. 9 Scheduling overhead.

done on a 300MHz Ultra-Sparc II machine.
Our implementation provides a bounded “put”
operation cost, whereas in the original imple-
mentation the “put” cost increases with n be-
cause of queue search. However, the get op-
eration is slightly slower because of the head
pointer update in the stride queue structure.

Figure 9 shows the cost for the execution
of the schedule() function which chooses the
next process. This function updates CPU us-
age information of the preempted process, re-
calculates the priority of this process and puts
this process back into the ready queue if it
is still runnable. If the process is put back
into the stride queue its stride is recomputed.
schedule() then chooses the next process to
execute and update its accounting window with
the waited time.
The graph shows the scheduling overhead

of two cases. The one is when only priority
scheduling is used and the other is when there
are only compute bound processes and stride
scheduling is used. The overhead of both prior-
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Fig. 10 Basic scheduling behavior for different CPU
bursts length.

ity and stride scheduling do not depend on the
number of runnable processes. In the average,
the scheduling overhead will thus be bounded
with these two limits when both methods are
used. On heavily loaded systems, it will tend
to be closer to stride scheduling overhead as the
stride queue may be more intensively used.

4.2 Experiments
In this section, we show that the proposed

scheduling mechanism allows a precise alloca-
tion of CPU time among users and processes.
First some characteristic cases are considered to
show the basic behavior of the scheduler. This
is followed by more general tests for compute
bound and I/O bound processes. Note that, in
these experiments, simple working sets are cho-
sen deliberately so that the resulting scheduler
actions are analyzable.

4.2.1 Basic Behavior
This section demonstrates how the boost/un-

boost mechanism works in our scheduler. Fig-
ure 10 shows the basic behavior of the sched-
uler. In this example, a user A with a defined
share of 50% runs a process which has three
CPU bursts of length 300 milliseconds, 700 mil-
liseconds and 5 seconds, each. Another user B
is running two compute bound jobs (not repre-
sented in the figure). The accounting window
length is 2 seconds, and the graph shows results
measured over one second intervals.
As the two first CPU bursts of user A pro-

cess are short, they are executed within the allo-
cated CPU time with priority scheduling, ahead
of user B processes. Because it sleeps quickly
and a long time, user A process is allowed to
be boosted also for the next CPU burst. How-
ever, as this last CPU burst is longer, the boost
increases. As a result, user A process is penal-
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Fig. 11 Two users A and B with the same defined
share run compute bound processes. User A
process starts after 20 seconds.

ized to preserve fairness. When the CPU time
allocation over the window of two seconds is re-
stored, the process is scheduled with the stride
scheduling until it completes.

4.2.2 Compute Bound Processes
This section illustrates how fairness is im-

proved by the compensation of the time slept
by processes with the boost on wake up.
In the example of Fig. 11, user A is run-

ning one compute bound process starting after
20 seconds. This process needs 20 seconds of
CPU time to complete its execution. It per-
forms some I/O and sleeps 1.89 seconds over
its life time. User B executes two long run pro-
cesses with a ticket ratio of 3 to 2. The length
of the accounting window attached to each pro-
cess for CPU usage accounting is two seconds.
Figure 11 shows the allocated share for each
process measured over one second intervals.
When process 1 starts execution after 20 sec-

onds, active tickets are modified so that user B
processes’ defined shares become 30 and 20%
respectively. Since process 1 suspends its exe-
cution by itself, it is boosted on wake up and
then penalized if necessary. In such a manner,
fairness is improved compared to a strict fair-
share scheduling.
If the slept time of process 1 waiting for I/O

completion is exactly compensated with the
boost on wake up, process 1 can complete its ex-
ecution in 40 seconds. This execution time may
varies with the accuracy of the compensation,
however. The Table 2 shows execution time
of process 1 with various window length. CPU
time allocation error slightly increases with the
window length. This is due to a less stable dis-
tribution of CPU time among processes. In-
deed, as the window gets longer, it takes more

Table 2 Total execution time of process 1 of the ex-
ample of Fig. 11 with various window size.

Window length Execution time Error
1 40.09 −0.2%
2 39.46 1.35%
4 39.209 1.98%
10 38.68 3.3%
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Fig. 12 User A executes a single compute bound pro-
cess, users B and C run the same load of I/O
bound processes.

time for a process to be allocated its defined
share over the time interval of the window. The
resulting boosts are thus highly enhanced.

4.2.3 I/O Bound Processes
In this experiment, user A runs a single com-

pute bound job, user B and C both executes
five I/O bound processes which repeatedly run
and sleep for 20ms and 80ms in the average
respectively. The defined shares are 20%, 30%
and 50% for user A, B and C. Figure 12 shows
the measurement over 4 seconds intervals of the
allocated share to each users. The accounting
window time length is 2 seconds.
During this simulation for 100 sec, allocated

CPU times of user A, B, and C are 50.338 sec,
30.223 sec and 19.439 sec, respectively. It means
that the CPU time allocation errors are 0.6%,
0.7% and −2.8% for user A, B, and C. Even in
the case of a high interactive load, the scheduler
allows to precisely allocate CPU time to each
user.

5. Conclusion

In this paper, we presented a fair-share
scheduling method which combines a classical
priority scheduler with stride scheduling. Using
priority scheduling improves both fairness and
the response time of interactive and I/O inten-
sive applications by boosting the execution of
processes on wake up.
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As processes are scheduled using priority
scheduling on wake up until they are allocated
their fair share, all processes not using all their
allocated CPU time will always be scheduled
ahead of compute bound applications. In par-
ticular, in lightly loaded systems, all users re-
quests can be satisfiable without fair-share al-
location of processing time using the imple-
mented classical scheduler. On the contrary, if
the load increases, our implementation of stride
scheduling allows to allocate processing time
fairly among users and processes. The precise
control over CPU time allocation is obtained
using a short time sweeping window recording
recent CPU usage of processes, allowing to keep
the scheduling algorithm simple. Experiments
have shown that fairness is obtained with a
small error, even in the case of high interactive
loads.
The event based update of priorities and tick-

ets allocation also allows to reduce the schedul-
ing overhead and combined with an improved
implementation of stride scheduling. Our im-
plementation results on our emulator have
shown that the total overhead do not depend
on the number of runnable processes. However,
an implementation on a real system is desired to
validate the implementation choices more pre-
cisely using a more realistic load.
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