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Abstract: Many people are using mobile and wearable technologies to collect their sleep data in order to learn more about their 

sleep patterns and to identify sleep anomalies. However, these sleep data are rarely analyzed in a systematic way and many users 

find it difficult to understand if their sleep patterns are normal. To address this issue, we applied a data mining technique to 

analyze personal sleep tracking data collected from 7 participants, aiming to investigate inter-individual difference in terms of 

abnormal sleep patterns. We found that population criterion may classify people who are satisfied with their sleep experience as 

poor sleepers. On the other hand, sleep anomalies are missed for people whose personal sleep distribution deviates from sleep 

distribution of the population. These abnormal sleep patterns manifested themselves in different dimensions. For example, one 

person may have problems in sleep duration, while another person may sleep enough but have lots of awakenings. Even within 

one dimension, abnormal sleep patterns of one person can be antithetical to those of another person. The quantitative analysis 

results on personal sleep data support the conclusions of previous qualitative studies on sleep tracking, suggesting the need for a 

change in evaluating sleep quality that takes into account interpersonal differences. 
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1. Introduction

  Good sleep is essential for personal health, while poor sleep 

can negatively affect our wellbeing and lead to illness [1]. In the 

past, sleep monitoring could only be done in sleep clinics using 

Polysomnography (PSG) which is expensive and obtrusive. 

Recently, sleep-tracking has become more accessible to people 

in their own homes to the advances in affordable and 

easy-to-use mobile and wearable technologies life the Fitbit 

wristband [2]. A screenshot of the Fitbit dashboard (see Figure 

1) shows that users can learn how long they sleep and

interruptions to their sleep. According to previous validation 

studies, Fitbit generates reasonably reliable measurements and 

has been widely used in fields to assess sleep measures [3-4].  

Figure 1  A screenshot of the sleep-tracking data presented 

on Fitbit dashboard. 

One envisioned application of these home sleep monitoring 

technologies is to detect abnormal sleep patterns. For patients, 

abnormal sleep patterns may suggest side-effects of medical 

interventions; while for healthy people, detecting abnormal 

sleep patterns can alert them of possible sleep disorders and 

related diseases. However, such kind of data analysis is not 

available in current commercial sleep-trackers, because 
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information is missing on what constitutes a normal sleep 

pattern. Our previous study showed that users find it difficult to 

understand the data they collect, let alone if their sleep habits 

are healthy [5]. People asked, for example, if 10 hours sleep are 

normal; what it means if they have 13 periods of restlessness, 

and how they can integrate sleep with other data to get a holistic 

understanding of their lifestyle? Indeed, it is difficult to 

understand sleep because we do not consciously experience it, 

and because it is difficult to recollect past nights and detect 

patterns over days and weeks. This gap between sleep data and 

personal insights calls for the design and development of 

advanced and automated data analysis approaches and tools. 

In this study, we applied a data mining technique to analyze 

personal sleep-tracking data with the purpose of investigating 

inter-individual difference in terms of abnormal sleep. Defining 

“abnormal” as the statistical outliers from each user’s own sleep 

baseline, we formulated the problem as an outlier detection 

problem. Since sleep is multidimensional in nature and is 

characterized by several metrics [7], a multivariate outlier 

detection technique was employed to achieve the goal. Fitbit can 

track six sleep metrics, i.e., minutes asleep (MASP), minutes 

awake (MAWK), number of awakenings (NAWK), bed time 

(BT), minutes to fall asleep (MTFA) and sleep efficiency (SE). 

The last metric was discarded since it is a redundant feature of 

MASP and MAWK.  

We recruited 7 participants and collected sleep data using 

Fitbit wristbands. A multivariate outlier detection data mining 

technique was applied to the collected sleep-tracking data to 

detect abnormal sleep patterns for each participant. We found 

that population criterion may classify people who were satisfied 

with their sleep experience as poor sleepers, while fail to detect 

sleep anomalies for people whose personal sleep distribution 

deviated from sleep distribution of the population. In 

comparison, the data mining technique successfully detected 

abnormal sleep for each individual by counting in their personal 

sleep quality baselines. The detected abnormal sleep patterns 

demonstrated rich diversities. On the one hand, abnormal sleep 
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manifested in multiple dimensions, and the dimensions were not 

necessarily equivalent to all people. For another, even in a same 

dimension, abnormal sleep patterns of one person could be 

antithetical to those of another. In summary, the “abnormal” 

could mean either short or long sleep duration, either early or 

late time to go to bed, more awakenings during sleep, or long 

sleep onset latency. The outcome of this study echoes previous 

studies that normal sleep is hard to define because people differ 

in physiology, psychology, lifestyle and living environment [5,7], 

suggesting the need for a paradigm shift in sleep quality 

evaluation approach that counts in interpersonal differences. 

2. Related Work

2.1 Quantified self and sleep-tracking technologies 

  Under the influence of the Quantified Self movement, many 

people are using wearable or portable sensors to track their 

physiological (e.g. weight, blood pressure, blood glucose level) 

and psychological (e.g. mood, stress, emotion) parameters for 

better health and wellbeing [17-19]. Among various health 

aspects, sleep has attracted wide attention from quantified-self 

followers, largely due to the importance of sleep to our overall 

health [20-21] and also to the prevalence of sleep problems in 

modern society [22-23]. In recent years, a large number of 

commercial sleep-tracking technologies appeared in consumer 

market. Depending on the underline technologies, sleep trackers 

could be classified into three groups: mobile applications (e.g. 

SleepAsAndroid, SleepBot), wearable devices (e.g. Fitbit, 

Neuroon) and embedded systems (e.g. Beddit). They provide 

users with information such as total sleep duration (e.g. minutes 

asleep), sleep continuity (e.g. minutes awake, awakening 

counts), sleep onset latency (e.g. minutes to fall asleep), and 

even sleep stages (e.g. REM sleep and slow-wave sleep). 

Devices such as Jawbone also provide tailored coaching tips on 

how to promote healthy sleep habits for better sleep quality.  

Although these technologies are promising for home sleep 

monitoring in terms of convenience and cost, several challenges 

remains [8-9]. Two of the most mentioned problems are data 

quality issue and data interpretation. Whereas there is increasing 

evidence that commercial wearable devices produce reasonably 

accurate measures on sleep [3-4], it remains a challenge as to 

how to empower users to gain insights from their sleep-tracking 

data.  

2.2 Sleep structure and sleep health 

  Human sleep is multidimensional and can be characterized 

from the perspective of quantity, continuity and timing [10]. In 

sleep research, sleep quality is evaluated using a set of metrics 

called sleep structure [7] and clinical sleep test usually involves 

monitoring the whole sleep structure. According to [7], the most 

relevant dimensions of sleep health include the following five 

aspects. 

 Sleep duration: the total amount of sleep obtained per 24

hours.

 Sleep continuity or efficiency: the ease of falling asleep

and returning to sleep.

 Timing: the placement of sleep within the 24-hour day.

 Alertness/sleepiness: the ability to maintain attentive

wakefulness.

 Satisfaction/quality: the subjective assessment of “good”

or “poor” sleep.

Many modern sleep-tracking technologies can track several 

sleep metrics that fit in the above five aspects. The values of 

these sleep metrics are presented to users on a dashboard on 

daily basis. Since detecting high-dimensional anomalies through 

human observation and reasoning is challenging, if not 

impossible, users of self-tracking technologies found it difficult 

to gain insights from their sleep data. In most cases, users would 

simply focus on one or two metrics that are most relevant to 

their sleep quality [5]. We argue that the value of 

multi-dimensional sleep data should not be compromised due to 

the complexity of analysis. Advanced data analysis techniques 

may help establish larger personal value from self-tracking sleep 

data. That is the motivation for us to conduct this study. 

3. Methods

3.1 Collecting sleep-tracking data 

We used the sleep-tracking data collected in our previous 

study [5] from 7 participants (5 female, year range = 20~50 

years old). These participants were recruited through university 

mailing list and they had been using Fitbit to track their sleep. 

We obtained informed consent from all participants. Their sleep 

quality during the past month was evaluated using Pittsburg 

Sleep Quality Index (PSQI) [11]. A PSQI over 5 indicates poor 

sleep quality. Participant #3 was diagnosed with sleep apnea and 

was under treatment throughout the study. Participant #4 had 

visited a sleep clinic before but did not have severe sleep 

problems during the study. The demographic information of the 

participants was summarized in Table 1.  

Table 1. Demographic information of participants. 

ID Age Range Type of Fitbit PSQI Baseline 

#1 20s Charge HR 1 (Good) 

#2 30s Charge HR 3 (Good) 

#3 40s Charge HR 4 (Good) 

#4 40s Flex 11 (Poor) 

#5 30s Charge 7 (Poor) 

#6 30s Charge HR 5 (Poor) 

#7 30s Flex 4 (Good) 

Participants used their own Fitbit devices to collect sleep data 

during the study, which included Fitbit Flex, Fitbit Charge, and 

Fitbit Charge HR. The first two models require users to 

manually switch in and out of sleep-tracking mode, while Fitbit 

Charge HR automatically switch tracking mode. In total 7 

datasets were collected, and each dataset has 34 ~ 61 data 

entries depending on the participant. The prepared datasets 

satisfied the 30-day requirement for personal data analysis [12]. 

Vol.2017-MBL-82 No.54 
Vol.2017-UBI-53 No.54

  2017/3/10



IPSJ SIG Technical Report 

ⓒ2017 Information Processing Society of Japan 3 

3.2 Mining sleep-tracking data 

3.2.1 Problem formulation 

In this study, the goal of the data mining task was to detect 

abnormal sleep from personal sleep-tracking data collected 

using Fitbit. Since these data were collected in free conditions 

and were not labeled, we used an unsupervised outlier detection 

technique to perform the data mining task. We adopted a general 

approach to define “abnormal” as the statistical outliers from 

each user’s own sleep baseline. The detection of abnormal sleep 

was thus formulated into the following multivariate outlier 

detection problem.  

Given D days of n-dimensional sleep-tracking data 

𝑿 = {𝒙𝒅}𝑑=1
𝐷  where 𝒙𝑑 = (𝑥𝑑,1, 𝑥𝑑,2, … , 𝑥𝑑,𝑛), find 𝑿𝑢𝑛𝑢𝑠𝑢𝑎𝑙 =

{𝒙𝒖}𝑢=1
𝑈 ⊂ 𝑿 that satisfies (1).

|𝒙𝑢 − 𝒙0|/𝜉 > 𝑡                (1)

where 𝒙𝟎 is the center of the dataset, |𝒙𝑢 − 𝒙0| represents the

distance between 𝒙𝟎 and 𝒙, 𝜉 is the natural variation of the

dataset and t is a threshold parameter. 

Fitbit tracked six sleep metrics, i.e., minutes asleep (MASP), 

minutes awake (MAWK), number of awakenings (NAWK), bed 

time (BT), minutes to fall asleep (MTFA) and sleep efficiency 

(SE). The last metric was discarded since it is a redundant 

feature of MASP and MAWK. Therefore, the sleep-tracking data 

used for data mining had 5 dimensions. 

3.2.2 Detecting abnormal sleep from multivariate data 

As is shown in Equation (1), we need to quantify the distance 

between a multivariate data point and the reference center. We 

used the standard method, i.e. Mahalanobis distance [13], to 

perform the task. Assuming that the data satisfied multivariate 

normal distribution with estimated mean 𝜇  and covariance 

matrix Σ , the Mahalanobis distance  𝑑𝑀(𝑥)  measures how

many standard deviation away a data point x is from the mean.  

d𝑀 (𝒙)2 = (𝒙 − 𝝁)𝑇Σ−1(𝒙 − 𝝁) (2) 

where 𝒙 = (𝑥𝑑,1, 𝑥𝑑,2, 𝑥𝑑,3, 𝑥𝑑,4, 𝑥𝑑,5)𝑇 is a set of 5-dimension

sleep data points, 𝝁 = (𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5)𝑇 is the mean of the

distribution and  Σ is the covariance matrix. Since 𝝁 and  Σ 

are very sensitive to outlier as well, we used Minimum 

Covariance Determinant estimator [14] to robustly estimate 

them. The 1% quantile of d𝑀 (𝒙𝒅) was taken as outliers

4. Results

The distinct characteristics of identified abnormal sleep for 

each participant were summarized in Table 2. The detected 

abnormal sleep manifested in multiple dimensions, and the 

dimensions were not necessarily equivalent to all participants. 

For example, sleep duration was irrelevant to participants #4 

and #6. In a similar way, awakening duration was irrelevant to 

participants #5 and #6, awakening count was irrelevant to 

participants #2, #3 and #5, and sleep onset latency was 

irrelevant to participants #1, #2 and #5. Bed time was the only 

metric that characterizes abnormal sleep for all participants in 

the study cohert.  

The average sleep duration of usual and abnormal sleep for 

each participant was plotted in Figure 2. The dash lines 

represent the recommended sleep duration by sleep research 

community in the dimension of sleep duration [26]. The 

6-9-hour standard would classify participants #2, #5, #6, #7 as 

good sleepers and participant #3 as poor sleeper, and may not 

able to detect personal abnormal sleep patterns for these people 

as all their sleep appear to be homogenously good or poor to the 

standard. In practice, however, participant #3 considered himself 

as a good sleeper, while participants #5 and #6 were not 

satisfied with their sleep quality.  

Table 2. Characteristics of abnormal sleep for each 

participant 

ID Characteristics of Abnormal Sleep 

Sleep 

Duration 

Awakening 

Duration 

Awakening 

Count 

Bed 

Time 

Sleep Onset 

Latency 

#1 Short Long High Late / 

#2 Short Long / Late / 

#3 Short Long / Late Long 

#4 / Long High Early Long 

#5 Short / / Late / 

#6 / / High Early Long 

#7 Long Long High Late Long 

Figure 2  Average sleep duration of usual and abnormal 

sleep for each participants.  

The average time to go to bed was plotted in Figure 3. The time 

format was converted to numerical data for analysis; 2050 

represents 20:50. The difference of bed time between usual and 

abnormal sleep was more than 1 hour for good sleepers (i.e. 

participants #1, #2, #3, #7). Out of the 7 participants, abnormal 

sleep was characterized by early bed time for 2 participants (#4 

and #6) while by late bed time for the rest. Coincidently 

participants #4 and #6 were both poor sleepers according to their 

PSQI baseline. We also noticed that the abnormal sleep patterns 

of the 2 poor sleepers share the common characteristics of early 

bed time (Figure 3) and long sleep onset latency (Figure 5), 

hypothesizing a link between the two phenomenon among poor 

sleepers. 

Normal sleep 

Abnormal sleep 
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Figure 3  Average bed time of usual and abnormal sleep for 

each participants. (Time format was converted to numerical 

data for analysis; 2050 represents 20:50) 

Figure 4  Average awake duration of usual and abnormal 

sleep for each participants.  

Figure 5 Average sleep onset latency of usual and 

abnormal sleep for each participants. 

The average awake duration of usual sleep and that of 

abnormal sleep was plotted in Figure 4. The dash line 

represented the population criterion on awakening duration, i.e. 

being awake for longer than 30 minutes was considered 

abnormal. The population criterion was only valid for 

participants #2 and #3, where the awakening duration of usual 

sleep was below 30 minutes and vice versa. It would not be 

possible to detect personal abnormal sleep for the rest of the 

participants using the population criterion, as the awakening 

durations of usual and abnormal sleep were all above 30 minutes 

for participants #4 and all below 30 minutes for participants #1, 

#5, #6, #7. Similarly, the population criterion of 30 minutes was 

not able to detect anomaly in terms of sleep onset latency as is 

shown in Figure 5, whereas the data mining technique detected 

relatively abnormal sleep onset latency for each participants. 

5. Discussions

5.1 Define sleep normality in multiple dimensions 

The above results implied that it was not possible to 

characterize abnormal sleep for all people using a single sleep 

metric. Anomaly sleep may appear to be normal in one 

dimension but abnormal in other dimensions. Although sleep 

has been routinely monitored in multiple dimension in 

laboratory settings, commercial sleep-tracking technologies tend 

to simplify sleep quality into a single score such as sleep 

efficiency or sleep duration. Whereas it is necessary to consider 

sleep quality in multiple dimensions (e.g. sleep duaration, 

awakening duration, number of awakenings), our results 

suggested that not all sleep dimensions were equivalently 

relevant to everyone. Bed time is the most relevant sleep metric 

to all participants, whereas sleep onset latency was only related 

to approximately half of the participants. This compensates the 

findings of our previous study that individual use different 

subsets of sleep metrics to define their sleep quality, which in 

turns was closely related to personal sleep experience [5]. 

Additionally, findings in clinical sleep research suggest that the 

relevant sleep metrics may change as a person ages [16].   

5.2 Embrace inter-individual differences while 

acknowledge population patterns 

Individuals’ sleep anomaly manifested in different sleep 

dimensions. Even in a same dimension, abnormal sleep patterns 

of one person could be antithetical to those of another. The 

results in previous section demonstrated that abnormal sleep 

could either mean either short or long sleep duration, and either 

early or late time to go to bed. Difference in sleep patterns 

between good and poor sleepers is a well-studied topic in sleep 

research [24, 25]. Inter-individual difference among 

homogenous good sleepers has not been well explored. 

Historically, differences in sleep patterns among homogenous 

population were attributed solely to differences in circumstances 

or simply personal sleep habits. It was not until recently that 

inter-individual difference was acknowledged to be biologically 

determined, at least partially [15]. If genes do play a role, 

imposing population average (e.g. 8-hour sleep duration or 

30-minute sleep onset latency) as a goal to all individuals is 

questionable, and may even lead to more discontinued and 

lighter sleep or even chronic insomnia [16]. There is no doubt 

that individual sleep needs should be taken into account when 

evaluating sleep quality or detecting sleep anomalies.  

Normal sleep 

Abnormal sleep 

Normal sleep 

Abnormal sleep 

Normal sleep 

Abnormal sleep 
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It is also worth noting that an absolute individualized sleep 

evaluation schema without counting in important 

population-level findings would harm the meaning and 

correctness of such a schema. Therefore, a natural question is 

how to understand the sleep needs of each individual and how to 

strike a balance between such indivdual needs and the 

population criteron in sleep quality evaluation. 

5.3 Limitations of current study 

While the results presented in this paper were 

thought-provoking, this study has the following limitations. First, 

we did not consider the issue of data quality. Commercial 

wearable devices have inherent limitations. The collection of 

self-tracking data was not done in a controlled manner and many 

human errors could be involved. Therefore, the identified sleep 

outliers were in fact a mixture of measurement errors, 

contextual outliers and real sleep outliers. The current approach 

does not differentiate these cases. Second, we only recruited a 

small-scale participant cohort in this study. Thus the reliability 

and generality of the conclusions drawn from the results was 

limited by the small sample size. 

6. Conclusions

In this paper we applied a data mining technique to 

automatically detect abnormal sleep from personal 

sleep-tracking data. Defining abnormal sleep as statistical 

outliers, the data mining task was formulated as multivariate 

outlier detection problem which counts in the 

multi-dimensionality of human sleep. Five sleep metrics were 

selected as features that represent the characteristics of personal 

sleep. We collected self-tracking sleep data from 7 participants 

and used the approach to detect abnormal sleep for each of them. 

We found that population criterion may classify people who 

were satisfied with their sleep experience as poor sleepers, while 

fail to detect sleep anomalies for people whose personal sleep 

distribution deviated from sleep distribution of the population. 

The detected abnormal sleep patterns demonstrated rich 

diversities. On the one hand, abnormal sleep manifested in 

multiple dimensions, and the dimensions were not necessarily 

equivalent to all people. For another, even in a same dimension, 

abnormal sleep patterns of one person could be antithetical to 

those of another. Depending on the person, the “abnormal” 

could mean both short and long sleep duration, and both early 

and late time to go to bed. Our study suggested the need for 

rethinking how consumer devices evaluate sleep quality, taking 

into acccount interpersonal differences. 
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