
Vol. 44 No. SIG 1(HPS 6) IPSJ Transactions on High Performance Computing Systems Jan. 2003

Regular Paper

Optimization Techniques for Parallel Codes of

Irregular Scientific Computations

Minyi Guo,† Weng-Long Chang†† and Yi Pan†††

In this paper, we propose a communication cost reduction computes rule for irregular loop
partitioning, called least communication computes rule. For an irregular loop with nonlin-
ear array subscripts, the loop is transformed to a normalized single loop, then we partition
the loop iterations to processors on which the minimal communication cost is ensured when
executing those iterations. We also give some interprocedural optimization techniques for
communication preprocessing when the irregular code has the procedure call. The experi-
mental results show that, in most cases, our approaches achieved better performance than
other loop partitioning rules.

1. Introduction

Parallelizing compilers are necessary to allow
programs written in standard sequential lan-
guages to run efficiently on parallel machines.
In order to achieve optimal performance, these
compilers must be able to efficiently generate
communication sets for nested loops. Paral-
lelizing compilers that generate code for each
processor have to compute the sequence of lo-
cal memory addresses accessed by each proces-
sor as well as the sequence of sends and receives
for a given processor to access non-local data.
The distribution of computation in most com-
pilers follows the owner-computes rule. That is,
a processor performs only those computations
(or assignments) for which it owns the left hand
side variable. Access to non-local right hand
side variables is achieved by inserting sends and
receives.

Communication overhead influences the per-
formance of parallel programs significantly. Ac-
cording to Hockney’s representation, commu-
nication overhead can be measured by a lin-
ear function of the message length m, that is
Tcomm = Ts + m × Td, where Ts is the start-
up time and Td is the per-byte messaging time.
To achieve good performance, it is necessary to
optimize communication by:
• exploiting local computation as much as

possible;
• vectorizing and aggregating communica-

† Department of Computer Software, The University
of Aizu

†† Department of Information Management, Southern
Taiwan University of Technology

††† Department of Computer Science, Georgia State
University

tion in order to reduce the number of com-
munications; and

• reducing the message length in a commu-
nication step.

As the scientists attempt to model and com-
pute more complicated problems, they have to
envisage to develop efficient parallel code for
sparse and unstructured problems in which ar-
ray accesses are made through a level of indi-
rection or nonlinear array subscript expressions.
This means that the data arrays are indexed ei-
ther through the values in other arrays, which
are called indirection arrays/index arrays, or
through non-affine subscripts. The use of in-
direct/nonlinear indexing causes the data ac-
cess patterns, i.e., the indices of the data arrays
being accessed, to be highly irregular. Such a
problem is called irregular problem, in which
the dependency structure is determined by vari-
able causes known only at runtime. Irregular
applications are found in unstructured compu-
tational fluid dynamic (CFD) solvers, molecu-
lar dynamics codes, diagonal or polynomial pre-
conditioned iterative linear solvers, and n-body
solvers.

Researchers have demonstrated that the per-
formance of irregular parallel code can be im-
proved by applying a combination of compu-
tation and data layout transformations. Some
researches focus on providing primitives and
libraries for runtime support 2),4),13),16), some
provide language support such as add irregular
facilities to HPF or Fortran 90 15),21),23), and
some works attempt to utilize caches and local-
ity efficiently 5).

Hwang, et al.16) presented a library called
CHAOS, which helps user implement irregu-
lar programs on distributed memory machines.

58

Vol. 44 No. SIG 1(HPS 6) Optimization Techniques for Irregular Scientific Computations 59

The CHAOS library is divided into six phases.
They are Data Partitioning, Data Remapping,
Iteration Partitioning, Iteration Remapping,
Inspector, and Executor phase. The first four
phases concern mapping data and computa-
tions onto processors. The next two steps con-
cern analyzing data access patterns in loops
and generating optimized communication calls.
The same working group as the above, Pon-
nusamy et al. extended the CHAOS runtime
procedures which are used by a prototype For-
tran 90D compiler to make it possible to em-
ulate irregular distribution in HPF by reorder-
ing elements of data arrays and renumbering
indirection arrays 21). Also, in their paper
Ref. 4), Das, et al. discussed some primitives to
support communication optimization of irreg-
ular computations on distributed memory ar-
chitectures. These primitives coordinate inter-
processor data movement, manage the stor-
age of, and access to, copies of off-processor
data, minimize inter-processor communication
requirements and support a shared name space.

Some researchers have focused on improving
data locality and cache utilization for sparse
matrix and irregular computations. Mellor-
Crummey et al. manually applied a geomet-
ric partitioning algorithm based on space-filling
curves to map multi-dimensional data to mem-
ory, showing large improvements in perfor-
mance 17). Mitchell, et al.18) improved locality
using bucket sorting to reorder loop iterations
in irregular computations. They improved the
performance of two NAS applications (CG, and
IS) and a medical heart simulation. However,
this method works only for computations con-
taining a single irregular access per loop itera-
tion.

Other works investigated to provide efficient
runtime and compiler of parallel irregular re-
ductions 11), and efficient implementation of
sparse matrix computations (i.e., LU decompo-
sition, multiplication, etc.) 3).

In this paper, we propose some optimization
techniques to minimize the communication cost
in pre-processing for compiling irregular scien-
tific codes. We first partition irregular loops us-
ing a communication cost reduction computes
rule, called least communication computes rule.
According to these information we partition the
loop iteration to a processor on which the min-
imal communication is ensured when execut-
ing that iteration. Then, for irregular nested
loops with nonlinear subscript references, we

transform the loops to single loops using loop
coalescing and symbolic analysis. After trans-
formed to single loops, the loops can be treated
as the loops with indirection array. Addition-
ally, using inter-procedural partial redundancy
elimination algorithm, we optimize the prepro-
cessing routine and collective communication
if the irregular codes include inter-procedure
calls.

2. Reducing Communication Cost for
Loop Partitioning with Indirection
Array Reference

As mentioned above, there are two kinds of ir-
regular loops — data array are indexed through
indirection arrays or indexed through nonlinear
subscript expressions — that we called indirec-
tion array loop or nonlinear loop respectively.
In this section, we propose a communication
cost reduction technique for loop partitioning
with indirection array reference. In the follow-
ing discussion, we assume that the indirection
array loop body has only loop-independent de-
pendence, but no loop-carried dependence (it is
very difficult to test irregular loop-carried de-
pendence since dependence testing methods for
linear subscripts are completely disabled), be-
cause most of practical irregular scientific ap-
plications have this kind of loops.

2.1 Motivation Examples
Consider the irregular loop below, which is

a simplified version extracted from ZEUS-2D
code 19):

Example 1

DO 10 t = 1, time_step
C Outer loop takes the execution times
C of irregular loop

DO 100 i = 1, N
S1: X(j1(i)) = X(j0(i)) + Y(j2(i))
S2: X(j3(i)) = X(j2(i)) + Y(j0(i)) + Z(j2(i))
S3: Y(j0(i)) = Y(j0(i)) + Z(j2(i)) - X(j0(i))
S4: Y(j3(i)) = Y(j2(i)) - X(j2(i))

100 CONTINUE
......

10 CONTINUE

Generally, in distributed memory compila-
tion, loop iterations are partitioned to proces-
sors according to the owner computes rule 1).
This rule specifies that, on a single-statement
loop, each iteration will be executed by the pro-
cessor which owns the left hand side array ref-
erence of the assignment for that iteration.

For the loop in Example 1, if owner com-

60 IPSJ Transactions on High Performance Computing Systems Jan. 2003

Table 1 The owner of executing assignments and required communications for Example 1.

Statement Owner array elements required communication
S1: P1, X(j0(i)) (P0 −→ P1), Y(j2(i)) (P2 −→ P1)
S2: P3, X(j2(i)), Z(j2(i)) (P2 −→ P3), Y(j0(i)) (P0 −→ P3)
S3: P0, Z(j2(i)) (P2 −→ P0)
S4: P3, X(j2(i)), Y(j2(i)) (P2 −→ P3)

putes rule is applied, the first step is to dis-
tribute the loop into four individual loops each
of which includes the statement S1, S2, S3,
and S4, respectively. Without loss of gen-
erality, suppose that the loop would be ex-
ecuted on 4 processors in parallel. If the
array elements Y(i) and Z(i) are aligned
with X(i) in the initial distribution, clearly
Y(j0(i)) (or Z(j0(i))) is also distributed
onto the same processor with X(j0(i)).
So we can assume that P0, P1, P2, and
P3 own [X(j0(i)), Y(j0(i))], [X(j1(i))],
[X(j2(i)),Y(j2(i)), Z(j2(i))], and
[X(j3(i)),Y(j3(i))], respectively, for iter-
ation i. Then the iteration i of executing
S1, S2, S3, and S4 would be partitioned to
processor P1, P3, P0, and P3, respectively. Thus
if any references to array elements on the right-
hand side is not owned by the processor exe-
cuting the statement (say, an off-processor ref-
erence), the array data on the right-hand side
would have to be communicated to the owner.
Table 1 shows the owner of executing assign-
ments and required communications for the ex-
ample loop.

However, owner computes rule is often not
best suited for irregular codes. This is because
use of indirection in accessing left hand side ar-
ray makes it difficult to partition the loop iter-
ations according to the owner computers rule.
Therefore, in CHAOS library, Ponnusamy, et
al.21),22) proposed a heuristic method for irreg-
ular loop partitioning called almost owner com-
putes rule, in which an iteration is executed on
the processor that is the owner of the largest
number of distributed array references in the
iteration.

According to almost owner computes rule,
this loop iteration would be partitioned to P2

because it has the majority number of data el-
ements. The communication would be as the
follows, where tmp means the values obtained
at the loop executing owner but need to send
back to the array element owners:
• Import communication before the loop it-

eration is executed:
X(j0(i)), Y(j0(i)): P0 −→ P2

• Export communication after the loop iter-
ation is executed:
tmp Yj0: P2 −→ P0

tmp Xj1: P2 −→ P1

tmp Xj3, tmp Yj3: P2 −→ P3

Obviously the communication cost is reduced
as compared to the owner computes rule. Some
HPF compilers employ this scheme by using
EXECUTE-ON-HOME clause 23). However,
when we parallelize a fluid dynamics solver
ZEUS-2D code by using almost owner com-
putes rule, we find that the almost owner com-
putes rule is not optimal manner in minimizing
communication cost — either communication
steps or elements to be communicated. An-
other drawback is that it is not straightforward
to choose optimal owner if several processors
own the same number of array references.

2.2 Efficient Loop Iteration Partition-
ing

If we consider communication overhead when
the iteration is partitioned to P0, we can obtain
the communication pattern as follows:
• Import communication before the loop it-

eration is executed:
X(j2(i)), Y(j2(i)), Z(j2(i)): P2 −→ P0

• Export communication after the loop iter-
ation is executed:
tmp Xj1: P0 −→ P1

tmp Xj3, tmp Yj3: P0 −→ P3

Although the number of elements to be com-
municated is 6, same as the almost owner com-
putes rule, the communication steps are re-
duced (three times). This improvement is im-
portant when the outer sequential time step-
loop is large.

Based on the above observation, we propose
a more efficient computes rule for irregular loop
partition 9). This approach partitions iterations
on a particular processor so that executing the
iteration on that processor ensures
• the communication steps is minimum, and
• the total number of data to be communi-

cated is minimum
In our approach, neither owner computes rule

nor almost owner computes rule is used in par-
allel execution of a loop iteration for irregular

Vol. 44 No. SIG 1(HPS 6) Optimization Techniques for Irregular Scientific Computations 61

computation. A communication cost reduction
computes rule, called least communication com-
putes rule, is proposed. For a given irregu-
lar loop, we first investigate for all processors
Pk, 0 ≤ k ≤ m (m is the number of processors)
in which two sets FanIn(Pk) and FanOut(Pk)
for each processor Pk are defined. FanIn(Pk) is
a set of processors which have to send data to
processor Pk before the iteration is executed,
and FanOut(Pk) is a set of processors which
have to send data from processor Pk after the
iteration is executed. According to these knowl-
edge we partition the loop iteration to a pro-
cessor on which the minimal communication is
ensured when executing that iteration.

2.3 Least Communication Loop Itera-
tion Partitioning Algorithm

Iteration partitioning according to least com-
munication computes rule is to assign iterations
to the processors such that whole communi-
cation (import and export) steps and message
length is minimized. Before the loop partition-
ing algorithms are presented, we give the fol-
lowing definitions.

Definition 1 Let an iteration ir be parti-
tioned onto processor Pk, set Dj(ir, k) is de-
fined as all the data array elements which must
be sent from Pj to Pk. |Dj(ir, k)| is the number
of data in the set. Similarly, D′

j(ir, k) is defined
as all the data array elements which must be
sent back to Pj from Pk.

Definition 2 Let an iteration ir be parti-
tioned onto processor Pk, set FanIn(Pk) is de-
fined as a set of processors P̂1, P̂2, . . . , P̂l which
have to send data to processor Pk before the
iteration is executed, where P̂1, P̂2, . . . , P̂l ∈
P need not assure contiguous processor num-
bers (P is a processor set). Each processor
P̂j , 1 ≤ j ≤ l has a degree |P̂j | = |Dj(ir, k)|.
If there is no need to import data when ex-
ecuting the iteration on Pk, FanIn(Pk) = ∅.
Similarly, set FanOut(Pk) is defined as a set
of processors P̂1, P̂2, . . . , P̂l′ which have to re-
ceive data from processor Pk after the itera-
tion is executed. Each processor P̂j , 1 ≤ j ≤ l′

has a degree |P̂j | = |D′
j(ir, k)|. If there is no

need to export data after executing the iter-
ation on Pk, FanOut(Pk) = ∅. |FanIn(Pk)|
and FanOut(Pk) are the number of processors
in FanIn(Pk) and FanOut(Pk) respectively.

Definition 3 The degrees of the set
FanIn(Pk) and FanOut(Pk), deg(FanIn(Pk))
and deg(FanOut(Pk)), are defined as

deg(FanIn(Pk)) =
∑l

j=1 |P̂j | =
∑l

j=1 |Dj(ir, k)|,
deg(FanOut(Pk)) =

∑l′

j=1 |D′
j(ir, k)|.

From the above definitions, we have the fol-
lowing proposition.

Proposition 1 The least communication
computes rule is to partition an iteration to a
processor Pk such that
(1) |FanIn(Pk)| + |FanOut(Pk)| =

minPj∈P(|FanIn(Pj)| + |FanOut(Pj)|),
where P is the processor set.

(2) If more than one Pk, say Pk1 , Pk2 , . . . , Pkl

satisfy the above formula, then select a
Pkj

such that
deg(FanIn(Pkj

))+deg(FanOut(Pkj
)) =

minPj∈{Pk1 ,...,Pkl
}(deg(FanIn(Pj)) +

deg(FanOut(Pj))).
In the following algorithms, we assume that

a loop body is composed of n statements
S1, S2, . . . , Sn, and each Si has one left-hand
array elements li and h right-hand array el-
ements r1, r2, . . . , rh, D(Si) and U(Si) repre-
sent the define-variable set and use-variable set
of statement Si respectively. We also abbrevi-
ate d ∈ P if a data is distributed onto proces-
sor P . The algorithms for computing Dj(ir, k)
are as follows. Computing D′

j(ir, k) is simi-
lar to Algorithm 1 but it needs data depen-
dence analysis in reverse order of the statements
S1, S2, . . . , Sn.

Algorithm 1 Dj(ir, k)
Input: Iteration ir, Processor Pk, and iteration
block {S1, S2, . . . , Sn};
Output: Dj(ir, k);

Dj(ir, k) = ∅;
for i = 1, n

for rt(1 ≤ t ≤ h) in Si

if {rt} ∩ (D(S1) ∪ · · · ∪ D(Si−1)) = ∅ ∧
{rt} ∩ (U(S1) ∪ · · · ∪ U(Si−1)) = ∅
∧ rt ∈ Pj(j �= k)
// There is no true dependence between
// rt and all of the left hand
// variables of the statements before Si,
// and there is no input dependence
// between rt and all other right hand
// variables of the statement before Si.

then
if rt ¬ ∈ Dj(ir, k) then

Dj(ir, k) = Dj(ir, k) ∪ {rt}
end if

end if
end for

end for

62 IPSJ Transactions on High Performance Computing Systems Jan. 2003

The algorithm 2 computes the set FanIn.
The computation of FanOut is similar with
FanIn. Finally, Algorithm 3 determines the
processor on which the loop iteration is parti-
tioned.

Algorithm 2 FanIn(Pk)
Input: Processor Pk, and Dj(ir, k)(0 ≤ j < m);
Output: FanIn(Pk);

FanIn(Pk) = ∅;
for i = 1, m, �= k

if Dj(ir, k) �= ∅
for di ∈ Dj(ir, k)

if ∃Pα.di ∈ Pα then
if Pα¬ ∈ FanIn(Pk) then

FanIn(Pk) = FanIn(Pk) ∪ {Pα}
end if
|Pα| = |Pα| + 1

end if
end for

end if
end for

Algorithm 3 Partition(FanIn, FanOut,
Pk)
Input: FanIn(Pj) and FanOut(Pj) for all pro-
cessor Pj , 0 ≤ j ≤ m;
Output: iteration executing processor Pk;

for j = 1, m
get Pk1 , . . . , Pkl

such that
|FanIn(Pk)| + |FanOut(Pk)| =
minPj∈P(|FanIn(Pj)| + FanOut(Pj)|;
select a Pkj

such that
deg(FanIn(Pkj

))+deg(Fanout(Pkj
)) =

minPj∈{Pk1 ,...,Pkl
}(deg(FanIn(Pj)) +

deg(Fanout(Pj)))
end for

The node (SPMD) program has three parts:
pre-execution import communication (gather-
ing phase), irregular loop execution (execut-
ing phase), and post-execution export commu-
nication (scattering phase). Notice in the ex-
ecuting local iterations phase, the remapping
from global index arrays to local index ar-
rays is required. If an iteration ir is parti-
tioned to processor Pk, the index array elements
ix(ir), iy(ir), · · · may not be certainly resident
in Pk. Therefore, we need to redistribute all
index arrays so that for the local iterations
iter(Pk) = {ik,1, ik,2, . . . , ik,αk

} and every in-

dex array ix, elements ix(ik,1), . . . , ix(ik,αk
) are

local accessible. Because this topic is out of the
scope of this paper, we cannot explain the detail
here. We have proposed a method for remap-
ping index array and scheduling communication
in redistribution procedure 10).

3. Communication Optimization for
Nonlinear Array Loops

Given a perfectly nested irregular loop with
nonlinear array subscripts as shown in the fol-
lowing.

DO i1 = X1,Y1,Z1
......
DO in = Xn,Yn,Zn

S: A[f(i1,i2,...,in)] =
F(B[g(i1,i2,...,in)])

CONTINUE
......
CONTINUE

For the sake of simplicity, we will assume that
the referenced array A and B have only one di-
mension. The array access functions (f and g),
the loop’s lower and upper bounds (Xi, Yi), and
stride (Zi) may be arbitrary symbolic expres-
sions made up of loop-invariant variables and
loop indices of enclosing loops. We will also as-
sume that all loop strides are positive. It is not
difficult to extend our method to handle im-
perfectly nested loops, negative strides, multi-
dimensional arrays, and loop-variant variables.
Furthermore, let the arrays A and B be initially
distributed as BLOCK across P processors.

In order to parallelize and partition this
nested loop, it has to be transformed to single
loop using loop coalescing. The loop transfor-
mation can be performed as the following steps:
(1) Loop normalization:

For j = 1, n do
DO i = Xj , Yj , Zj =⇒ DO i = 1, Y Yj

where Y Yj = (Yj − Xj + Zj)/Zj .
(2) Transforming to a single loop (loop coa-

lescing):
DO i1 = 1, YY1
......
DO in = 1, YYn

S: A[f(i’1,i’2,...,i’n)] =
F(B[g(i’1,i’2,...,i’n)])

CONTINUE
......
CONTINUE

⇓
DO ii = 1, YY
i’1 = ((ii-1)/(YY2*...*YYn))*

Vol. 44 No. SIG 1(HPS 6) Optimization Techniques for Irregular Scientific Computations 63

(YY2*...*YYn) + 1
i’2 = ((ii-1)/(YY3*...*YYn))*

(YY3*...*YYn) + 1
......
i’n = ((ii-1) mod YYn) + 1

S: A[f(i’1,i’2,...,i’n)] =
F(B[g(i’1,i’2,...,i’n)])

CONTINUE
where YY = YY1*YY2*...*YYn.

(3) Using Algorithm 1, 2, and 3 in Section
2.3 to compute the least communication
owner for each iteration.

(4) Partitioning the loop according to least
communication computes rule.

However, the above steps can only be applied
if the bounds of loops are loop invariant. For
the bounds are expression including loop vari-
ables or indices, such as the following loop,

DO i1 = 1, N
DO i2 = 1, i1
IA = i1*(i1-1)/2 + i2
IB = i2*(i2-1)/2 + i1

S: A[IA] = F(B[IB])
CONTINUE
CONTINUE

The above steps cannot be used, because af-
ter loop coalescing there are loop variables in
loop bounds. Here, we propose a symbolic sum
computation algorithm for determining the con-
stant loop bounds.

Suppose that the nested loop has the loop
bounds as

DO i1 = 1, N
DO i2 = L2(i1), U2(i1)
· · ·
DO in = Ln(i1, . . . , in−1), Un(i1, . . . , in−1)

We can count the number of integer solutions
between the bounds by using the following for-
mulas.

C2 =
N∑

i1=1

(U2(i1) − L2(i1) + 1)

C3 =
N∑

i1=1

U2(i1)∑

i2=L2(i1)

(U3(i1, i2)−L3(i1, i2)+1)

· · ·

Cn =
N∑

i1=1

· · ·
Un−1(i1,...,in−1)∑

in−1=Ln−1(i1,...,in−1)

(Un(i1, i2, . . . , in−1)
−Ln(i1, i2, . . . , in−1) + 1)

Thus, the bounds of single loop is from 1 to
N ∗ C2 ∗ · · · ∗ Cn. Although this transforma-

tion spends calculation overhead, because all
these lower bounds and upper bounds in the
nested loop can be determined in the compile-
time, it does not influence the execution time
of the loop.

Back to the above example, because total
number of iterations of the inner loop (i2) is∑N

i1=1 i1 = N ∗ (N + 1)/2, after transforma-
tion, the upper bound of the single loop is
N2 ∗ (N + 1)/2.

4. Inter-procedural Communication
Optimization for Irregular Loops

We only handled the intra-procedural opti-
mization until now. In some irregular scien-
tific codes, an important optimization required
is communication preprocessing among proce-
dure calls. In this section, we extend a clas-
sical data flow optimization technique — Par-
tial Redundancy Elimination — to an Inter-
procedural Partial Redundancy Elimination as
a basis for performing interprocedural commu-
nication optimization. This technique is also
used by Ref. 2). Partial Redundancy Elimina-
tion encompasses traditional optimizations like
loop invariant code motion and redundant com-
putation elimination.

Consider the example program presented in
the left side of Fig. 1 Initial intraprocedu-
ral analysis in Section 2 (see Ref. 9) also) in-
serts pre-communicating call (including one
buffering and one gathering routine) and post-
communicating (buffering and scattering rou-
tine) call for each of the two data parallel loops
in two subroutines (the right side of Fig. 1). Af-
ter interprocedural analysis, the compiled node
program is shown in Fig. 2. Here, since the
array IA and IC are never modified inside the
time step loop in the main procedure, the sched-
ules buffering(X, Y) and buffering(IX, IY)
are loop invariants and can be hoisted outside
the loop.

Further, it can be deduced that the compu-
tation of buffering(X, Y) and buffering(IX,
IY) are equivalent. So only buffering(X, Y)
needs to be computed and the gather rou-
tine in SUB2 can use buffering(X, Y) instead
of buffering(IX, IY). The gather for array
IA in subroutine SUB2 is redundant because
of the gather of array A in SUB1. Thus,
we hoist the common partial subexpression as
buffering(IA, IC).

Similarly, We also can apply Interproce-

64 IPSJ Transactions on High Performance Computing Systems Jan. 2003

PROGRAM
REAL A(n), B(n), C(n), D(n)
INTEGER IA(n), IB(n), IC(n)
……
DO 10 I = 1, 20
CALL SUB1(A,B,C,IA,IC)
CALL SUB2(A, C, IA, IC)
……

10 CONTINUE
END

SUBROUTINE SUB1(U,V,W,X,Y)
……
DO 100 I = 1, n
W(Y(I)) = W(Y(I)) + U(X(I))

100 CONTINUE
……
END

SUBROUTINE SUB2(A, C, IX, IY)
……
DO 200 I = 1, n
C(IY(I)) = C(IY(I)) + A(IX(I))

200 CONTINUE
……
END

(NODE) PROGRAM
(same as the left)

SUBROUTINE SUB1(U,V,W,X,Y)
recv(&U, &W, Pany)
buffering (X,Y)
send(&U, Pany)
……
DO 100 I$local = 1, n$local
W(Y(I$local)) = W(Y(I$local)) + U(X(I$local))

100 CONTINUE
……
Buffering(Y)
send(&W, Pany)
recv(&W, Pany)
END

SUBROUTINE SUB2(A, C, IX, IY)
recv(&A, &C, Pany)
buffering (IX,IY)
send(&A, Pany)
……
DO 200 I$local = 1, n$local
C(IY(I$local)) = C(IY(I$local)) + A(IX(I$local))

200 CONTINUE
……
Buffering(IY)
send(&C, Pany)
recv(&C, Pany)
END

Fig. 1 Original code and its intraprocedural compiled node program.

PROGRAM
REAL A(n), B(n), C(n), D(n)
INTEGER IA(n), IB(n), IC(n)
……

　　　recv(&A, &C, Pany)
buffering (IA,IC)

　　　DO 10 I = 1, 20
CALL SUB1(A,B,C,IA,IC)
CALL SUB2(A, C, IA, IC)
……

10 CONTINUE
END

SUBROUTINE SUB1(U,V,W,X,Y)
　　　 send(&U, Pany)

……
DO 100 I$local = 1, n$local
W(Y(I$local)) = W(Y(I$local)) + U(X(I$local))

100 CONTINUE
……
END

SUBROUTINE SUB2(A, C, IX, IY)
……
DO 200 I$local = 1, n$local
C(IY(I$local)) = C(IY(I$local)) + A(IX(I$local))

200 CONTINUE
……

send(&C, Pany)
recv(&C, Pany)
END

Fig. 2 After interprocedural optimized node program.

dural Partial Redundancy Elimination anal-
ysis to post-communicating call Further,
buffering(Y) is included in buffering(IA, IC),
and it can be eliminated. The result is shown
in Fig. 2.

In the above example, data arrays and in-
dex arrays are the same in loop bodies of two
subroutines. While some communication state-
ments may not be redundant, there may be an-
other communication statement, which may be
gathering at least a subset of the values gath-

Fig. 3 Common and incremental buffering original
code.

ered in a statement.
Consider the program shown in Fig. 3 (a).

The same data array A is accessed using an in-
direction array IA in SUB1 and using another
indirection array IB in SUB2. Further, none
of the indirection arrays or the data array A
is modified between flow control from the first
loop to the second loop. There will be over-
lap between required communication data ele-
ments made in these two loops. Another case
is that the data array and indirection array are
the same but the loop bound are different (See
Fig. 3 (b)). In this case, the first loop can be

Vol. 44 No. SIG 1(HPS 6) Optimization Techniques for Irregular Scientific Computations 65

Fig. 4 Interprocedural optimized node code using
common and incremental buffering.

viewed as a part of the second loop.
We distinguish communication routines into

two kinds — common routine and incremental
routine — for such situations. A common com-
munication routine takes more than one indi-
rection array, or takes common part of two in-
direction arrays. In the example ind Fig. 3 (a),
a common communication routine will take in
arrays IA and IB producing a single buffering.
Incremental preprocessing routine will take in
indirection array IA and IB, and will deter-
mine the off-processor references made uniquely
through indirection array IB and not through
indirection array IA. While executing the sec-
ond loop, communication using an incremental
schedule can be done, to gather only the data
elements which were not gathered during the
first loop.

Figure 4 (a) and (b) show such optimization
from the corresponding original programs rep-
resented in Fig. 3 (a) and (b) respectively, where
send (&U, common, Pany) indicates sending
data according to common buffering part and
that send (&A, incml, Pany) indicates sending
according to incremental buffering.

5. Experiments and Performance Re-
sults

We now present experimental results to show
the efficacy of the methods presented so far.
We measure the difference made by using owner
computes rule, and our least communication
computes rule in an experimental program. An-

other experiment is examined for the difference
of with or without interprocedural optimiza-
tion. Because our proposed techniques are not
implemented in a practical compiler yet, our
experimental programs are optimized by hand
according to the steps and algorithms in Sec-
tion 2, 3, and 4. All the experiments are ex-
amined on a 24 node SGI Origin 2000 parallel
computer or a 32-node CM-5 parallel computer.
The node programs are written in Fortran, us-
ing MPI communication library (MPICH 1.2.1
on SGI Origin 2000 and MPICH 1.0.9 on CM-5)
The Fortran experimental programs are com-
piled by f77 -O3 command.

The first experiment is to select a subroutine
OLDA from the code TRFD, appearing in Per-
fect benchmark 20). The aim of this experiment
is to show the performance of our proposed par-
titioning method used in nonlinear subscript
loops. Since the largest number of array ref-
erence is same as the owner computes rule, we
only compare the performance of our method
with owner computes rule. A simplified ver-
sion of this loop nest is shown in the left side of
Fig. 5. After using induction variable substitu-
tion to replace the induction variable mrsij at
statement S1, the optimized version is shown
in the right side of Fig. 5. There is a nonlinear
array subscript for xrsij at S2. To parallelize
this loop nest, the communication set genera-
tion and loop partitioning optimization must be
used.

We assume that initial distribution schemes
are BLOCK both for arrays xrsij and xij. Fig-
ure 6 shows the total loop execution times on
CM-5 when N = 16 (with global array size
18632). The curves denoted as owner compute
and least comm respectively represent that we
use owner computes rule and our least commu-
nication computes rule to partition the loop.
The execution time according to owner com-
putes rule includes run-time inspector-executor
analysis time 16), whereas the execution time
according to least communication computes
rule includes run-time communication analysis
proposed in this paper. We observe that as the
number of nodes increases, the execution time
is not so much improved because each processor
has to communicate with increasing number of
nodes. The figure shows that our method gets
good performance in most cases.

Our another experiment for irregular loop
with interprocedural optimization selects an ir-
regular kernel of fluid dynamics code, ZEUS-

66 IPSJ Transactions on High Performance Computing Systems Jan. 2003

mrsij0 = 0
DO mrs = 0, (N*N+N)/2-1

mrsij = mrsij0
DO mi = 0, N-1

DO mj = 0, mi-1
S1: mrsij = mrsij + 1
S2: xrsij(mrsij) = xij(mj)

ENDDO
ENDDO
mrsij0 = mrsij0+(N*N+N)/2

ENDDO

DO mrs = 0, (N*N+N)/2-1
DO mi = 0, N-1

DO mj = 0, mi-1
S1: mrsij = (mi*mi+mi+ &

mrs*(N*N+N))/2+mj+1
S2: xrsij(mrsij) = xij(mj)

ENDDO
ENDDO

ENDDO

mrsij0 = 0
DO mrs = 0, (N*N+N)/2-1

mrsij = mrsij0
DO mi = 0, N-1

DO mj = 0, mi-1
S1: mrsij = mrsij + 1
S2: xrsij(mrsij) = xij(mj)

ENDDO
ENDDO
mrsij0 = mrsij0+(N*N+N)/2

ENDDO

DO mrs = 0, (N*N+N)/2-1
DO mi = 0, N-1

DO mj = 0, mi-1
S1: mrsij = (mi*mi+mi+ &

mrs*(N*N+N))/2+mj+1
S2: xrsij(mrsij) = xij(mj)

ENDDO
ENDDO

ENDDO

Fig. 5 Simplified version of loop nest OLDA from TRFD.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 8 16 24 32

number of processors

e
x
e
c
u
ti
o
n
 t

im
e
 (
s
e
c
)

owner comp.

least comm.

Fig. 6 Execution time of OLDA program on CM-5
for owner computes rule and transformed single
loop using least communication computes rule
for loop partitioning.

2D for our study. ZEUS-2D is a computational
fluid dynamics code developed at the Labora-
tory for Computational Astrophysics (NCSA,
University of Illinois at Urbana-Champaign) for
astrophysical radiation magnetohydro dynam-
ics problems 19). ZEUS-2D solves the equa-
tions of ideal (non-resistive), non-relativistic,
hydrodynamics, including radiation transport,
(frozen-in) magnetic fields, rotation, and self-
gravity. Boundary conditions may be spec-
ified as reflecting, periodic, inflow, or out-
flow. The kernel irregular subroutine emfs in-
cludes some loops whose loop body invokes four
subroutines X1INTFC, X1INTZC, X2INTFC, and
X2INTZC, each of which includes irregular loops
similar with the motivation example in Section
2. We specify the geometry as Cartesian XY,
the grid as uniformly spaced zones 800 by 2, and
extend the irregular loop iterations to 1000.

In Fig. 7, we show the performance differ-
ence of emfc obtained by using three kinds
of the version: only intraprocedural optimiza-
tion, with interprocedural pre-communicating
optimization, and with all interprocedural com-
munication optimization. Performance of the
different versions of the code is measured on
SGI Origin 2000 from 2 to 24 processors. The
curves marked with intraproc opt., interproc

0

1

2

3

4

5

6

7

8

9

2 4 8 12 16 20 24
number of processors

e
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
)

intraproc opt.

interproc pre-opt.

interproc all-opt.

Fig. 7 Effect of interprocedural communication opti-
mization in executing ZEUS-2D irregular loops
(Execution time) on SGI Origin 2000.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 8 12 16 20 24

number of processors

c
o
m

m
u
n
ic

a
ti
o
n
 t

im
e
 (

s
e
c
)

intraproc opt.

interproc opt.

Fig. 8 Communication time for intraprocedural and
interprocedural optimization in executing ZEUS-
2D irregular loops on SGI Origin 2000.

pre-opt., and interproc all-opt., are the versions
of the code which the communication state-
ments using intraprocedural optimization, in-
terprocedural pre-communicating optimization
and all interprocedural communication opti-
mization. The figure shows that interprocedu-
ral communication optimization gets good per-
formance in all cases. When the same data is
distributed over a larger number of processors,
the communication time becomes a significant
part of the total execution time and the com-
munication optimization makes significant dif-

Vol. 44 No. SIG 1(HPS 6) Optimization Techniques for Irregular Scientific Computations 67

ference in the overall performance of the pro-
gram.

In Fig. 8, we further study the impact of dif-
ferent versions on communication statements.
Only the communication time is shown for the
various versions of the code. Communication
optimizations in our method include gather
and scatter before and after loop execution,
and common-incremental buffering. When the
number of processors is large, our method can
lead to substantial improvement in the perfor-
mance of the code, because the communication
time influences significantly total performance
of parallel program.

6. Conclusions

The efficiency of loop partitioning influences
performance of parallel program considerably.
For automatically parallelizing irregular scien-
tific codes, the owner computes rule is not suit-
able for partitioning irregular loops. In this pa-
per, we have presented an efficient loop parti-
tioning approach to reduce communication cost
for a kind of irregular loop with nonlinear ar-
ray subscripts. In our approach, runtime pre-
processing is used to determine the communica-
tion required between the processors. We have
developed the algorithms for performing these
communication optimization. We have also pre-
sented how interprocedural communication op-
timization can be achieved. We have done a
preliminary implementation of the schemes pre-
sented in this paper. The experimental results
demonstrate efficacy of our schemes. In the
future, we will examine the optimization tech-
niques to more irregular applications and im-
plement the techniques into a practical paral-
lelizing compiler.

Acknowledgment This research was sup-
ported in part by the Grant-in-Aid for Sci-
entific Research (C)(2) 14580386 and The
Japanese Okawa Foundation for Information
and Telecommunications under Grant Program
01–12.

References

1) Allen, R. and Kennedy, K.: Optimizing com-
pilers for Modern Architectures, Morgan Kauf-
mann Publishers (2001).

2) Agrawal, G. and Saltz, J.: Interprocedu-
ral compilation of Irregular Applilcations for
Distributed memory machines, Language and
Compilers for Parallel Computing, pp.1–16
(Aug. 1994).

3) Asenjo, R., Gutierrez, E., Lin, Y., Padua, D.,
Pottengerg, B. and Zapata, E.L.: On the Au-
tomatic Parallelization of Sparse and irregular
Fortran codes, Technical Report 1512, Univer-
sity of Illinois at Urbana-Champaign, CSRD
(Dec. 1996).

4) Das, R., Uysal, M., Saltz, J. and Hwang, Y-
S.: Communication optimizations for irregu-
lar scientific computations on distributed mem-
ory architectures, Journal of Parallel and Dis-
tributed Computing, Vol.22, No.3, pp.462–479
(Sept. 1994).

5) Ding, C. and Kennedy, K.: Improving cache
performance of dynamic applications with com-
putation and data layout transformations,
Proc. SIGPLAN’99 Conference on Program-
ming Language Design and Implementation,
Atlanta, GA (May 1999).

6) Guo, M., Nakata, I. and Yamashita, Y.:
Contention-free communication scheduling for
array redistribution, Parallel Computing, Vol.26,
pp.1325–1343 (2000).

7) Guo, M. and Nakata. I.: A framework for effi-
cient array redistribution on distributed mem-
ory machines, The Journal of Supercomputing,
Vol.20, No.3, pp.253–265 (2001).

8) Guo, M., Pan, Y. and Liu, C.: Symbolic Com-
munication Set generation for irregular paral-
lel applications, The Journal of Supercomput-
ing (2002).

9) Guo, M., Liu, Z., Liu, C. and Li, L.: Reducing
Communication cost for Parallelizing Irregular
Scientific Codes, Proc. 6th International Con-
ference on Applied Parallel Computing, Fin-
land (June 2002).

10) Guo, M., Chang, W.-L., Li, L. and Pan.
Y.: Efficient Loop Partitioning for Parallel
Codes of Irregular Scientific Computation,
Proc. International Conference on Algorithms
and Architectures for Parallel Processing, IEEE
Computer Society Press, Beijing, China (Oct.
2002).

11) Gutierrez, E., Plata, O. and Zapata. E.L.:
On automatic parallelization of irregular re-
ductions on scalable shared memory systems,
Proc. Fifth International Euro-Par Confer-
ence, pp.422–429, Toulouse, France (Aug.–Sep.
1999).

12) Gutierrez, E., Asenjo, R., Plata, O., Plata,
and Zapata, E.L.: Zapata. Automatic par-
allelization of irregular applications, Paral-
lel Computing, Vol.26, No.2000, pp.1709–1738
(2000).

13) Han, H. and Tseng, C.-W.: Improving com-
piler and run-time support for adaptive irreg-
ular codes, Proc. International Conference on
Parallel Architectures and Compilation Tech-

68 IPSJ Transactions on High Performance Computing Systems Jan. 2003

niques, Paris, France (Oct. 1998).
14) Hu, Y., Cox, A. and Zwaenepoel, W.: Im-

proving fine-grained irregular shared-memory
benchmarks by data reordering, Proc. SC’00,
Dallas, TX (Nov. 2000).

15) Hu, Y., Johnsson, S.L. and Teng, S.-H.: High
Performance Fortran for highly irregular prob-
lems, Proc. Sixth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Program-
ming, Las Vegas, NV (June 1997).

16) Hwang, Y.-S., Moon, B., Sharma, S.D.,
Ponnusamy, R., Das, R. and Saltz, J.: Run-
time and language support for compiling adap-
tive irregular programs on distributed mem-
ory machines, Software-Practice and Experi-
ence, Vol.25, No.6, pp.597–621 (1995).

17) Mellor-Crummey, J., Whalley, D. and Kennedy,
K.: Improving memory hierarchy performance
for irregular applications, Proc. 1999 ACM
International Conference on Supercomputing,
Rhodes, Greece (June 1999).

18) Mitchell, N., Carter, L. and Ferrante, J.: Lo-
calizing non-affine array references, Proc.Inter-
national Conference on Parallel Architectures
and Compilation Techniques, Newport Beach,
LA (Oct. 1999).

19) Stone, J.M. and Norman, M.: ZEUS-2D: A ra-
diation magnetohydrodynamics code for astro-
physical flows in two space dimensions: The hy-
drodynamic algorithms and tests, Astrophysi-
cal Journal Supplement Series, Vol.80, pp.753–
790 (1992).

20) Berry, M., Chen, D., Koss, P., Kuck, D., Lo,
S., Pang, Y., Roloff, R., Sameh, A., Clementi,
E., Chin, S., Schneider, D., Fox, G., Messina,
P., Walker, D., Hsiung, C., Schwarzmeier, J.,
Lue, K., Orzag, S., Seidl, F., Johnson, O.,
Swanson, G., Goodrum, R. and Martin, J.: The
PERFECT club benchmarks: Effective perfor-
mance evaluation of supercomputers, Interna-
tional Journal of Supercomputing Applications,
Vol.3, No.3, pp.5–40 (1989).

21) Ponnusamy, R., Hwang, Y-S., Das, R., Saltz,
J., Choudhary, A. and Fox, G.: Supporting ir-
regular distributions in Fortran D/HPF com-
pilers, Technical Report CS-TR-3268, Univer-
sity of Maryland, Department of Computer Sci-
ence (1994).

22) Ponnusamy, R., Saltz, J., Choudhary, A.,
Hwang, S. and Fox, G.: Runtime support and
compilation methods for user-specified data
distributions, IEEE Transactions on Parallel
and Distributed Systems, Vol.6, No.8, pp.815–
831 (1995).

23) Ujaldon, M., Zapata, E.L., Chapman, B.M.
and Zima, H.P.: Vienna-Fortran/HPF exten-
sions for sparse and irregular problems and

their compilation, IEEE Transactions on Par-
allel and Distributed Systems, Vol.8, No.10,
pp.1068–1083 (Oct. 1997).

(Received June 6, 2002)
(Accepted October 2, 2002)

Minyi Guo received his
Ph.D. degree in information sci-
ence from University of Tsuku-
ba, Japan in 1998. From 1998
to 2000, Dr. Guo had been a re-
search fellow of NEC Soft, Ltd.,
Japan. He is currently an as-

sistant professor at the Department of Com-
puter Software, The University of Aizu, Japan.
From 2001 to 2002, he was a visiting pro-
fessor of Georgia State University, USA. Dr.
Guo has served as program committee or or-
ganizing committee member for many interna-
tional conferences, and delivered more than 15
invited talks in USA, Australia, China, and
Japan. He has also been invited as a referee
by many famous international journal including
IEEE Transactions on Parallel and Distributed
Systems, IEEE Transactions on Systems, Man,
and Cybernetics, etc. Dr. Guo’s research in-
terests include parallel and distributed process-
ing, parallelizing compilers, data parallel lan-
guages, data mining, molecular computing and
software engineering. He is a member of the
ACM, IEEE, IEEE Computer Society, and IE-
ICE. He is listed in Marquis Who’s Who in Sci-
ence and Engineering.

Weng-Long Chang was born
in 1966 in Taiwan. He received
the B.S. and M.S. degrees in
Computer Science and Informa-
tion Engineering from Feng Chia
University and in Computer Sci-
ence and Information Engineer-

ing from National Cheng Kung University, Tai-
wan, in 1988 and 1994, respectively. He is
currently an assistant professor in Department
of Information Management, Southern Taiwan
University of Technology, Tainan. His research
interests include languages and compilers for
parallel computing and molecular computing.

Vol. 44 No. SIG 1(HPS 6) Optimization Techniques for Irregular Scientific Computations 69

Yi Pan received his Ph.D. de-
gree in computer science from
the University of Pittsburgh,
USA, in 1991. Currently, he
is an associate professor in the
Department of Computer Sci-
ence at Georgia State Univer-

sity. His research interests include parallel and
distributed computing, optical networks and
wireless networks. His pioneer work on com-
puting using reconfigurable optical buses has
inspired extensive subsequent work by many
researchers. He is a co-inventor of three
U.S. patents (pending) and several provisional
patents. He has published more than 120 re-
search papers including over 50 journal papers
(more than 20 of which have been published
in various IEEE journals) and received many
awards from agencies such as NSF, AFOSR,
JSPS, IISF and Mellon Foundation. Dr. Pan
is currently serving as an editor-in-chief or ed-
itorial board member for 7 journals including
3 IEEE Transactions. He has also served as
a program or general chair for several inter-
national conferences and workshops. Dr. Pan
has delivered over 40 invited talks, including
keynote speeches and colloquium talks, at con-
ferences and universities worldwide. Dr. Pan
is an IEEE Distinguished Speaker (2000–2002),
a Yamacraw Distinguished Speaker (2002), a
Shell Oil Colloquium Speaker (2002), and a
senior member of IEEE. He is listed in Men
of Achievement, Who’s Who in Midwest and
Who’s Who in America.

