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High-performance navigational access to objects is crucial if the demands of object-oriented
database management system (OODBMS) target application areas are to be met. We propose
an algorithm to navigate, in parallel, objects in a parallel OODBMS for a shared-nothing
environment. The algorithm exploits, among others, qualified path expressions and the set-
valued nature of OODBMS attributes to generate independent paths, that can be traversed
in parallel if the objects referenced therein are declustered across multiple nodes. We also
propose a decentralised dynamic load balancing algorithm based on the premise that the cost
of arbitrary user-defined functions (UDF) in the predicates of qualified path expressions can
be estimated accurately by an average calculated over time and used in determining the load
at each node in a shared-nothing system. Analytical and simulation results are presented
which show that our navigation and load balancing strategies can improve query response
time significantly. Simulation shows that if objects are uniformly partitioned across system
nodes, our algorithm can achieve a speedup of up to 13.1 from 2 to 32 nodes. If the data is
skewed, dynamic load balancing decreases the response time for navigating a seven level path
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expression by up to 34 %. -

1. Introduction

Object-oriented database management sys-
tems (OODBMS) are considered viable alter-
natives to relational databases for new applica-
tion areas such as CAD, CAM and GIS, because
they provide rich facilities for modeling and
processing of structural as well as behavioural
properties of the complex data structures found
in these new areas® and many commercial sys-
tems like ObjectStore and Objectivity!? have
been developed. ‘

Parallelism has been highly effective in im-
proving the performance of RDBMSs, with
focus mainly on the join operation.!97)21),
Due to the inherent generality of OODBMS
and the performance requirements of corre-
sponding applications, high performance im-
plementation of systern operations is required.
Some work has been done on parallelism in
OODBMSs which has demonstrated that paral-
lel processing can be effectively applied in such
environments® ®)917) Recognizing that high-
performance navigation is crucial to efficient
OODBMS queries, : this paper proposes an al-
gorithm to navigate, in parallel, objects in a
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shared-nothing (SN) OODBMS. The algorithm
exploits, among others, qualified path expres-
sions and the set-valued nature of OODBMS
attributes to generate independent paths, that
can be traversed in parallel if the objects ref-
erenced therein are declustered across multiple
nodes.

The OODBMS reference model allows the
user to include user-defined functions (UDF) in
query predicates. Examples include scaling ge-
ometric objects in CAD applications or the veg
function in the Sequinoa benchmark for GIS
systems!?). Such UDFs are computationally
or I/O expensive. This coupled with general-
ity in access pattern for different queries, very
likely introduces load imbalance in the course
of executing queries including such UDFs, in
an SN OODBMS. We propose a decentralised
dynamic load balancing algorithm based on the
premise that the cost of such arbitrary UDFs
can be estimated over time and used in deter-
mining the load at each node in an SN system.
An analytical model is presented as well as sim-
ulation results which indicate that our naviga-
tion and load balancing strategies can improve
query respeonse time significantly.

The remainder of this paper ‘is organized
as follows. Section 2 discusses related work.
Section 3 discusses sources of parallelism in
OODBMS. Section 4 describes the proposed
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parallel navigation algorithm together with the
load balancing algorithm. An analytical model
is described in section 5 together with analyti-
cal evaluation results. Simulation experiments
are described in section 6 and conclusions and
further work are discussed in section 7.

2. Related Work

One of the earliest descriptions of parallelism
in OODBMSs is done by Kim'¥) who identifies
path parallelism, node parallelism and class-
hierarchy parallelism as three types of paral-
lelism possible in an OODBMS, all based on
the notion of object query graph. Path paral-
lelism is closely related to the work presented in
this paper, but algorithm details are different

Lieuwen et ‘al'” describes a number of
parallel pointer-based joins for OODBMSs,
among them hash-loops, hybrid-hash/page-
pointer and others. We use a strategy similar to
the hybrid-hash/page-pointer scheme, but we
apply it to a path-expression of arbitrary length
instead of the 2 classes they consider. Unlike
them we include UDFs in query predicates and
analyze of how they affect response time in the
presence of object placement skew and propose
a dynamic load balancing algorithm for such
situations. To the best of our knowledge this is
the first time that load balancing is applied to
the processing of a path expression of arbitrary
length in the presence of UDFs.

Dewitt et. al.®) uses par-sets to parallelize
traversals of objects in a parallel OODBMS.
A par-set is simply a set of database ob-
jects, declustered: on. different SN nodes and on
whom ‘specified methods are applied in paral-
lel. We share goals with this work, i.e. speed-
ing up the navigation of objects but the con-
cepts and algorithms used :are different. Chen
et. al.5) introduce elimination and identifica-
tion based techniques, that use the concept of
multi-wavefronts. This work exploits the graph
nature of OODBMS schemas: The strategies
used in this paper are different to ours, but we
note that the type of queries they address can
also be solved by our proposed algorithm.

There is' a large body of @ work dis-
cussing dynamic load balancing for ' SN
RDBMS!3)18)21)19) © byt virtually no corre-
sponding work for parallel OODBMSs, to our
knowledge. However some work was reported
in Cario et. al.®) on load-balancing in process-
ing UDFs for object relational databases . We
believe as well that executing UDFs constitutes
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a significant portion of processing in OODBMS
unlike in relational systems where simple ac-
cess and compare operations are dominant. We

_therefore apply the same technique with Cario

et. al.3), of estimating the method execution
time by an average which is valid when time
variation about the mean is low.

3. Parallelism In OODBMS Query
Processing

3.1 An Parallel OODBMS Reference
Model

In an OODBMS a class is defined by specify-
ing its name, its attributes, its methods and the
names of its superclass(es). A simple attribute
has a primitive domain like integer and a com-
plex attribute has a class domain. An attribute
can be'single-valued or set-valued. An objects is
an instance of a class. Consider an SN process-
ing system hosting a parallel OODBMS. Class
objects are declustered across system nodes us-
ing some partitioning scheme, like round-robin,
hashing range, or a user-defined scheme. Each
object of a class has a unique physical 4-tuple
object-identifier (OID) (c, k,pg,u), that speci-
fies the class ¢ to which it belongs, the node &
at which the object is stored, the disk page, px
at node k in which it is stored i.e. the page-
identifier (PID) of that OID, and u a unique
system assigned value.

A path expression is called qualified if it in-
cludes predicates. A qualified path expression®)
is defined as P = C] (Pl)Al(Pz)Az N (Pn)An
for (n > 1). C is the root class of the qualified
path expression; A; is an attribute of a class
C; such that C; is the domain of the complex
attribute A,_1, of class C;_1, (1 < i < n); sub-
script ¢ refers to the position of the class or at-
tribute in the path expression; and P; is a pred-
icate executed on a class C; object. Moreover
len(P) denotes the length of P, i.e. the number
of classes in the path expression. To denote the
fact that instances of class C; are declustered
across nodes we use Cy, for 1 < k£ < N, N
the number of nodes. A, may or may not be
a complex attribute. A single-valued complex
attribute has one OID as a value, and a set-
valued complex attribute has a set of OIDs as
a value. The predicate P; may be a UDF or it
may be simple comparison.

If we define an object-tuple OT; as.the com-
bination of all the projected attributes of the
object O; of class C; and one OID, called the
OT; 01D from the object’s attribute participat-
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Fig. 1 An OODBMS schema graph

ing in the corresponding path expression, then
a path instance (PI) of P = C1.41.A2.... An,
is defined as a sequence of p object-tuples de-
noted OT;.0T5....OT,, where p=n if 4, is a
complex attribute or p = n — 1 if A, is a sim-
ple attribute. If ¢ < p., then OT1.0T5....0T, .
is a partial path instance (PPI;) of P where ¢
is the number of classes traversed. Attributes
projected depend on the query requirements.

Figure 1 illustrates a university OODBMS
schema based on the reference model just de-
scribed. The following query retrieves , from
this database, the names of the courses taken
by students over 35 years old, who are advised
by professors whose rank is departmient chair-
man.

Q1:

SELECT R.Name , S.Name , C.name

FROM R IN PROFESSOR, S IN STUDENT,
C IN CLASSES

WHERE R(rank = ’dept chair’).
advises.(age() > 35 )classes.()name

A example of qualified path expression
here is P = PROFESSOR(rank ='
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Fig. 2 Navigating in Parallel with Load-Balancing
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deptchair’).advises.(age() > 35)classes.()name
with len(P) = 3. The STUDENT class has a
predicate with UDF age() inherited from class
PERSON. The predicate for the PROFESSOR
class is ’age() > 35 and the predicate for
CLASSES is empty.

3.2 Set/Path Parallelism

In this section we describe a form of paral-
lelism we call set/path parallelism closely re-
lated to the path parallelism in Kim!%).

Consider the situation depicted in Fig. 2.a,
where class objects are declustered onto disks
in a 3-node SN environment. - Consider a
query Q1 to instantiate the path expres-
sion P(rank = ’dept chair’)advises.(age() >
35)classes.()name. The corresponding query
graph is shown in Fig. 2.b. Each node, in paral-
lel, scans its portion of the PROFESSOR class
and applies the predicate rank = ’dept chair’.
Noting that the OIDs used here are symbolic,
assume that three objects OID 1, 2 and 3 sat-
isfy the predicate. Node 1 examines the classes
attribute of PROFESSOR object 1. This turns
out 5 OIDs (4,5,6,10,16), three local (4,5,6) and
2 external (10,16). The required data.for the
professor; 1 object is projected and. combined
with each OID into OTy, essentially a PPI;.

Each such PPI; is either kept locally or sent
to its respective node. PPI; whose Object-
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tuple has OT;0OID 10 is sent to node 2 and
that with OID 16 to node 3. Each node then
dereferences STUDENT class objects according
to the OT;0IDs of the OT of its PPI;s. If the
execution of UDF age() > 35 is computation-
ally expensive then load imbalance will occur
between the 3 nodes since the number of target
STUDENT objects are unequal. We transfer
STUDENT objects 16 and 17 from node 3 to
node 2 to balance the UDF execution load and
then initiate UDF execution. If an object is
selected, each PPI; referencing it is extended
with an OT from that object to create PPlys,
instantiating the partial path P.advises. Exe-
cution continues until the whole path is instan-
tiated. ‘

We term this parallelisn exhibited here
set/path parallelism. The difference between
path parallelism in Kim'* and the set/path par-
allelism here is that in the former different
paths in the query graph, at the class level,
are followed in parallel, whilst in the later the
same path in a query graph at the class level,
generates multiple paths at the object level, be-
cause of object declustering and the existence
of set-valued attributes. Note that even with
single-valued attributes multiple paths are still
available from declustering alone.

4. A Parallel Navigation Algorithm
4.1 Algorithm Description

In this subsection we present the parallel nav-
igation with dynamic load balancing (PNDLB)
algorithm, that exploits set/path parallelism
for instantiating path expressions. A descrip-
tion of the algorithm is given in Fig. 3. This
is a more detailed description of the scheme in
Fig. 2. The input to the algorithm is a path
expression P = C1(P;).Ar.(P2)As ... (Pn)An
with length len(P).

The algorithm ‘uses a breadth first fetch
(BFF) traversal of alink (C;, Ci41) of a path ex-
pression P at each node in the SN system. Re-
ferring to Fig. 3, the algorithm begins in parallel
at each at step 1, where ¢ is a counter to indicate
the class ‘currently ibeing processed. ' We assume
that there is no object placement skew so that
the number of objects in Cy, the portion of Cy
stored at node 'k, is equal for all nodes. Hence
there is no need for load balancing in processing
the root class C;.

Transmitting PP I;s is done in pages as much
as possible to save on communication overhead.

For N nodes in an SN system, execute the following at

each node k, 1 <k < N:

INPUT:P = C1(P1).A1.(P2)As. .. .. (Pn)An

(1) BEGIN::=1:

(2) Scan Cjp. Execute P; on each object in Cyy
including any received from load balancing step.
Create OTis, i.e. PPIis from each selected ob-
ject. :

(3) [ len(P) = 1 then END algorithm.

(4) Send PPIl;s to node pointed to by OT; —
OID .Send partial path instances in pages as much
as possible. Aseach PPI; arrives insert into a hash
table on the PID of OT;-OID. Group PPI;s
pointing to same object.

(5) <Barrier Synchronize>:At end of synchro-
nization, each node k broadcasts number of ob-
jects to load from next class. ¢ =i + 1.

(6) If P;is not a UDF skip this step. Otherwise
generate load balancing plan at each node.
Distribute data according to plan.

(7)  Probe remaining hash table, loading each page of
C;1 in turn.  Store referenced objects with refer-
encing group of PPI;s.

(a) Execute P; on each Cjj object referenced
or received during load balancing.

(8) ifi=len(P) then END algorithm. Otherwise
extend each PPI;_; to PPI; from each selected
C; object and its group of referencing PPI;_1s
and GOTO STEP 4.

Fig. 3 Parallel Navigation with Dynamic Load
Balancing Algorithm

Locally originating PPI;s and received PPI;s
are put into the hash table on the PID of
OT; — OID such that PPI;s pointing to the
same page are in the same hash link and those
referencing the same C;.1 object are grouped
together. If there is overflow in building the
hash table, overflow PPI;s are written into
disk. Note that in analytical and experimental
evaluation, sufficient memory to avoid overflow
is agsumed and justified.

Barrier synchronization is used to allow gath-
ering of statistics about the number of objects
referenced by each node from the hash table,
to determine need for load balancing, which we
explain in the next subsection. Suffice it to say
that load balancing is initiated only for cases
when P; is a UDF, an expensive operation.

Load balancing may transfer some PPI;s and
their referenced objects into or out of nodes.
The remaining hash table is probed, and P; is
executed on each referenced object loaded from
disk or received during load balancing. If all
classes in the path expression have been pro-
cessed the algorithm terminates else each se-
lected object of class C; is use to extend PP,
to PPI; and the algorithm loops to step 4.
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LoadBalance()
(1)INPUT: Hk], k:=1to N ;
/*H[k] is number of Objects to load at node k */
(2)BEGIN at each node in parallel;
(3) Avg:=SUM(HJk]:k:=1to N)+ N;
(4) HvyLim := AvgLoad * (1 + ¢€);
(5) LgtLim := AvgLoad x (1 — ¢€);
/*Balanced range defined */
/* € is the load balancing factor *
(6) Create HL = {List of Nodes & : H[k] > HvyLim};
)] sort HL in desc. order of load size;
(8) Create LL = {List of Nodes x : H[k] < LgtLim};
(9) sort LL in asc. order of loadsize;
(10) if HL or LL is empty END algorithm.

/* HL or LL empty: no load imbalance */

(11) Set Transfer Load: node HL[1] — node LL[1];

/* Transfer as many objects as possible from
HL[1] to LL[1] - bring both nodes to bring
both nodes near or into balanced range */

(12)  if any of HL[1], LL[1] enter balanced range

(13) remove node from list ;

(14) move next node to list top ;

(15) GOTO 11 until either HL or LL is empty;

(16) Nodes not originally in HL END algorithm;

(17) Nodes originally in /L transmit data to nodes
designated:in plan: units of

(C; object + group of PPI;s) in pages ;

(18)END algorithm.

Fig. 4 Decentralised Dynamic Load Balancing
Algorithm

4.2 Load Balancing

In this section we describe the load balanc-
ing part of the PNDLB algorithm ie. line
(6) in Fig. 3. A description of the algorithm
is given in. Figure 4. A typical dynamic load-
balancing technique addresses the following is-
sues: load imbalance detection; granularity of
work transfer; size of work transfer, which pro-
cessor to transfer to which processor and actual
load transfer. Our load balancing algorithm ad-
dresses these issues as follows. ‘

4.2.1 Imbalance Detection and Trans-

fer Granularity

Our proposed load balancing algorithm is
based on the premise that the execution of
UDFs in a qualified path expression is an ex-
pensive operation. Therefore if some nodes in
the SN system have to access a larger number
of objects than others during hash table prob-
ing, load imbalance is said to exist if a UDF
is to be executed for that class of objects. The
implicit assumption here is that the execution
time of the UDF can be estimated. Estimat-
ing the execution time of abitrary code is diffi-
cult but we believe that statistics gathered over
time can be used to estimate UDF execution
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Fig. 5 Data Re-distribution Plan in Load Balancing

time as used in Cario et. al for ORDBMS?).
We distinguish between low-variant UDFs and
high-variant UDFs. Low variant UDF's have ex-
ecution times that vary within a limited range
about an average and our load balancing algo-
rithm can be applied. High-variant UDFs have
a wide range of variations and average estimates
are inaccurate.

During barrier synchronization each node
within the broadcasts the number of C;yq , ob-
jects referenced by the PPI;s in its hash table.
In parallel, each node will use this information
to detect load imbalance, which is said to exist
only if both list HL and list LL defined in Fig. 4
are non-empty. . The value of the load balanc-
ing factor € is determined experimentally. The
granularity of work transfer is one UDF execu-
tion, i.e., one C; object and all PPI;_ys ref-
erencing that object.

4.2.2 Transfer Plan Generation

Transfer plan generation answers both the
size of work transfer question and the ques-
tion which processor to transfer to which pro-
cessor. After detecting load imbalance, each
node will, in parallel, generate a work trans-
fer plan. Our algorithm creates two lists, HL
sorted in descending order, and LL in ascend-
ing order as shown in Fig. 5. The transfer plan
results in each node in the system having within
(AvgLoad + €) C; objects. R

Transfer plan generation is detailed in Fig. 5.
In this example € = 0.1 and AvgLoad = 500
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giving a balanced range of 450-550 objects
(AvgLoad + €). This is a best-fit decreasing
strategy. For example in Fig. 5.a, node 1 sets
to transfer 200 objects to node 10 and the lat-
ter becomes balanced so it is removed from list
LL in Fig. 5b. Node 1 is removed from its list
only after it is set to transfer a further 100 ob-
jects to node 11 since it becores balanced then.
Node 2 is set to transfers 100 objects to node
11 and 50 objects to node 12. The algorithm
stops when the one of the lists is empty.

Note that planning is done in parallel at every
node and exactly the same plan is generated.
This makes the algorithm decentralised and in
a large SN can help to avoid the bottleneck of
waiting for one controller node to generate a
plan.

4.2.3 Actual Load Transfer

The transfer plan of Fig. 5 is generated in
parallel at each node. Nodes not included in
the HL list in the plan terminate the algorithm
and continue to next step. Nodes in list HL
begin actual tranfer as in line 17, Fig. 4 . For
example to transfer 50 C; objects in from node
2 to node 12 in Fig. 5, node 2 will load from
disk 50 C; objects refere‘nced from its hash table
and transfer these together w1th all referencing
PPI;_1)s'in units of pages. Receiving nodes
process data as in the next step on the PNDLB
algorlthm ‘

4.3 Target Queries

For a navigation algorithm to be effective in
an OODBMS 'it must be able to navigate abi-
trarily complex query graphs. We show below
that our algorithm can be used to navigate such
kinds of query graphs. Figure 6 shows the
type of query graphs that can be solved using
the PNDLB algorithm. Shown are 3 types of
graphs, namely single path expression graphs,
multiple path-expression graphs and cyclic path
expression graphs.

We already“desm ibed our 'algorithm as pro-
cessing smgle path graphs. However to pro-
cess multlple path-expression graphs, we di-
vide the gra,ph into a number of constituent
paths and then process these paths individually.
For example for Fig. 6b we would process path
C1.A1. Ay A3, and ‘store the results. To process
Cy. Ay Ay Ay A5 Ag, we would utilize the data
obtained from Cj.4;.A5.As so that we only use
those objects C; that are selected here. This
reduces the amount of data if the first path
is highly selective. The same is done for last
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Fig. 6 Types of Query Graphs for Parallel
Navigation Algorithm
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path C;.A;.A5.A4.A5. A7. For the cyclic query
in Fig. 6¢ we follow much the same way.

Note that to process multiple path expres-
sion and cyclic path expression graphs, we
would need to provide a new entry point to the
PNDLB algorithm other than the scan opera-
tion but doing so is straightforward. In this
way we can locate all the data that meets the
requirements of the query graph. Note also
that to process this kind of graph efficiently the
query optimizer must divide the graph into the
most optimum way so that the paths with least
selectivity are processed first.

5. Analytical Evaluation

In this section we discuss an analytical eval-
uation of the navigation algorithm. The model
is validated by comparing it to results obtained
from simulation in the next section.

5.1 Analysis Parameters

Table 1 lists the parameters that used in
the analysis. We focus on four important as-
pects of PNDLB algorithm namely, disk page
I/0: communication time for inter-node traver-
sals; CPU time for hash table maintenance and
method execution time for UDFs. 'We define
fan_out(C;,C;) and fan_in(C;,C;) to model
the extent of the connection between two classes
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Table 1 Parameter Definition List

Name Description
Pg size of a disk page
N Total number of nodes
s size of an object
Cir The portion of class C; stored at
node k
HCirll Total number of class C;; ob-
jects at node k
[Cik| Total number of class C;; pages
at node k
selp, The selectivity of predicate P;
localitycijk The percentage of pointers from

class C;p objects that point to
C, objects at node k

The average number of pointers
from a class C; object to a class
C; objects.

The average number of pointer
from class C; objects into one
class C; object,

Yijkl The average fraction of the total
number of external pointers that
point from node k to node [ for
class C; to class Cj

€ The load balancing factor

fan_out(C;, Cy)

fan_in(C;, Cj)

participating in a path expression. These pa-
rameters are particularly important in a paral-
lel OODBMS since they indicate the degree to
which parallelism can be applied (cf: set-valued
attribute) and also the level of data sharing dur-
ing access. The parameter y;;x; is an indicator
of the amount of rmessage passing between 2
nodes [ and k. Closely related to this param-

eter is the locality of reference which indicates
localityc,,, the fraction of pointers from a class
at node k that point to the same node.

We make the assumption that the time to
execute a UDF is on average typr for each
class. As mentioned ealier, this assumption is
valid for low variant UDFs but needs modifica-
tion for high variant UDFs. However curve fit-
ting techniques are used to make estimates for
tupr based on accumulated statistics in some
researches'!). In this paper we use the simpler
method of averaging.

The analysis here and indeed the algorlthm
assumes that each node has enough memory to
maintain any data its had read in main mem-
ory together with all hash tables. We therefore
assume that there'is no page I/ 0 resulting from
memory overflow. This assumption is not sim-
plistic since recent I:yplca,l shared-nothing ma-
chines have 64MB of main memory per node.
An example is the PC cluster in Kitsuregawal®),
where each PC in the cluster has 64MB of main
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memory. It is also shown in Dewitt et. al.%)
that an 8 node machine has sufficient memory
to hold all OODBMS data.

5.2 Cost Equations

Let us consider the instantiation of the fol-
lowing path expression:

P = Cl (Pl)Al(Pg)A2 .. (Pn)An

5.2.1 Scanning Root Class C;

Node k& scans class C1; and the number of
disk pages read is given as:

I0c,,, = -—”C}k”'s} (1)

Each object read has predicate P; (ie. a
UDF) executed on it and the number of such
operations is:

UDFoy, = ||C|] (2)
The number of PPI;s generated at node k is:
PPl = ®3)

UDFg,, - selp; - fan_out(Ci, Ciy1)
where i=1.
5.2.2 Send and Receive Operations
The number of PPI;s sent out from node k
is calculated as follows:
PPI_Sndg,, = (4)
© PPILy - (1 = localityc; ;,,.1)
The algorithm arranges these in pages and
sends them a page at time. The number of send
operations is therefore:

Sndc,, = (5)
PPI_Sndg,, - sizeof (PPI;)
Pg

where the sizeof() operator returns the size of
PPI;. Note that here the number of received
PPI;s is:
PPI_Recvg,, = (6)
N,l#k

Z PPIL; - (1 - localityoi‘iﬂ.,) - Yijlk

Since tligsle are received in pages the number
of receive operations is:
Recvg,, = (7)
[ PPI_Recvg,, - sizeof (PPL) ]
Pg

5.2.3 Hashing Object-Tuples

PPI;s generated from class C;;, and those re-
ceived from external nodes are hashed on their
PID of OT;-OID. The total number of such
hash operations is:

Hashg,, = (8)
PP, - localityc, ;1 + PPI-Recug,,
5.3 Probing the Hash Table
To find the time spent in probing the hash ta-
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ble we have to estimate the number of disk I/O
operations executed. This is done by the Y ao
function??). Given n objects evenly distributed
among m pages, Y ao estimates the number of
pages to be read to access x randomly selected
objects as follows:

x

SR N |
Yaolm,m,2) = {m*(bﬂ%':‘n—:}%’ﬂ]

=1
If X, is the number of objects to access at
node k for class C; then the number of I/O op-
erations is:
Probe.,IOoik = Yao(HCik“,]CikLXik) (9)

where:
Hashc,;_,
Xa = fanan(Ci1,Ci) (10)
The number of probe operations is given by
Probe CPUg,, = Hashc,_.,, (11)

Equation 11 means that the number of hash
operations for PPIs from class C;_; determine
the number of probe operations for class C;.

5.3.1 Load Balancing

To create an analytic model for the load bal-
ancing algorithm we used the approach sug-
gested in Walton et. al.?!). Here data skew for a
parallel relational system is modeled as a scalar
quantity Q. This represents the case where one
node in the SN system has Q times more tuples
than any of the other nodes, which each have
a number of tuples equal to some value X. In
our case Q) is calculated as: ')‘(X“Z“ where node
k is the heavily loaded node and node I is any
other node.

The time taken to do load balancing is deter-
mined by the time taken to transfer the extra
load from node k. If we assume that node 1 is
heavily loaded then if X;s is the number of ob-
jects to access at a lightly loaded node 2 (equal
to all other light nodes) then the average load
in the system is given as:

. - S — . .
A’Ug = Q XzQ l’“(]]\\: 1) X'L2 (12)
The heavily loaded node must transfer load

such that the number of objects remaining in
its hash table is within the threshold as defined
in Fig. 4. In this case the HvyLim is given as
follows:

HvyLim = (1 4 ¢) - Avg_Load
where ¢ is the'load halancing factor. The total
load transferred is calculated as:

T_Load = ‘ (13)

(@ Xz — (1+¢) - Avg)

The unit size of data transferred, T _data is

given as follows:
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ten(P )

Loop (i)

)

k=1

Probe_IO ok Probe_CPl{:ik
T_Load_sendc.lk

i=2

Fig. 7 Calculating Response Time

T data = (14)
sizeof (PPI; 1) - fanin(Ci;-1,Ci) + s
The number of send operations in pages is
given as follows:
T_Load_snd = (15)

T _Load - T_data
Pg

5.3.2 UDF Execution

After load balancing, each node then executes
the UDF for objects from class C;. The number
of UDFs executed here are calculated as follows:

UDFg,, = (16)

no load balancing

X
{ Q- Xi2 —T_Load load balancing

In the load balancing case the assumption is
that the heavily loaded node, node 1 takes the
most time here and it has Q times more objects
than all other nodes for example node 2. We
therefore only calculate the time for the heavily
loaded node 1. Therefore in equation 17 the
value of k is 1 when load balancing is used.

The total number of PPI;s generated at this
point is:

PPI; = (17)
UDFe,, - fan_in(Ci_1,C:) -
selp, - fan_out(C;, Ciy1)

For each object there are fan.in(C;_,C;)
PPI,_1s pointing to it, and each object has
fan_out(C;, C;y1) pointers from which to cre-
ate new PPIs given in equation 18.

5.3.3 Total Response Time
We calculate the time to reach the barrier

synchronization point for each state of the path
expression. The time for each of the stages
of the algorithm, is determined by the slow-
est node. Figure 7 show a diagram on how
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the total response time is calculated. The re-

sponse time calculated in the equation 18 takes

the time at the slowest node.

To calculate the total time taken to traverse
the whole path expression input into the algo-
rithm, we need to calculate the maximum time
taken to reach the synchronization point:

(1) From the beginning of the algorithm
until the first time the synchronization
point is reached;

(2) From the time the synchonisation point
is crossed until the next time its crossed
looping until the whole path expression
is traversed.

TotalTime = (18)
MAX{(IOc,, +UDFg,, + Sndo,,
+Recvg,, + Hashe,,) : {k=1,N}}

i:leﬁ(?)
-\ o
+ Y MAX{(ProbeIOc,,
1==2
+Probe_CPUg;, + T_-Load_snd
+UDFg;, + Sndc;, + Recvg;,
+Hashg,,): k=1,N}
where:
Sndg,, = Recve,, = Hashe,, =0
"if i = len(P),
T _Load_send = 0  if nc load balancing

It is clear then that the maximum time for
each of these 2 phases is determine by the slow-
est node. So to find the response time we calcu-
late the time for the slowest node. For point 1,
the time is calculated by the first term in equa-
tion 18. The summation term gives the time
for point 2. The sum is given from 2 to len(P)
to indicate that the algorithm loops this sec-
tion that many times. When there is no load
balancing we do not need to include the load
balancing message overhead T'_Load_send note
also that load balancing reduces the number of
UDFs according to equation 17 at the heavily
loaded node, which is still the slowest node be-
cause it still has the most UDF's to execute.

The total time for execution is therefore a
summation of the all the above terms as shown
in equation 18

5.4 Analytical Evaluation Results

We collected some results from the analyti-
cal model described above. Table 2 shows the
constants used in this evaluation. The time is
given in time units. A size of 200,000 objects is
chosen as it represents a reasonable size for the
database and is derived from the OO7 bench-
mark?. A fan out of 3 and a fan in of 1 are
derived from the OO1 benchmark®. For the
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Table 2 Time Constants List

Name Value Name | Value
DBsize(objects) 200,000 tdisk 200
Pg 8kbytes tsend 70
object size s 256bytes trecw 100
N 2-32 tuDF 40-70
fan_out(C;, C;) 3 thash 3
fan_in(Ci, CJ) 1 tprobe 3
localityc, 0.5 € 0.1
T—Tocalityc .
Yijkl ———————-’“ e len(P) 7
RESPONSE TME For Analytic Model
1.20+07 T T Y,
\\ &) mm‘fﬁé’é’.ﬁ"‘u&‘ Time =
S with Load Balancing: Time ------

10407 A

Bos06 |y 1 o b : i ] . 4

AN
60406 \ N S

40406 o -\

Time

20406

——
4 8 12 16 20 24 28 a2
Number of Nodes

Fig. 8 Response Time generated from Analytical
Model

SpoedUp For Analyuc Modl
16 T

"tdeal Swwup
Qs whnein Load Balancing:
Lo . v ] Q-5 with Load anm:g - ;~ B

Speedup
»

i i H
o 4 8 2 16 20 24 28 32
Nurmber of Nodes

Fig. 9 Speedup from Analytical Model

UDF time we chose a range of 40-70 for the low
variance case and this is equal for all classes.
The value of y;;x; is adjusted when load imbal-
ance exists such that each lightly loaded node
has @ times more pointers to the heavily loaded
node than to any other node.

Figure 8 shows the response time for the
analytic model described in the previous sub-
section. We include a plot for the case where
data is uniformly distributed at all levels of a
path expression. In the graph it can be seen
that ideal distribution achieves almost linear
speedup. When data is skewed with a Q value
of 5 speedup decreases to a value of about 5.7
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Navigation Algorithm

from 2 to 32 processors. This shows that this
algorithm is sensitive to load-imbalance. Ap-
plying the load balancing algorithm improves
the speedup to 7.9 over 32 nodes as shown in
Fig. 9. If the response time at 2 nodes is RT>
and the response time for IV nodes is RTy then
speedup here is defined as: Jfgy However note
the improvement in response time at 8 nodes is
over 33% if we compare the graphs when load
balancing is not used and the graph when load
balancing is used.

The analytic model indicates that instantiat-
ing a path expression in a parallel OODBMS
can benefit from parallel processing but good
data distribution is necessary to obtain maxi-
mum parallel processing benefit. In the next
section we will discuss these analytical results
further in comparison simulation results.

6. Simulation Evaluation

6.1 Simulation Model

We developed a simulation model to validate
our PNDLB algorithm. Figure 10 depicts
the simulation model. Each node in the sys-
tem communicates with other nodes via a high
speed network. Each node has enough send and
receive buffers to hold whatever messages going
to and from the network. In the case of receive,
all messages sent to a node are held in the buffer
until the CPU processes them. We also assume
a node memory large enough that any all ob-
jects and tables at a particular node are held in
memory without the need to resort to overflow
processing. The parameters in the simulation
model are similar to those in Table 2. The sim-
ulation program was written in C and experi-
ments performed on a Sparc Center Server with
2GB of memory.

6.2 Low Variance Results

May. 1999

LOW VARIANCE RESPONSE TIME at Q=5
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Fig. 11 Response Time for Low Variance at Q=5

The graphs in Fig. 11 show the response time
when the load balancing factor is varied from
0.5-0.15. This graph list experiments for the
case for low variance UDFs using a range 40-
70 time units selected at random with average
55. We note that as predicted in the analytical
model the algorithm is sensitive to load imbal-
ance. Note also that the results depicted in this
graph agree very well with the data in Fig. 8.
When data is uniformly distributed across all
nodes using round-robin partition the speedup
is about 13.1 from 2-32 nodes. However a data
skew of Q-factor 5 results in a speedup to 4
on 2-32 nodes as shown in Fig. 14. However
note that the worst increase is in the response
time. For 8 nodes response time increases about
3.5 times. At 28 nodes the increase is about
2.5 times. This emphasizes the need for load
balancing in the navigation of links in a paral-
lel OODBMS since the ideal partition realised
by round robin partition may only be practi-
cal at object creation time but arbitrary access
pattern may result in load imbalance. Having
mentioned that we would like to note that even
without load balancing Fig. 11 shows that par-
allel processing can decrease the response time
for navigation in OODBMS.

We note that for the low variance case load
balancing at € 0.05, 0.1 and 0.15 improves re-
sponse time significantly. A maximum decrease
of 34% in response time is achieved at 8 nodes
for ¢ = 0.15. However if we look at the case for
tupr = 5 shown in Fig. 12, we see that load
balancing actually increases the response time
since the typr and load balancing communica-
tion time introduces overhead that is not com-
pensated for by the executing low time UDFs.
We can therefore say that load balancing bene-
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Fig. 14 Speedup For Low Variance

fits the case when ty pr is high.

Figure 13 shows the communication time
for the PNDLB algorithm in the low variance
case. In general we can infer that communica-
tion time varies from 10% - 4 % of response time
for 2 and 32 nodes respectively. The dominant
time is obviously UDF execution and disk ac-
cess. Load balancing increases communication
time but this is an increase in a factor whose
influence is limited.

One of the purposes of the experiment de-
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Fig. 16 Response Time for typp = 5 with Locality
Variation

picted in Fig. 11 - Fig. 14 was to determine the
best value for the load balancing factor e. We
varied € from 0.5-0.15 an noted the response
time. It shows from these three figures that
the bigger the load transferred the better the
improvement in response time. However if we
compare the speedup for 0.05 and the speed up
for 0.15 we note that the latter’s is lower than
that without load balancing at a higher num-
ber of nodes. However 0.05 results in a response
time that is converges faster towards the case
without load balancing as the number of proces-
sors increases. These two factors suggest that a
load balancing factor of 0.10 is a good trade-off
between an improvement in response time and
speedup.

6.3 Variation of Locality of Reference

One of the aims of research in parallel
OODBMS is to reduce the number of inter-node
references. We experimented with varying lev-
els of locality of reference, i.e. the percentage
of OIDs pointing to external nodes for a class
Ci, at node k. Locality of reference was var-
ied from 30% to 90%. Figure 15 shows that
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the response time does not vary very much with
changes in locality of reference in the low vari-
ance UDF case. This is not the case for the
case with typr = 5 as shown in Fig. 16. Here
response time increases more significantly as lo-
cality of reference decreases. Communication
time increases as locality of reference decreases
as shown in Fig. 17. This time is more influen-
tial when typr is low. Figure 18 shows that
locality of reference does not affect speedup.

6.4 Effect of Selectivity

B S
I.‘umlyn/t.\
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Fig. 20 SpeedUp for selectivity 0.2-1

Experiments with the selectivity of the UDF
show that a decrease in selectivity results in a
decrease in the response time. A surprising re-
sult is that the lower the selectivity the lower
the speedup. We may infer from this result that
a low selectivity UDF will reduce the benefit of
parallel processing since the number of meth-
ods executed in subsequent levels of the path
expression is correspondingly reduced. Parallel
processing will be of greatest benefit to meth-
ods with high selectivity.

7. Conclusion and Further Work

We have presented a parallel navigation al-
gorithm, PNDLB. The algorithm exploits the
existence of set-valued attributes and decluster-
ing to navigate path expressions in parallel and
includes a dynamic load balancing algorithm.
We argue that UDF execution is important in
parallel OODBMS and that load balancing is
needed to ensure that UDF load is balanced
across in an SN system. We estimate UDF
time using the average value of the execution
time for previous executions of the correspond-
ing UDF assuming that the average is a reli-
able estimate of future execution times. This
assumption holds for low variance UDFs.

We have presented analytical evaluation re-
sults and simulation evaluation results to val-
idate the efficiency of the PNDLB algorithm.
Simulation also shows that dynamic load bal-
ancing is beneficial for situations when the UDF
execution time is high, but is not when UDF
time is low. A speedup of 13.1 obtained when
there is no load imbalance for 2-32 nodes. When
there is load imbalance a decrease of up to 34%
is obtained for response time when load balanc-
ing is used. Simulation also shows that the best
value of the load balancing factor is 0.1.
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We intend to do an actual implementation of
the PNDLB algorithm on a real machine. We
would also like to compare the performance of
our) algorithm with the algorithm in Chen et.
al.%.

Acknowledgments This research is sup-
ported in part by the Japanese Ministry of
Education, Science, Sports and Culture under
Grant-in-Aid for ‘Scientific Research (B) and

(©).
References

1) Bancilhon F. et. al.: Building an Object-
Oriented Database System: The Story of 0-2,
Morgan Kauffman, (1992).

2} Carey M.J., DeWitt D.J. and Naughton J.F.:
The 007 Benchmark, Univ. Wisconsin Tech.
Report, (1994).

3) Cario F.,and OConell W.,:Plan-Per-Tuple Op-
timization - Parallel Execution of Expensive
User-Defined Functions, Proc. of the VLDB
Conf., pp. 690-695 (1998)

4) Cattell R.G.G., Skeen J.: Object Operations
Benchmark,ACM T'ODS, Vol 17, No. 1, (1992).

5) Chen Y.H. and Su S.: Identification and
Elimination-based Parallel Query Processing
Techniques ' for ' Object-Oriented Databases,
Journal of Parallel end Distributed Computing,
Vol. 18, No. 2, (1995).

6) DeWitt D.J., Naughton J.F., Shafer J.C.
and Venkataraman :S.: ParSets for Paral-
lelizing OODBMS Traversals: Implementation
and Performance, [niv. Wisconsin Tech Report
(1995).

7) DeWitt D.J., et. al: Practical Skew Handling
Algorithms. for Parallel Joins, Proc Conf. on
Very Large Databases, (1992).

8) Gardarin G., Gruser, JR. and Zhao-Hui,
T.: Cost-Based' Selection of Path Expres-
sion Processing Algorithms in Object-Oriented
Databases, Proc. of the 22nd VLDB Confer-
ence, (1996).

9) Ghandeharizadeh S. Choi V., Ker, C. and Lin,
K. : Design and Implementation of the Omega
object-based system, Proc. of the Fourth Aus-
tralian Database Conference, (1993).

10) Ghandeharizadeh S., Wihite D., Lin K. and
Zhao X.: Object Placement in Parallel Object
Oriented Database Systems, Proc 10th Inter-
national Conference on Data Engineering, pp
253-262 (1994).

11) Hellerstein J.M.: Optimization Techniques for
Queries with Expensive Methods, ACM Trans.
on Database Systems (to appear).

12) Kempter A. and Moerkotte G.: Oject Oriented
Database Management, Prentice Hall, pp609-

Parallel Navigation with Load Balancing for OODBMS 41

620, (1994).

13) Kien H.A. and Su J.X.W: Dynamic Load Bal-
ancing in Very Large Shared-Nothing Hyper-
cube Database Computers, IEEE Trans. Com-
puters, Vol. 42, No. 12, (1993).

14) Kim K.C Parallelism in Object-Oriented
Query Processing, Proc. 6th Int’l Conf on Data
Engineering,pp. 209-217, (1990)

15) Kitsuregawa M., Tanaka H. and Motooka T.:
Application of Hash to Data Base and its Ar-
chitecture New Generation Computing No 1,
pp62-74 (1983).

16) Kitsuregawa M., Tamura T. and Oguchi M.:
Parallel Database Processing/Data Mining on
Large Scale Connected PC Clusters, Proc. of
Parallel and Distributed Systems FEuro-PDS’
97, pp313-320, (1997).

17) Lieuwen, D.F., DeWitt, D.J., Mehta M. Par-
allel Pointer-based Join Techniques for Object-
oriented Databases, Univ. Wisconsin Tech Re-
port, (1993)

18) Rahm E. and Marek R.: Analysis of Dynamic
Load Balancing Strategies for Parallel Shared
Nothing Database Systems,Proc of the 19th
VLDB Conf.,pp 182-193 (1993).

19) Shekhar S., et. al.: Declustering and Load-
Balancing Methods for Parallelizing Geo-
graphic Information Systems, IEEE Trans. on
Knowlwdge and Data Engineering, Vol. 10, No.
4, (1998).

20) Tout W.R. and Pramanik S.: Distributed
Load balancing for Parallel Main Memory Hash
Join, IEEE Trans. on Parallel and Distributed
Systems; Vol. 6, No. 8, (1995)

21) Walton C.B., Dale A.G. and Jenevein R.M.:
A Taxonomy and Performance Model of Data
Skew Effects in Parallel Joins, Proc. of the Int.
Conf. on VLDB, pp537-548 (1991).

22) Yao S.B.: Approximating Block Accesses in
Database Organisations, Comm. A CM, Vol. 20,
pp260-261, (1977). ‘

(Received December 20, 1998)
(Accepted February 1, 1999)

(Editor in Charge: Hiroshi Ishikawa)



42 B

Lawrence Mutenda was
born in 1966. He received his
BSc(Electrical Engineering) de-
gree from the University of Zim-
babwe in 1989. He worked
as a communications engineer
at the Zimbabwe Telecommuca-
tions Corporation from 1990 to 1991. In 1992
he enrolled at University of the Witwatersrand
in South Africa where he received the Graduate
Diploma in Engineering (Computer Engineer-
ing). In 1993 he enrolled at Utsunomiya Uni-
versity and received. the M.E. degree in 1995.
He studied for the PhD degree in Production
and Information Systems at Utsunomiya Uni-
versity from 1995. He left Utsunomiya Univer-
sity in March 1998, to work as a foreign re-
searcher at the Institute of Industrial Science,
University of Tokyo, where he is presently. His
research interests are parallel OODBMSs and
parallel spatial databases.

Takanobu Baba was born
in 1947. He received his B.E,,
M.Eng., and Dr.Eng. de-
grees from Kyoto University in
1970, 1972, and 1978, respec-
tively. From 1975 to 1979 he
was & Research Associate and
then a Lecturer at the University of Electro-
Communications. 8ince 1979, he has been with
the Department of Information Science, Ut-
sunomiya University, where he is now a Profes-
sor. In 1982 he spent one year leave as a Visit-
ing Professor at University of Maryland. His in-
terests include computer architecture, and par-
allel processing. He received IPSJ Best Author
award in 1992. He is author of the books, ”Mi-
croprogramming” (Shoukoudoh, 1985), ”Micro-
programmable Parallel Computer”(The MIT
Press, 1987), "Computer Architecture” (Ohm-
sha, 1994). Dr. Baba is a member of IPSJ,
IEICE and IEEE Computer Society.

A ASA
?‘%nﬂﬁ

May. 1999

Tsutomu Yoshinaga was
born in 1963. He received his
M.E. and D.E. degrees from Ut-
sunomiya University in 1988 and
1997 respectively. Since 1988, he
has been in Department of In-
formation Science, Utsunomiya

University. From 1997 to 1998, he was a vis-
iting researcher at Electrotechnical Laboratory.
His current research interests are architecture
of parallel computers and reconfigurable com-
puting systems.
IEICE.

He is a member of IPSJ and

Kanemitsu Ootsu was born
in 1969. he graduated from
the department of Information
Science, University of Tokyo in
1993. He obtained a Master
of Engineering degree from the
same university in 1995. He was
a PhD student at the University of Tokyo from
1995, leaving in 1997 to join the University of
Utsunomiya as a research associate. His main
interests are designing efficient computer sys-
tems, especially microprocessor architecture.




