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Abstract: Open classes are frequently used in programming languages such as Ruby and Smalltalk to add or change
methods of a class that is defined in the same component or in a different one. They are typically used for bug fix-
ing, multi-dimensional separation of concerns, or to modularly add new operations to an existing class. However,
they suffer from modularity issues if globally visible: Other components using the same classes are then affected
by their modifications. This work presents Extension Classes, a hierarchical approach for dynamically scoping such
modifications in Ruby, built on top of ideas from Context-oriented Programming (COP). Our mechanism organizes
modifications in classes and allows programmers to define their scope according to a class nesting hierarchy and based
on whether programmers regard an affected class as a black box or not. Moreover, Extension Classes support modu-
larizing modifications as mixins, such that they can be reused in other components.
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1. Introduction

Open classes are used for modifying existing classes: adding
or modifying methods in an already existing class (target class)
that is typically defined somewhere else in the same program or
in an external library. The former case is a method addition and
the latter one a method refinement.

There are a variety of use cases for method additions. The most
common use case in mainstream programming languages such as
Ruby is adding auxiliary methods in an object-oriented way. For
example, the Ruby library ActiveSupport provides methods like
Fixnum.minutes and Fixnum.hours to make it easy to perform
time calculations such as 4.hours + 2.minutes. Another use
case is multi-dimensional separation of concerns [26]: A class
or group of classes may exhibit a number of different concerns
which programmers may want to group together for understand-
ability reasons. While a traditional object-oriented design al-
lows only for a “single, dominant dimension of separation”, open
classes can be used to group methods of a class family belonging
to the same concern at a dedicated place.

Method refinements are typically used for bug fixing or im-
plementing behavioral variations. Multiple behavioral variations
can target the same classes and methods. In that case, there
must be a way to specify which variation should be used and
possibly combined. Context-oriented programming [15] (COP)
is a mechanism for modularizing context-dependent behavioral
variations. The mechanism presented in this paper is similar to
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context-oriented layer activation, focusing on scoping modifica-
tions dynamically. Other mechanisms have been proposed for
Ruby and other languages, and will be addressed in the next sec-
tion.

1.1 Background
This paper presents the design and implementation of Exten-

sion Classes for layer-based hierarchically-scoped open classes in
the Ruby programming language. Ruby is a class-based object-
oriented programming language and has support for class nest-
ing and modules (mixins). Our design is amenable to other
dynamically-typed languages supporting these features (e.g.,
Python, Scala, certain Smalltalk implementations [23]).

In Ruby, a class can be either a top-level class or be nested
within another class. Nested classes are static members like con-
stants (i.e., they are shared by all instances of a class) and their
purpose is typically to serve their enclosing classes [8]. Mix-
ins are units of code reuse, called modules in Ruby, and imple-
mented as classes that are inserted into the (single inheritance)
superclass hierarchy. In this implementation, they are the key to
sharing modifications among multiple classes, but the mechanism
itself is not specific to mixins and could also be implemented with
traits [22] or other composition mechanisms.

1.2 Requirements
Figure 1 illustrates the problem with open class modifications

in its most basic form (example taken from Method Shells [25]).
We would like to design two applications Viewer and Browser,
which are both using the library WebPage. That library can render
web pages and show popups. In Scenario (a), Viewer opens a web
page and a popup must be shown. In Scenario (b), the Browser
programmer overwrites the popup method with a no operation.
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Fig. 1 Example: Simplified problem description.

When Browser opens a web page no popup must be shown. The
main challenge is to ensure that Viewer and Browser can be used
together and still function properly, i.e., Browser’s modification
to WebPage do not affect Viewer, and Browser works even if the
popup method is called indirectly.

Our goal is to develop an open classes mechanism supporting
method additions and method refinements. That mechanism has
the following properties, whose benefits will be described in more
detail in Section 3 and then formally defined in Section 4. Proper-
ties 6–8 account for consistent language integration in program-
ming languages with mixins/traits, class nesting, and inheritance
(such as Ruby).
( 1 ) Only Classes: No additional organizational units (such as

classboxes, method shells, etc.) are necessary. Modifica-
tions are part of other classes or modules.

( 2 ) Locality of Changes: Modifications are visible in a local
scope (i.e., not global). Components outside of that scope
(e.g., Viewer in Fig. 1) are not affected by them.

( 3 ) Implicit Activation: Modifications are automatically acti-
vated for source code that is defined in the same class as
the modifications (e.g., popup for Browser; reflexivity).

( 4 ) Dynamic Scoping: Once activated, modifications remain ac-
tive even if a method in a different class is called. This allows
for indirect method calls (cf. local rebinding). For example,
in Fig. 1, no popup must be shown even if popup is called
from open (which is called from Browser).

( 5 ) No Destructive Changes: Modifications are deactivated if a
method is called in a class that is not known to be compatible
with them (limiting the dynamic extent). Multiple activated
modifications targeting the same method (i.e., overwriting

each other) are also potentially destructive.
( 6 ) Reusability: Modifications can be shared among multiple

classes, in all of which they are activated implicitly.
( 7 ) Hierarchical Scoping: Modifications defined in an enclosing

class should also implicitly be activated for inner (nested)
classes.

( 8 ) Inheritance Scoping: Modifications defined in a superclass
should also implicitly be activated for subclasses.

( 9 ) Composability: Multiple modifications targeting the same
method can be combined, which can also be used to resolve
destructive modifications.

1.3 Outline and Contributions
The remainder of this paper is structured as follows. Sec-

tion 2 will compare Extension Classes to related work. Sec-
tion 3 presents motivating examples and illustrates the require-
ments. Section 4 describes Extension Classes formally and Sec-

tion 5 gives a brief overview of our Ruby implementation. Fi-
nally, Section 7 gives a summary and ideas for future work. This
paper makes the following main contributions.
• An open classes mechanism with local visibility supporting

dynamic scoping and scoping according to class nesting hi-
erarchy and inheritance hierarchy.

• A prototypical implementation in Ruby *1.

2. Related Work

There are a variety of related technqiues and implementations
for open classes (Table 1). Some programming languages sup-
port them out of the box, while others rely on external libraries.
Open classes mechanisms with locality of changes are mecha-
nisms with a scoping technique, i.e., changes are not necessar-
ily globally visible. In that case, modifications must typically
be activated at some point, which is usually done with imports.
Importer granularity and importee granularity denote the unit of
scope and the unit of importable changes. A mechanism sup-
porting units of fine granularity gives programmers precise con-
trol over what code will be affected by an import or over which
changes should be imported, respectively. If a mechanism is dy-

namically scoped, modifications are applied even beyond (usu-
ally static) import statements, i.e., activation continues beyond
method invocations (cf. local rebinding). In this way, indirectly
called methods can be adapted. Some mechanisms have a way
to limit the extent of dynamic scoping, such that modifications
do not propagate into arbitrary program parts. If changes are
composable, there must be a way to access either an original im-
plementation (in case of a method refinement) or another active
modification that targets the same variation point. Modifications
can be instantiable if they are encapsulated in a class-like struc-
ture. The following paragraphs highlight specialties of related
techniques and compare them with Extension Classes.

Ruby has open classes, which allows programmers to open ex-
isting classes/modules to add new methods or to override exist-
ing methods. It is a common pattern to alias a method before
overwriting it, such that the original implementation is accessible
under a different name [13]. Changes are globally visible, poten-
tially leading to destructive modifications.

Refinements were introduced in Ruby 2.0 and allow program-
mers to limit the scope of open classes. Refinements can be ac-
tivated at “top-level” or inside a class, and remain active for the
remainder of the current file. They are not dynamically scoped:
If a method in another file is called, the refinement is deacti-
vated [28]. There is a discussion in the Ruby community as to
whether refinements should be dynamically and hierarchically
scoped [11]. Reasons against include implementation issues (per-
formance), complexity of the lookup semantics, and unintuitive
behavior of the using keyword, which is used to activate refine-
ments [19]. Even though our approach adds some complexity to
the lookup semantics as well, it automates parts of the activation
process and does not require a using equivalent in many cases.

A classbox [6] is a container and namespace (package in the
Java implementation [5]) for classes. Classes can be imported

*1 git@github.com:prg-titech/ruby-extension-classes.git
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Table 1 Comparison of mechanisms and implementations for open classes.
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Base Language Ruby
St.,
Java

(many) Java Java Ruby Java Py. Scala St.

Method Additions ✓ ✓ ✓ ✓ (✓) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Method Refinements ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓

Variable Additions (✓) (✓) (✓) ✓ (✓) ✓ ✗ (✓) ✗ ✓ (✗) ✗

Locality of Changes ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗

Importer Granularity
(who is affected?)

class n/a file classbox
block,
object

pkg.
meth.
shell

meth.
shelter

pkg. n/a file n/a

Importee Granularity
(unit of change)

class n/a
refine-
ment

class,
classbox

layer
ex-

pander
meth.
shell

meth.
shelter

meth.,
pkg.

n/a class n/a

Dynamic Scoping ✓ n/a ✗ ✓ ✓ ✗ ✓ ✓ ✗ n/a ✗ n/a
Dynamic Extent
Limit

scope
of class

n/a n/a
scope of
classbox

✗ n/a link
hidden

chamber
n/a n/a n/a n/a

Composability ✓ (✗) ✓ ✓ ✓ (✗) ✗ ✗ (✗) ✗ n/a ✗

Instantiability (✗) ✗ ✗ ✗ (✓) ✗ ✗ ✗ ✗ ✗ ✗ ✗

from other classboxes and changed locally; a classbox is the unit
of scoping, whereas modifications are scoped by classes in our
approach. Refining a class conceptually defines a new class,
i.e., changes to imported classes are visible only in the extend-
ing classbox or in classboxes importing extended classes. Similar
to our approach, including a class C from another classbox into
a classbox B extends the scope of B onto C (local rebinding).
An application can be represented by a classbox defining its own
classes, importing external classes, and maybe extending them lo-
cally. In Ruby, an application is typically a single top-level class,
whose modifications are visible in all nested classes with our ap-
proach. Classboxes are most similar to our approach, but lack
hierarchical scoping and inheritance scoping, and they introduce
an additional organizational unit for classes and modifications.

Local rebinding can lead to accidential method overwriting if
two classboxes provide conflicting modifications. Method Shel-

ters have been proposed as an extension to Ruby, combining fea-
tures from Ruby refinements and Classboxes [1]. Modifications
can be defined in a hidden chamber or in an exposed chamber.
Modifications defined in an exposed chamber are subject to lo-
cal rebinding, whereas modifications in a hidden chamber can-
not be overridden locally and behave similar to lexical scoping
of Ruby refinements. Our approach is closer to the Classboxes
model and can currently not handle conflicting modifications as
Method Shelters do. However, our approach lets programmers
compose multiple (layered) modifications.

In plain layer-based context-oriented programming
(COP) [15], partial methods can be used to encapsulate
modifications in COP layers. Most COP implementations have
pure dynamic scoping [3], i.e., if a layer is activated for a block
(e.g., using the with: method in ContextS [14]), then that
method remains active until the execution of the block finished,
unless programmers deactivate the layer explicitly. This can lead
to destructive modifications if a method is called in a class that
is not compatible with the modifications defined in an active
layer (e.g., see full example in Section 3.1), because the extent

of dynamic scoping is not limited. ContextJS allows a form
of hierarchical scoping, where a layer can be activated for a
morph (user interface element) and all of its submorphs [17].
COP frameworks with layer instances (e.g., JCop [4]) are the
only mechanisms with instantiablity in this comparison, but our
approach could be extended accordingly.

MultiJava [10] and Expanders [29] support statically-scoped
method additions. The scope of class additions is confined to
the source code file where they were defined, unless they are im-
ported. MultiJava and Expanders take into account class addi-
tions during type checking at compile time, making it possible
to detect and prohibit destructive modifications. In contrast to
our approach, there is no scoping mechanism extending mod-
ifications to collaborating classes, because method refinements
are forbidden and method additions can only be referred to in a
type-safe way if they were imported explicitly. MultiJava and
Expanders support polymorphic overriding of methods (and ac-
cessing original methods). Overwriting arbitrary methods, even
other method additions, is not allowed.

Method Shells [25] have been proposed as an open classes
mechanism for Java. Classes and revisers (containers for mod-
ifications) are contained in a method shell. Modifications are vis-
ible only within the extending method shell or when the method
shell is imported into another one. Classes from other method
shells can also be imported with the link keyword, which will
not include revisers in the current method shell and switch the
context (active method shell) to the method shell of the included
class when a method from that class is executing. Our approach
cannot link other classes; however, the scope of a class controls
deactivation of modifications, which is similar to “linking” and
sufficient to implement the examples shown in that paper [25].

Python does not provide language support for open classes, but
exposes the method dictionary of classes. A method addition or
refinement can be defined by adding a method to that dictionary,
but changes to the method dictionary are globally visible [7]. In
Squeak/Smalltalk, a package can define methods for classes in a
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different package [18]. These methods are called extension meth-
ods and installed when the packaged is loaded. Existing meth-
ods are overwritten, making modifications globally visible. Scala
supports implicit classes [20] which are syntactical sugar for im-
plicit type conversions [21]. Such a conversion is attempted au-
tomatically if a non-existing method is called. Consequently, im-
plicit classes cannot be used for method refinements.
Previous Work

This work is based on our previous work [23] on class exten-
sions for the Matriona module system. Matriona is a module
system for Squeak/Smalltalk [24] that brings class nesting and
class parameterization to Smalltalk, inspired by concepts from
Newspeak and BETA. The present work simplifies the previous
class extensions mechanism and presents it in a distilled form,
leaving away Matriona-specific details.

In Matriona, the (method) lookup has an additional level of
complexity, because nested classes are virtual and can be overrid-
den. The semantics of super calls (proceed in this work) in par-
ticular are complex, because superclasses are also virtual and can-
not be determined statically, making it hard for programmers to
predict/control the scope of a class at development time. Further-
more, mixins are effectively represented as methods with a super-
class parameter and returning a class object, making reusability
of class extensions harder to grasp for programmers that are not
familiar with mixin theory. In contrast, Ruby nested classes and
superclasses are not virtual and there is a dedicated language con-
struct for mixins (modules).

3. Extension Classes by Example

In this section, we present three examples to justify the require-
ments and give an overview of the Extension Classes mechanism
that we will formally define afterwards.

3.1 Dynamic Scoping
The first example [25] was already briefly mentioned in Sec-

tion 1.2 and illustrates the most basic use case. We would like to
develop an embedded web browser and an audited viewer for web
pages, represented by classes Browser and Viewer, respectively.
Both applications use the same WebPage library, containing func-
tionality for rendering websites and for showing popups (Fig. 2).

Since the browser application was designed for an embedded
system, it should not display popup windows (Fig. 5), whereas the
audited viewer application should show a popup window when-
ever a confidential file is accessed (Fig. 3). Showing popup win-
dows is an essential part of the functionality of the audited viewer
application.

In this design, the embedded web browser defines a method
refinement for WebPage.popup to disable popup windows, i.e.,
replacing it by a no operation (Fig. 4). Our mechanism should
allow for the following behavior.

First, when another application uses both the embedded web
browser and the audited viewer, the viewer should still show
popup windows. In other words, the scope of the browser’s mod-
ifications should be confined to Browser.

Second, in another design, where the embedded web browser
uses the audited viewer, programmers should be able to choose

Fig. 2 Definition of class WebPage. Method popupmay be called internally
to display a popup window.

Fig. 3 Definition of class Viewer. This class uses WebPage internally and
might trigger a window to pop up.

Fig. 4 Example: Locality of changes. Gray boxes indicate classes and their
extensions, sets enclosed in curly braces indicate the scope of a class.
Classes enclosed in parentheses account for hierarchical scoping.

Fig. 5 Definition of class Browser. The class defines a partial class target-
ing the top-level class WebPage, overwriting method popup.

whether the browser’s modifications should affect the audited
viewer or not. In other words, programmers should be able to
specify whether the scope of the browser’s modifications includes
Viewer or not.
Representation of Modifications and Notation

In our Ruby implementation, class modifications are defined
as members of classes *2. Following COP terms and notation, we
call both method additions and method refinements partial meth-

ods. Partial methods must be wrapped in partial classes, which
are defined like nested classes, but require a preceeding partial
statement *3 and must reference an existing class, which is called
target class. The target class is the class that is being extended.

For example, in Fig. 5, Browser is a class defining a partial

*2 They can also be defined as members of modules (mixins). Whenever
we say class, we also refer to modules.

*3 This statement works similar to public, private, and protected.
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class targeting the class WebPage and containing a partial method
popup. Partial methods can be instance methods or class meth-
ods; however, we focus on instance methods in the remainder of
this work.
Scope of Modifications

To avoid destructive modifications, there are rules to activate
and deactivate modifications. (De)activation is supported on a
per-class basis, i.e., it is not possible to (de)activate single partial
methods or partial classes separately. The term (de)activation of
class C means that all method additions and method refinements
defined in a class C (not targeting class C!) are (de)activated.
The rule for class activation is simple: A class C is activated if
one of C’s methods is executed. For example, if Browser.open
is executed (invoked), class Browser is activated.

Class deactivation depends on the scope of a class and takes
place upon method invocation. The scope of a class is a set of
classes and determines how long a class should remain activated
if activated before, i.e., the scope of a class affects only deactiva-
tion but not activation: If a class C is active and the control flow
dispatches to a method D.foo, where D � scope(C), then class C

is deactivated. The scope of a class always contains the class it-
self (reflexivity). Therefore, when calling WebPage.popup from
Browser, the method lookup will select the method refinement
defined in Browser, because Browser remains active.

Furthermore, the scope of a class also contains the tar-
get classes of all partial classes. For example, WebPage ∈
scope(Browser). If WebPage.open calls popup, the method
lookup will use the method refinement if open was called from
Browser, because WebPage ∈ scope(Browser). This is also
known as local rebinding [6] or dynamic scoping.

scope(Browser) = {Browser} ∪ {WebPage}
Every method invocation can activate and deactivate classes.

Our implementation maintains a class activation set containing
all activated classes. When a method call returns, the set of ac-
tivated classes is restored to the original state right before that
method call. Partial classes give programmers control over the
scope of a class and thus its deactivation. Adding another class D

to the scope is simple: Define a partial class targeting D. It does
not have to contain any partial methods.

Until now, method dispatch is simple: Before invoking a
method C.foo, first check if a class in the class activation set has
a partial method for C.foo and use that method instead. If not,
use method C.foo. In order to support all requirements stated in
the previous section, the following sections will refine the method
dispatch mechanism, the data structure used for storing activated
classes, the definition of the scope of a class, and the rule for
activating classes.
Full Example

In the following examples, the embedded browser and the au-
dited viewer are used together, in order to illustrate deactiva-
tion of modifications (classes). Class Application (Fig. 6) is
a component that uses both Browser and Viewer. When in-
voking method run, there are no classes activated other than
Application. The browser application will not generate popup
windows, whereas the audited viewer application will, be-

Fig. 6 Definition of class Application. This class contains the entry point
in a scenario where both Browser and Viewer are used together.

Fig. 7 Variation of Application scenario. Browser overwrites popup and
uses Viewer internally.

Fig. 8 Example: Browser uses Viewer. Sets enclosed in curly braces indi-
cate the scope of a class (see Fig. 4). Sets enclosed in square brackets
indicate class activation sets after calling a method (specific to this
scenario). Arrow annotations indicate add/remove operations to the
class activation set.

cause Browser is deactivated when Browser.open returns to
Application.main. The reason for that is that the original class
activation set is restored when method open returns.

Consider a slightly different case now where Browser uses
Viewer internally, while both of them still use WebPage for ren-
dering purposes (Fig. 7). If Browser calls WebPage directly, no
popups will be shown. However, once Browser calls a method
in Viewer, class Browser is deactivated, because Viewer �
scope(Browser). Viewer still shows popup windows (Fig. 8).

It is unclear what the anticipated behavior of Viewer is in this
case: Should it show a popup window or not? That decision is left
to the programmers. They could apply Browser’s modifications
to Viewer by adding a (potentially empty) partial class targeting
Viewer to Browser.

3.2 Hierarchical Scoping
In this section, we extend Extension Classes to handle nested

classes. Consider a networking library that consists of a mod-
ule Networking where functionality such as sockets and DNS
name resolution is organized in a class nesting structure within
Networking (Fig. 9). Network endpoints are represented by in-
stances of class Address, which is nested inside Networking.
In this design, the networking library defines a method addi-
tion String.to address to make it easy to convert string rep-
resentations of DNS names and IP addresses to instances of

© 2017 Information Processing Society of Japan
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Fig. 9 Definition of module Networking. Behavioral variations and
additions defined for String should be visible in all nested
classes/modules of Networking.

Fig. 10 Example: Duplicate auxiliary methods. Method refinements for
String.to address are only active in their respective owner
classes and their nested classes.

Networking.Address (Fig. 10).
The open classes mechanism should ensure that the method

addition String.to address is visible in the entire network-
ing library, i.e., also inside the nested module Pinging. In
other words, the scope of Networking should contain all nested
classes of Networking. Moreover, in accordance with the
mechanism described in the previous section, its modifications
should not be visible in other applications. For example, con-
sider that an address book application contains a class Address
representing mail addresses along with a converter method
String.to address. The scope of each class should be con-
fined to itself and its nested classes, but not spill over to other
classes in different parts of the class nesting tree.
Scope of Modifications

We extend the notion of the scope of a class such that it also
includes the scope of all nested classes of the class. Furthermore,
we activate a class not only if one of its methods is executing, but
also if a method contained in one of its nested classes is execut-
ing. For example, when calling a method in Pinging, the classes
Pinging, Networking, and Object are activated. The mod-
ule Networking remains active even inside Pinging, because
Pinging ∈ scope(Networking). Consequently, Pinging uses
the to addressmethod addition defined as part of Networking.

Fig. 11 Example: AST library. Classes enclosed in parentheses in scope
sets account for inheritance scoping.

scope(Networking) = {Networking, String}
∪ scope(Networking.Addr.)

∪ scope(Pinging)

= {Networking, Networking.Addr.,
String, Pinging}

Moreover, according to the rule described in the previous sec-
tion, both classes AddressBook and Networking can define
class additions String.to address and work side by side, be-
cause modifications defined in AddressBook are not active in
Networking and modifications defined in Networking are not
active in AddressBook. The reason for that is that Networking �
scope(AddressBook) and AddressBook � scope(Networking).

3.3 Importing Extension Classes
In this section, we extend Extension Classes to allow for im-

porting. Consider a libary representing abstract syntax trees
(AST) that defines a tree-based data structure of nodes, along
with a number of operations (e.g., printing and various evalu-
ation strategies). Every operation provides a method per node
and optionally additional helper methods. In this design, every
operation is represented as a set of method additions for AST
node classes. Notice how the concerns evaluating and printing

are grouped in their own separate classes (Fig. 11, 12). In terms
of multi-dimensional separation of concerns, the AST node type
is the dominant decomposition dimension and the other two con-
cerns are encapsulated in an additional dimension for operations.

The open classes mechanism should allow programmers to
choose an evaluation strategy for their application, or possibly
combine multiple strategies. For example, Evaluating is the
default evaluation strategy, but programmers might want to use
Mod10Evaluating which is built on top of the default evalu-
ation strategy and takes the result modulo 10. In other words,
programmers should be able to import modifications into their
applications.
Modularizing Modifications with Mixins

According to the previously mentioned class activation rule, an
evalution strategy like Evaluating is activated only if a method
in Evaluating is called. In this example, all operations are de-
fined within Ruby modules which can be included in (multiple)
classes. Ruby modules are implemented as mixins [9] and ef-
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Fig. 12 Definition of module AST. Functionality for printing and evaluat-
ing trees is encapsulated in modules Printing and Evaluating,
which provide method additions for all AST node classes.

Fig. 13 Definition of class Application. To use the tree printer or evalua-
tor, the respective module has to be included.

fectively insert a copy of the module in the superclass hierarchy
upon inclusion (application). From a technical point of view, it
does not matter if a partial method was defined in a superclass or
was included from a module, which is why this example is listed
under inheritance scoping.

In the example in Fig. 13, Printing and Evaluating are
included in class Application, which activates both modules
(first Printing, then Evaluating) when running code from
Application (or a nested class or a subclass). Similarly to stan-
dard Ruby, the ordering of include statements is important if
two modules provide partial methods with the same name for the
same target class (see Layered Modifications).
Scope of Modifications

We extend the notion of the scope of a class such that it also in-
cludes all classes contained in the scope of its superclass *4. For
example, Application’s superclass is an application of mixin
Evaluating, whose scope includes all AST node classes (for
presentation purposes, the following formulas do not account for
Printing).

*4 Class Object is an exception. Since Object is the root of the class nest-
ing hierarchy and the inheritance hierarchy in Ruby, we do not include
scope(Object) in subclasses. In that case all classes would be included.

Fig. 14 Definition of Mod10Evaluating. This evaluator builds on top of
Evaluating by including it internally.

scope(Evaluating()) = {Evaluating(),
Node, IntNode, PlusNode}

scope(App.) = scope(Evaluating()) ∪ {Application}
= {Application, Evaluating(),
Node, IntNode, PlusNode}

The only class being activated is Application but not its su-
perclass. However, the method lookup does not only take into
account partial classes defined in an activated class L, but also
partial classes defined in its superclass L′, starting with L and
then L′ (see Section 4.4). The proceed expression *5 can be used
in a partial method of L to call a partial method defined in L′ or
one of its superclasses (similar to proceed in COP and super).

Consequently, when executing a method in Application,
modifications from Evaluating are active and remain active as
long as methods from Application or any AST node class are
executed.
Layered Modifications

We now want to modify our AST evaluator in such a way that
all results and partial results are calculated modulo 10. For that
reason, we define a set of class extensions Mod10Evaluating
that runs on top of Evaluating, i.e., whenever the mixin
Mod10Evaluating is applied, the mixin Evaluating is ap-
plied first, automatically (Fig. 14, Design Include). Techni-
cally, Mod10Evaluating is a module that first includes module
Evaluating before defining its own partial methods; standard
Ruby allows include statements inside modules, i.e., this is not
a new language feature.

From now on, we use a stack (instead of a set) as the data struc-
ture for maintaining activated classes. Consequently, we call that
data structure the class activation stack, in adherence to the layer
activation stack in context-oriented programming. A stack can
capture the ordering of class activations, such that proceed can
also be used to dispatch to a method in the next activated class
after an exhaustive search in the previous class (the class on top
of the next activated class in the class activation stack), similarly
to method dispatch in context-oriented programming.

*5 super is a better name but cannot be overloaded in Ruby.
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To continue with the previous example, note that a mixin
application of Mod10Evaluating contains partial methods for
IntNode.evaluate and PlusNode.evaluate. Since mixin
Evaluating is applied first (during mixin application of
Mod10Evaluating) and mixin Mod10Evaluating is applied
second, method execution will start with methods from the latter
one. The reason is that an application of Mod10Evaluating is on
the top of the class activation stack. The proceed expression in
the evaluate methods executes the evaluate implementations
defined in Evaluating.

In theory, Mod10Evaluating could also be defined as a sub-
class of Evaluating (Design Subclass), resulting in the same
behavior in this example (see Section 4.4). This is possible be-
cause proceed calls are used for both calling a super method
(i.e., method defined in a superclass) and calling the next par-
tial method encapsulated in a partial class on the class activation
stack. However, due to language restrictions in Ruby, modules
cannot be subclassed and classes cannot not be included, con-
fining such a design to activation by local rebinding (see Sec-
tion 4.5); i.e., behavioral variations cannot be shared with mixins.

4. Formal Concept

Extension Classes use a variant of context-oriented program-
ming [15] (COP) to support open classes. Every class can not
only contain variables, methods, and nested classes, but also par-

tial classes, i.e., every class with its partial classes can act as a
layer. Conceptually, a partial class is a special form of a nested
class which does not define a new class via subclassing but ex-
tends a specific existing target class. Every partial class can con-
tain a number of partial methods. Such a method can be a method
addition or a method refinement.

4.1 Rationale
Method additions and method refinements can be beneficial for

their defining classes, but they can break other classes or libraries
if they are global. Programmers typically treat external libraries
as black boxes [25], i.e., it is hard to anticipate the effect of mod-
ifications. Therefore, Extension Classes should allow program-
mers to define the scope of modifications, i.e., where they are
active. As a rule of thumb, we propose that a class L with its
modifications should be deactivated if the control flow is passed
to another class or library that the programmer of L regards as a
black box. Defining a partial class (container for modifications)
for a target class C within class L means that C is no longer re-
garded as a black box from L’s point of view.

Class nesting can be used as an orthogonal scoping mechanism
to indicate that modifications defined in a class should also be ac-
tive for all of its nested classes. If a class defines modifications
for C, then C is not being regarded as a black box from the per-
spective of any nested class (i.e., nested classes are aware of the
behavior and modifications of their enclosing classes).

4.2 Class Activation
Our Ruby implementation maintains a global stack of activated

classes (class activation stack), which is similar to a layer activa-
tion stack in context-oriented programming. Modifications de-

fined as part of a class L are taken into account during method
lookup only if L is on the class activation stack. The exact lookup
semantics are described in Section 4.4. Classes are activated and
deactivated before performing a method call (but after perform-
ing the method lookup) and when a method call returns according
to the following activation rule.

Activation Rule. Before dispatching to a method C.method,

make a copy S ′ of the current class activation stack and perform

the following operations.

( 1 ) For all active classes L on the class activation stack, if

C � scope(L), deactivate (remove) L.

( 2 ) Push C and its enclosing classes onto the layer (class) com-

position stack (start with outermost class).

Once the method call returned, restore the original class activa-

tion stack S ′.

Note that classes are never activated multiple times. If an al-
ready activated class is activated once more, it will be moved to
the top of the activation stack.

According to the activation rule, enclosing classes are acti-
vated but not superclasses. They are accounted for in the method
lookup (Section 4.4). It is debatable whether enclosing classes of
superclasses should be activated or not – our approach does not
activate them, because it makes the method lookup significantly
more complex and difficult to predict. It is also closer to Ruby
semantics, which does not take into account names defined in the
superclass’s enclosing class during constant lookup.

4.3 Scope of a Class
The scope of a class determines if a class remains activated

during a method call. It does not affect method activation. A
class remains active only as long as the control flow stays within
the class’s scope, as specified by the activation rule.

Definition. The scope of a class L is defined as the set containing

L, all target classes (and their reachable nested classes *6) cor-

responding to partial classes of L, all classes in the scope of all

nested classes of L *7, and all classes in the scope of the super-

class of L (if super(L) � Object).

scope(L) = {L} (reflexivity)

∪ {C |C ∈ nested∗(target(P)) ∧ P ∈ partials(L)}
(dyn. scoping / local rebinding (+ hierarch. scoping))

∪ {C |C ∈ scope(N) ∧ N ∈ nested(L)}
(hierarchical scoping)

∪ scope(superclass(L)) (inheritance scoping)

In this definition, reflexivity accounts for direct method calls.
Dynamic scoping/local rebinding accounts for indirect method
calls. In the absence of hierarchical scoping, the second line could
be simplified as follows.

*6 nested∗(C) = {C} ∪ {D |D ∈ nested∗(N)∧ N ∈ nested(C)}, i.e., C and all
nested classes of C and their nested classes etc.

*7 Therefore, nested∗(L) ⊆ scope(L).
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Fig. 15 Example: Effective superclass hierarchy. The class composition stack is 〈B’, A’〉.

∪ {target(P) | P ∈ partials(L)}
(dynamic scoping / local rebinding)

Dynamic scoping is not transitive: The scope of a class in-
cludes all target classes, but not the scope of all target classes.
This is an intentional decision as programmers writing modifi-
cations for a class C would otherwise have to be aware of all
modifications of C itself.

Note that modifications remain active even if the control flow
changes from one target class A to another one B. The rationale
is that programmers do not regard A and B as black boxes, since
they are changing both of their behavior. Consequently, program-
mers should also be aware of the interaction between A and B.

It is interesting to see that the activation rule cannot be repli-
cated using an inversed scope function without changing its se-
mantics. One reason for that is that the scope of every class is a
static property, whereas class activation is dynamic.

4.4 Method Lookup
Whenever a method is called on an object, our approach first

determines the receiver’s class C. Instead of using C’s superclass
hierarchy for the method lookup, its effective superclass hierar-

chy is used, which is a combination of C’s superclass hierarchy
and partial classes for C and its superclasses defined as part of
classes on the layer composition stack.
Effective Superclass Hierarchy

Extension Classes use the proceed expression for both call-
ing overridden methods defined higher in the superclass hierar-
chy and for calling partial methods defined in a class lower on the
class activation stack. From a method lookup point of view, the
actual superclass hierarchy and partial classes defined in classes
on the class activation stack are combined into an effective super-

class hierarchy. The rule for merging both hierarchies is simple:
For every class C in the actual superclass hierarchy, first look up
methods in partial classes of C on the layer composition stack,
then look up methods in C. Partial classes are conceptually sub-
classes which are applied dynamically depending on the current
class composition.
Definition. The effective superclass hierarchy of a class C is de-

fined as Effective(C), where S is the class composition stack (S [1]
is top of stack), #C is the number of superclasses of a class C,

superi(C) is the i-th superclass of class C, L[C] is the partial

class targeting C defined in L (if there is one), 〈〉 brackets denote

a (ordered) list, and summation is used for list concatenation.

LayerHier(L,C) =
#L∑

i=0

〈superi(L)[C]〉

Fig. 16 Example: Effective superclass hierarchy for IntNode.

ClassLayers(C) =
( |S |∑

i=1

LayerHier(S [i],C)
)
+ 〈C〉

Effective(C) =
#C∑

i=0

ClassLayers(superi(C))

LayerHier(L,C) is the list of partial classes for class C defined in

class L and its superclasses. ClassLayers(C) is the list of partial

classes of C (among all activated classes) and C itself.

Figure 15 illustrates the effective superclass hierarchy in an
example. Let us assume that the layer composition stack contains
classes A’ and B’ (which is on top). Classes A’, B, and B’ have
partial classes for C’ and class A has a partial class for its super-
class C. Consequently, the effective superclass hierarchy of C is
defined as follows.

LayerHier(B′,C′) = 〈B′.C′, B.C′〉
LayerHier(A′,C′) = 〈A′.C′〉

LayerHier(A,C) = 〈A.C〉
ClassLayers(C′) = 〈B′.C′, B.C′, A′.C′,C′〉
ClassLayers(C) = 〈A.C,C〉

Effective(C) = 〈B′.C′, B.C′, A′.C′,C′, A.C,C〉
As another example, Fig. 16 shows the effective superclass hi-
erarchy for class IntNode in the scenario from Fig. 13. If the
mixin Mod10Evaluating is applied instead of Evaluating,
that hierarchy is prepended with the corresponding partial class
for IntNode defined in module Mod10Evaluating (Design In-
clude). The resulting hierarchy is identical to the hierarchy in an
alternative Design Subclass where Mod10Evaluating is a sub-
class of Evaluating: In both designs, the effective superclass
hierarchy of IntNode is defined as follows.

Effective(IntNode) = ClassLayers(IntNode)

+ ClassLayers(Node)

+ ClassLayers(Object)

In Design Include, ClassLayers(IntNode) expands to three sum-
mation terms *8 and ultimately results in the superclass hierarchy
*8 For presentation reasons, we abbreviate Evaluating with Eval and
Printing with Print.
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described above.

ClassLayers(IntNode) = LayerHier(Mod10Ev, IntNode)

+ LayerHier(Eval, IntNode)

+ LayerHier(Print, IntNode)

+ 〈IntNode〉
= 〈Mod10Ev.IntNode, Eval.IntNode,
Print.IntNode, IntNode〉

In Design Subclass, LayerHier(Mod10Ev, IntNode) expands to
both Mod10Ev.IntNode and Eval.IntNode, and ultimately re-
sults in the same superclass hierarchy.

ClassLayers(IntNode) = LayerHier(Mod10Ev, IntNode)

+ LayerHier(Print, IntNode)

+ 〈IntNode〉
= 〈Mod10Ev.IntNode, Eval.IntNode,
Print.IntNode, IntNode〉

4.5 Class Activation
If modifications defined in class L should be active when ex-

ecuting a method defined in class A, one of the following two
designs can be applied.
Activation by Local Rebinding

In this design, programmers have to ensure that the control
flow reaches A via a sequence of methods defined in classes
L → C1 → . . .→ Cn → A with Ci ∈ scope(L) (for all i = 1 . . . n)
and A ∈ scope(L). The control flow may also originate from a
subclass of L or a nested class of L. Programmers can enforce that
a class Ci ∈ scope(L) by adding a partial class targeting Ci to L

(partial classes can be empty). For example, in Section 3.1, n = 1,
L = Browser, C1 = WebPage, and A = WebPage when calling
WebPage.popup via WebPage.open from Browser.open.
Mixin-based Activation

The previous design is hard to accomplish if modifications
should be shared among a variety of classes. The following de-
sign encapsulates modifications in mixins. A mixin is an abstract
subclass that can be applied to a number of superclasses. When
partial classes are defined inside a mixin M that is applied to a
superclass C, all of M’s modifications are active when the control
flow passes through a method in the context of the resulting class
C′ (i.e., the polymorphic receiver class is C′).

Consider Fig. 16 as an example. Evaluating() and
Printing() are mixin applications with partial classes for
IntNode. Class Application is defined as a subclass of the ap-
plication of both mixins. When a method is executed in the con-
text of Application, then that class is pushed onto the compo-
sition stack. The effective superclass hierarchy of class IntNode
contains the partial classes of both mixins.

5. Implementation

This section gives an overview of our prototypical Ruby im-
plementation of Extension Classes. Currently, performance is ex-
plicitly not a goal. Instead, our prototype is geared towards lan-
guage design experiments. It is implemented using metaprogram-

ming, reflection, and Ruby libraries providing access to low-level
interpreter functionality. Thus, our implementation supports only
MRI (Ruby’s reference implementation) at this time.
Defining Partial Methods

Partial methods must be defined inside partial classes with a
preceeding partial statement. partial is an instance method
defined on Module, similar to public, private, protected,
and tells our implementation that the following method defini-
tions are partial methods. Partial classes reuse the syntax of
open classes: In Ruby, any class can be opened even if that code
is nested inside another class, as long the fully qualified name
of the class is used *9. Newly defined methods are aliased and
replaced with a wrapper method that performs our customized
method lookup. To determine if a method is a partial method, our
implementation uses a Ruby library (implementing the Debug In-
spector API as a C extension) to see if the previous stack frame
belongs to a method whose class has the partial flag set.
Layer Activation and Method Dispatch

Wrapper methods are responsible for activating and deactivat-
ing classes, as well as for dispatching to the correct partial method
or base method by scanning the class composition stack. Our im-
plementation defines a new instance method proceed on class
Object which determines the next partial or base method to be
executed. This method uses our customized method lookup.

Method lookup must be performed in wrapper methods and in
the implementation of proceed. Our implementation attaches a
state object to every wrapper method invocation (stack frame).
proceed traverses the stack and searches for the closest state
object. That object stores information about the method lookup
and contains all information necessary to find the next method to
be invoked: the (runtime) class of the receiver, the current sub-
class of the receiver in the method lookup, the (runtime) class of
the current layer, the current subclass of the current layer in the
method lookup. Effectively, iterating from one state to the next
state traverses the effective superclass hierarchy. For the moment,
we assume that the class composition stack remains constant dur-
ing proceed calls, which is why we can easily determine the
next layer from the layer that is currently being processed in the
method lookup.
Performance Considerations

Our implementation effectively rewrites the method lookup in
Ruby. This is sufficient for experiments, but unacceptable for
production code because of performance issues. A more mature
implementation has to either be optimized to work well with a
JIT compiler to automatically remove this overhead or be im-
plemented in the interpreter and contain additional optimizations
such as class composition caching and (partial) method inlining.

6. Discussion

The motivation for supporting open classes in a programming
language is twofold: First, method additions can promote mod-
ular understandability through multi-dimensional separation of
concerns. Second, method additions and refinements provide an
easy way to implement behavioral variations and to add new op-

*9 For that reason, we have to write ::WebPage or Object::WebPage in-
stead of just WebPage in Section 3.1.
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erations to an existing class. At the same time, modifications
should be confined to a local scope (e.g., the scope of a certain
component) to avoid the problem of destructive modifications.
Multi-dimensional Separation of Concerns

Multi-dimensional separation of concerns is a concept for fac-
toring out otherwise scattered concerns in a family of classes,
which can result in improved comprehension, reduction of com-
plexitity and better code reuse, among other benefits [27]. Two
well-known techniques to achieve this are hypermodules [26] in
Hyper/J and inter-type declarations in AspectJ [16]. The basic
idea is to define a set of classes according to one “dominant” di-
mension and to “encapsulate concerns in dimensions other than
the dominant one” [27].

Method additions are another technique to achieve multi-
dimensional separation of concerns and discussed in this paper.
Consider, for example, an AST library where each node imple-
ments methods for the two concerns of evaluating and printing.
A class Evaluating can define method additions for all nodes,
consisting of only the evaluate methods and their helper meth-
ods. The concern of printing can be implemented in a similar
way. In Hyper/J or AspectJ terms, such a class defining method
additions is similar to a hyperslice or aspect, respectively.
New Operations and Behavioral Variations

Adding new methods to an existing class is difficult without
method additions. One approach is to create a subclass and per-
form changes in the subclass, but this approach fails if the pro-
grammer is not in control of instance creation. Another approach
for tree-based data structures is to use the Visitor design pat-
tern [12], but this approach results in more overhead and infras-
tructural complexity due to additonal classes and double dispatch.
A common approach in Ruby are open classes: New methods can
be added to an existing class at any time, but the method addition
can be destructive, i.e., it can overwrite existing methods *10.

It is sometimes necessary to change the behavior of an existing
method in order to extend the functionality of the method or to
simply replace it with one that behaves differently. This is nec-
essary, if the developer of that class did not anticipate the change
and provide a suitable interface. A common use case in Ruby is
bugfixing: If a method is buggy, a method refinement can replace
that method with a proper implementation. Open classes in Ruby
can be used to replace buggy methods (known as monkey patch-

ing), but the method refinement will be globally visible and can
be destructive. For example, a different component in the system
might depend on the buggy behavior and work around it by itself.
As illustrated by the examples in Section 3, Extension Classes
can handle all of these cases properly.

7. Summary and Future Work

We proposed Extension Classes, a hierarchical and layer-based
approach for organizing method additions and method refine-
ments in Ruby, as an alternative to open classes. This approach
is similar to context-oriented programming, but class (layer)
(de)activation is performed implicitly. A class in our system may
contain partial methods that extend (modify) other classes (thus

*10 Ruby refinements have other limitations and were discussed in Section 2.

the name Extension Classes) and can be compared to a classbox
or a method shell, but it is scoped hierarchically and does not re-
quire additional syntactical elements except for the definition of
partial classes. Scoping and locality of changes are important to
avoid destructive modifications. Our approach lets programmers
control the scope of modifications by specifying whether a class
should be regarded as a black box or not. We also showed how
our mechanism can be used for multi-dimensional separation of
concerns: Every concern is encapsulated in a mixin and can be
activated during class definition. The method lookup is guided
by the conceptual model of an effective superclass hierarchy.

Future work might focus on a more formal definition of the
semantics of the lookup mechanism and consider performance
optimizations. Our current implementation approach is based on
a reimplementation of the method lookup using metaprogram-
ming. Two particular problems are implicit class (de)activation,
which takes place not only when a method is executed but also
when the method returns, and proceed calls: Both are expensive
in our implementation, but performance is explicitly not a goal at
this time. Future versions might contain optimizations like partial
method inlining or layer (class) composition caching to achieve
better performance.

This work focuses on dynamically-typed programming lan-
guages, but the main ideas could be applied to statically-typed
languages if the type system is aware of method additions and
method refinements. One particular problem is that method addi-
tions can only be referred to in a type-safe way if the type system
can prove that at least one class providing a suitable method is
always available at runtime [2]. Future work might evaluate such
an approach in the context of Extension Classes.
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