
情報処理学会研究報告

IPSJ SIG Technical Report

ⓒ2017 Information Processing Society of Japan 1

Low-power Distributed NoSQL Database with Message Queue

Protocol on Embedded System

PAETHONG PORNPAT†1 MITARO NAMIKI†1

Abstract: The Internet will become the Internet of Things (IoT) that is able to have an immediate access to information of the

physical world and its objects. These technologies allow us to achieve simpler interaction between the physical world and the

virtual world by integrating a large number of real-world sensors into the Internet. This achievement provides connectivity for

everyone and everything that embed some intelligence in Internet-connected objects to communicate, exchanges information, make

decisions, invoke actions and provide amazing services. In past decade, many technologies; software, hardware and embedded

objects are increasing. For example, a credit-card sized computer, such as Raspberry Pi. It is one of the key platforms for IoT and

it is a really popular platform since it offers an entire Linux server within a small device that is very economical and provides

sufficient performance. Moreover, it also provides a GPIO for directly connecting to multiple sensors. In this research, we will

explain how to construct database server for embedded IoT middleware that has data distribution and low-power consumption by

using credit-card sized computer and message queue, which has acceptable performances and affordable price. It is a great platform

for interacting with many ubiquitous sensing devices of residential environment, such as homes, offices, or farms.

Keywords: Credit-card Sized Computer, Distributed Database, Embedded System, Internet of Things, Message Queue, MongoDB,

MQTT, NoSQL Database, Low-power, Raspberry Pi

1. Introduction

Objects and Information of our world can be easily accessed

nowadays resulting in the birth of the terminology, Internet of

Thing (IoT) [1]. With IoT concept, it does not only help facilitate

integration between the real-world devices and virtual world

information, but it also covers the infrastructure, such as software,

services, and hardware in order to support the physical world

objects networks. A plain integration between the physical world

and the virtual world can be delivered by IoT concept, integration

of vast number of real-world physical devices and the internet,

and this furnishes the connections between people and every

embedded intelligence in Internet-connected objects. Thus, it

ensures that communication, information exchange, decision

making, amazing services are delivered. IoT can be counted as

disruptive technology where a new ubiquitous computing and

communication era emerge.

Database is considered as one of the most vital components

in IoT, and its roles are gathering and reserving lots of data from

ubiquitous sensing devices. The presence of smart devices can

sense physical objects and interpret them into a flow of

information data. Similarly, the IoT devices can trigger actions,

maximize safety, enhance security, provide comfort, and furnish

energy-savings. Those mentioned devices will achieve

approximately 26 billion connected devices by 2020 [3].

Furthermore, it is crucial to progress artificial intelligence

algorithms, which will be centralized or propagated for

supporting people.

For example, the credit-card sized computer, such as

Raspberry Pi. It is one of the key platforms for IoT, and it is really

popular platform since it offers an entire Linux server within a

small device that is very economical and provides sufficient

performance. Moreover, it also provides a general-purpose

input/output (GPIO) for directly connecting to multiple sensors.

 †1 Tokyo University of Agriculture and Technology

2. Issues and Goals

In recent year, the Internet will become the Internet of Things

(IoT) that is able to have an immediately access to information

about the physical world and its objects. These technologies

allow us to achieve simpler interaction between the physical

world and the virtual world by integrating a large number of real-

world sensor into the Internet. This achievement provides

connectivity for everyone and everything to communicate,

exchanges information, make decisions, invoke actions and

provide amazing services.

In past decade, many technologies, gadgets, electronic

devices, hardware; temperature sensors, proximity sensors,

pressure sensors, water quality sensors, chemical/smoke/gas

sensors, level sensors, IR sensors, endless sensing capabilities,

credit-card sized computer, and embedded module (GPIO, WiFi

module) and software, such as NoSQL database for data analysis

and visualization were built to support Internet of Things (IoT).

A new protocol for communication between a hardware using

extremely less energy is motivation that makes people design IoT

system. Many IoT technologies are based on open source, but

some of them are integrated with cloud computing technology for

collecting, storing, and processing the massive amount of data.

The consequences of these are storages used to contain these data.

This research will illustrate how to structure database with

message queue distribution mechanism for IoT middleware that

has data distribution with message queue on credit-card sized

computer like Raspberry Pi. To clarify, Raspberry Pi has

acceptable performances and economical price. It is great

platform for interacting with many ubiquitous sensing devices of

residential environment, such as home, office, or farm.

Vol.2017-OS-139 No.7
2017/3/1

情報処理学会研究報告

IPSJ SIG Technical Report

ⓒ2017 Information Processing Society of Japan 2

3. System Architecture

The system contains three main components: master, data

nodes, and metadata. Master and data node work together as a

single system; the master node is able to connect to other data

nodes and vice versa. Metadata table as shown in Figure 1.

Figure 1: System Structure and Design

Every node, each node runs NoSQL database as a server,

works completely independent from each other to store and

process data from connected sensor hardware. Moreover, every

node can be a master node when clients request to connect to that

node, and other node will be a data node for providing any

information.

For data distribution, each node will receive data and store it

into its database. After that, it will broadcast an updated data

message to the other node by using message queue protocol. In

this case, it means all database operation including add, update,

delete events fires a broadcast updated data message to the other

node in the system. With this reason, each node has a metadata

table as a private data in its database, which contains information

about the node's data such as IP address, namespace, last active,

and etc.

3.1 Software Components

The components of software are contained with MongoDB

database and MQTT client for message queue communication.

They are running on operating systems such as Linux-base. The

MQTT client is embedded in MongoDB database engine as

shown in the Figure 2.

Figure 2: Software Architecture

3.1.1 MongoDB Database

The MongoDB Database is adopted to this system because it

is the one of the most popular databases for IoT in the world since

it has capability to store any kind of data, analyze it in real time,

and change the schema as the business go. With the document

model of MongoDB, it enables us to store and process data of any

structure: events, time series data, geospatial coordinates, text,

and binary data. We can adapt the structure of document’s schema

just by adding new fields making it simple to handle the rapidly

changing data generated by IoT applications. With multiple

options for scaling including range-based, hash-based and

location-aware sharding, MongoDB can support thousands of

nodes, petabytes of data, and hundreds of thousands of ops per

second without requiring us to build custom partitioning and

caching layers.

3.1.2 MQTT Broker (mosquitto)

Eclipse Mosquitto™ is an open source (EPL/EDL licensed)

message broker that implements the MQTT protocol versions 3.1

and 3.1.1. MQTT provides a lightweight method of carrying out

messaging using a publish/subscribe model. This makes it

suitable for “Internet of Things” messaging such as low power

sensors or mobile devices: phones, embedded computers, or

microcontrollers like the Arduino.

3.1.3 Embedded MQTT C/C++ Client Libraries

This is an embedded MQTT client library for C/C++. It was

written with Linux and Windows in mind. Also, it assumes the

existence of Posix or Windows libraries for networking (sockets),

threads and memory allocation. The embedded libraries are

intended to have these characteristics:

 Use very limited resources - pick and choose the needed

components

 Not reliant on any particular libraries for networking,

threading or memory management

 ANSI standard C for maximum portability, at the lowest

level

 Optional higher layers in C and/or C++

3.2 Hardware Components

It contains master node and data nodes, which work together

as a single system mentioned earlier. It also contains some

connected sensor.

3.2.1 Master Node and Data Node

This system is able to use any credit card-sized single-board

computers such as Rasberry Pi, Banana Pi, and etc. For a

hardware platform, it should be able to run a Linux-base

operating system or other operating systems, and it requires to

run a MongoDB database also.

Table 1: Minimum Requirements:

CPU 900MHz

Memory 1GB

Storage Over 2 GB

OS Linux-base Operating System (Raspbian)

GPIO Yes

Network Yes

3.2.2 Sensors

Regrading to this system connected to any sensor, a sensor is

one of the most important components. However, we can use any

sensors that are able to connect with credit card-sized computers.

Vol.2017-OS-139 No.7
2017/3/1

情報処理学会研究報告

IPSJ SIG Technical Report

ⓒ2017 Information Processing Society of Japan 3

Mostly, a general sensor fully support such as temperature

sensors, proximity sensors, pressure sensors, water quality

sensors, chemical/smoke/gas sensors, level sensors, IR sensors,

endless sensing and so on.

4. System Design

In recent years, data collection from many IoT sensors

becoming more challenging and important. These data can

benefit society in many ways. Thus, the efficiency and

performance of storing these data from hardware devices (such as

many types of sensor) are main purposes of this research. We are

promising a solution of low-power distributed database on credit-

card size computer as a node. All node is running NoSQL

database, and they are completely independent from each other.

Besides, it will communicate for data exchange by using message

queue.

4.1 Master Node

It acts as a proxy server to communicate with client to access

database. Firstly, the master node receives query command from

the client to process and search through what is the client requires.

Next, master node will take required data from client to search in

metadata table. Metadata table will show where is the required

data in data node. Thirdly, the master node will forward the query

command and input from client to each data node for processing.

Then, the result from all of data nodes will be sent back to master

node. Finally, the master node will combine all of data together

and respond back to the client as show in Figure 4(a).

4.2 Data Node

It is a device that collects and stores gathered data from

sensors. In the normal state, data node always collects data from

sensors periodically. However, when requested data command

come from master node, the data node will process client’s

command and respond result back to the master node as show in

Figure 4 (b).

Figure 4: Master Node and Data Node Flowchart Diagram

4.3 Metadata Table

As an individual working, all node will manage all collection

by itself. It means a real data is stored on this node. However, it

has to describe in metadata on each node about its data.

Metadata Structure:

{

 ns: "sensers.type",

 key: "temp"

 nodes: {

 "192.168.1:2017",

 "192.168.5:2017",

 "192.168.100:2018"

 },

 last_active: "2016-10-18T18:25:43.511Z",

 active_duration: "60"

}

Table 3: Metadata Structure Description

Name Description

ns (string) The string of collection and field

key (string) The key of data in data node.

nodes

(array of string) The list of server id, server

name, server IP address of data nodes.

last_active (date) The timestamp of last active of data

node.

active_duration (int) The duration number of active time in

second of data node. For example; 60 sec,

120 sec, etc.

Data Document Structure:

{

 _id: ObjectId(…),

 key: "temp",

 ...

}

Table 3: Data Document Structure Description

Name Description

_id (string) This an original id of MongoDB

key (string) The key of data in data node.

… (N/A) Optional data that we would like to

added in a document.

4.4 Distribution Mechanism

In short, distribution is a process of distributed data that will

be stored in multiple computers locating in the same physical

location; or may be dispersed over a network of interconnected

computers. We can distribute collections of data (e.g. in a

database) across multiple physical locations. A distributed

database can reside on organized network servers or

decentralized independent computers on the Internet, corporate

intranets, extranets, or other organization networks. Because they

store data across multiple computers, distributed databases may

improve performance at end-user worksites by allowing

Vol.2017-OS-139 No.7
2017/3/1

情報処理学会研究報告

IPSJ SIG Technical Report

ⓒ2017 Information Processing Society of Japan 4

transactions to be processed on many machines, instead of being

limited to one machine.

Regarding to our system architecture, all nodes collect data

from connected sensors. When each node work independently,

the data from each node are not synchronized. This problem can

be solved by using metadata synchronization instead of using

normal data distribution method of MongoDB sharding as shown

in Figure 3.

Figure 3: Metadata with MQTT Message Exchanging

In this metadata synchronization method, each data node is

required to have metadata table in its database. The metadata

table contains IP address, namespace, data key, last active for

reference what data are contained in other data nodes. When a

node has been added, updated, or deleted, this node will broadcast

its updated data to other nodes by using message queue protocol

(such as MQTT). This metadata synchronization method allows

data nodes to access other another data nodes with reduction in

nodes power consumption as shown in Figure 4 and 5.

Figure 4: Metadata Table in Database

Figure 5: Add Event Handler and MQTT in MongoDB Process

4.5 Scenario

To get better understanding, we will explain about our

distributed database by using message queue. In Figure 6.7, there

are N nodes that collect and store data from many types of sensors

in many places. All nodes are placed in different locations. A case

in point, the Node #1 is planted in bathroom, Node #2 is placed

in the garden, Node #3 is installed in the kitchen and other nodes

are installed in many different locations. Node #1, it is connected

to temperature sensors, passive infrared sensor (PIR sensor), and

motor sensor. The two temperature sensors are sending

temperature data every period of time. The 1st temperature sensor

send its temperature data every five minutes, and 2nd temperature

sensor send its temperature data every ten minutes. For Node #2,

it is connected to motor sensor, which sends back status of sensors,

quantity of speed and velocity. For Node #3, it is connected to

PIR sensor, which sends back its status. Next, waterflow sensor

is a device that use to measure to amount of water and send back

to the node. The last one is temperature sensor, which is the same

type of sensor in Node #1. For other nodes, they are connected to

other type of sensors and send the data back to their own node to

store it as show in Figure 6.

Figure 6: Mater Node and Data Nodes

When the master node get query command from client for

getting all temperature data, it will process the command and look

up at a metadata table for finding IP address of a node that

contains temperature data. After looking up from metadata table,

the master node will get targeted nodes that have temperature data

and request query command from the client as shown in Figure 7.

Figure 7: Mater Node Looking Metadata Table

Figure 8: Mater Node Connected to Target Data Node

When the master node knows the targeted IP address of data

nodes that have temperature data from the metadata table. The

master node connects to data nodes as a parallel process and

forward a query command from client to data nodes. Then, each

Vol.2017-OS-139 No.7
2017/3/1

情報処理学会研究報告

IPSJ SIG Technical Report

ⓒ2017 Information Processing Society of Japan 5

data node executes that query command for getting its

temperature data that is collected from connected sensors, and it

will return a result back to the master node. A master node will

wait until all results from each data node are completed. Finally,

the master node will consolidate and combine the temperature

result, and send back to the client as Figure 8.

5. Evaluation

We evaluate the proposed method. The MongoDB database

as individual running by itself on Raspberry Pi are evaluated and

compared with a MongoDB database by sharding function

database operation performance.

5.1 Experimental Study of Power Consumption

We will describe about our experimental study on MongoDB

on x86 machine and MongoDB on credit card-sized single-board

computers. In environment of experimental study, we used a

MongoDB version 2.6.0 on x86 machine of Inter Core i7 CPU

870 @ 2.93 GHz with 4 cores, 3.9 GB of memory, 128 GB of

HDD storage, and Ubuntu 14.04 LTS 64-bit of operating system,

And MongoDB version 2.4.10 for Raspberry Pi 2 Model B of

900MHz quad-core ARM Cortex-A7 CPU, 1 GB of memory,

16GB of SD card as local-base storage and Raspbian for

operating system.

5.1.1 Raspberry Pi 2 Power Consumption Environment

First of all, we would like to know about power consumption

of Raspberry Pi in normal state and other state. By using digital

multimeter tool, it measures the power consumption in

milliampere (mA), and we calculate it in watt (W) at fixed voltage

(5 voltages for Raspberry Pi) following this equation: (Watts =

Amps x Volts) and ApacheBench (ab), it is a very handy web

server benchmarking tool as shown table 4 below.

Table 4: Raspberry Pi 2 Power Consumption

Raspberry

Pi 2
State

Power

Consumption

Model B Power Off (plugged in) 20-30 mA (0.1W)

Model B
Idle

280-420 mA

(1.5W)

Model B ab -n 100 -c 10

(uncached)

900-1200 mA

(~4.5W)

Model B+ Power Off (plugged in) 20-30 mA (0.1W)

Model B+ Idle 230-240 mA (1W)

Model B+ ab -n 100 -c 10

(uncached)

480-800 mA

(~2.4W)

Table 4 shows the statistics of power consumption in some state

of Raspberry Pi 2. In power-off state, both of them are use 20-30

mA. In idle state, Model B has two times as much power

consumption as Model B+. Finally, in ab test state, Model B also

has higher power consumptions than Model B+.

5.1.2 MongoDB Non-sharding vs Sharding Performance

We evaluated the MongoDB database as an individual

running by itself on a Raspberry Pi and MongoDB database by

sharding function on four Raspberry Pis; one for router and

config server, and three shard servers for database performance

and energy usage by using the “Sysbench Benchmark”

(https://github.com/tmcallaghan/sysbench-mongodb) for

MongoDB and TokuMX. In the default configuration, the

benchmark creates sixteen collections, each with ten-million

documents for benchmarking a database performance; inserting

time, insert per second (IPS), online transaction time, and

transactions per second (TPS).

Table 5: Database Performance Comparison

Database

Performance

MongoDB

(Individual

Running)

MongoDB

Sharding on

4 x Raspberry Pi

Inserting Time 475 seconds 4,875 seconds

Insert per Second (IPS) 3,363.17 328.14

Online Transaction

Time

580 seconds 600 seconds

Transactions per

Second (TPS)

12.83 11.74

Table 5 shows a result of database performance of MongoDB

individual running on one Raspberry Pi compared with

MongoDB sharding on four Raspberry Pi. It was faster than

MongoDB sharding, and inserted per second (IPS) performance

was also higher than MongoDB sharding. For online transaction

and transactions per second (TPS) performances, they have

almost the same value.

In addition, when started running a benchmark program on

above, we also evaluated an energy usage on both of them by

using a digital multimeter and calculate it in joule (J) as shown in

table 3.

Table 6: Energy Usage Comparison

Energy MongoDB

(Individual

Running)

MongoDB

Sharding on

4 x Raspberry Pi

Idle mA 250 mA (1,000

mA)

1,000 mA

Avg. Execution mA 300 mA (1,200

mA)

1,250 mA

Inserting Energy (J)

142.5 kJ (570 kJ) 6,093.75 kJ

Transaction Energy (J) 174 kJ (700 kJ) 750 kJ

Table 6 shows results of energy usage of individual

MongoDB running on one Raspberry Pi compared with

MongoDB sharding on four Raspberry Pi. In an idle state, both

of them used 1,000 milliamps and MongoDB sharding use over

50 milliamps in average execution.

Vol.2017-OS-139 No.7
2017/3/1

情報処理学会研究報告

IPSJ SIG Technical Report

ⓒ2017 Information Processing Society of Japan 6

5.2 Inserting Performance

We evaluated inserting performance of MongoDB with our

implementation compared to MongoDB sharding by preparing

five number of nodes (one node, two nodes, three nodes, four

nodes, five nodes) to insert as one, five, ten, fifty, one-hundred,

five-hundred, and one-thousands of data records.

Figure 9: Inserting Performance on Our Design

Figure 10: Inserting Performance on Sharding

 In the Figure 9 and 10, the graph shows the result of

inserting performance compared between MongoDB with our

implementation and MongoDB sharding. The number of record

data in one record, five records, ten records and fifty records in

our implementation and MongoDB sharding show that the

amount of time consumption is similar in both methods. However,

when it came to large size of data as one-hundred records, five-

hundred records and one thousand, the time required for inserting

data between two method are different from each other. Our

implementation shows that in big data our performance is better

that MongoDB sharding. In other hand, the result[results]

shown[show] the small [number] of record data the amount of

time to insert data is similar to each other; however, in the large

record data the amount of time that use for insert the data is

different significantly.

5.3 Updating Performance

We evaluate a performance of data updating of MongoDB

with our implementation compared to MongoDB sharding by

preparing five number of nodes (one node, two nodes, three nodes,

four nodes, five nodes) that contain one thousand, five thousand,

ten thousand, fifty thousand, one-hundred thousand, five-hundred

thousand, one million of data records.

5.3.1 Data Updating Without Index Condition

In the Figure 11 and 12, the graphs below show the result

updating without indexing performance compared between

MongoDB with our implementation and MongoDB sharding. The

number of record data in one record, five records, ten records and

fifty records in our implementation and MongoDB sharding show

that the amount of time consuming is similar in both methods.

Figure 11: Updating without Indexing Performance on Our

Implementation

Figure 12: Updating without Indexing Performance on Sharding

The result was good because our implementation and

sharding are almost similar performance but it used less energy.

Only the one node of our implementation, it is a little slower than

sharding when it has to updating a data without index condition

in very large number of data record (more than 100,000 record of

data).

5.3.2 Data Updating Using Index Condition

In the Figure 13 and 14, the graph show the result updating

by using indexing performance comparing between MongoDB

with message queue by our implementation and MongoDB

sharding.

0

500

1,000

1,500

2,000

 1 5 10 50 100 500 1,000

L
eg

ac
y
 (

m
il

li
se

co
n
d
)

Number of Data Records

Inserting on Our Implementation

Node #1 Node #2 Node #3 Node #4 Node #5

0

500

1,000

1,500

2,000

 1 5 10 50 100 500 1,000

L
eg

ac
y
 (

m
il
li

se
co

n
d
)

Number of Data Records

Inserting on Sharding

Shard #1 Shard #3 Shard #4 Shard #5

0

500

1000

1500

2000

2500

3000

3500

 1,000 5,000 10,000 50,000 100,000 500,000 1,000,000

L
eg

ac
y
 (

m
il

li
se

co
n
d
)

Number of Data Records

Update without Index on Our Implementation

1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes

0

500

1000

1500

2000

2500

3000

3500

 1,000 5,000 10,000 50,000 100,000 500,000 1,000,000

L
eg

ac
y
 (

m
il
li

se
co

n
d
)

Number of Data Records

Updating without Index on Sharding

1 Shard 3 Shards 4 Shards 5 Shards

Vol.2017-OS-139 No.7
2017/3/1

情報処理学会研究報告

IPSJ SIG Technical Report

ⓒ2017 Information Processing Society of Japan 7

Figure 13: Updating with Indexing Performance on Our Implementation

Figure 14: Updating with Indexing Performance on Sharding

The result was very good because MongoDB with our

implementation was faster than sharding when the number of data

is not too high. However, it was similar performance with

sharding when the number of data is going up. Moreover, our

implementation still has low power compulsion than sharding.

5.4 Deleting Performance

We evaluated a performance of data deleting of MongoDB

with our implementation compared to MongoDB sharding by

preparing five number of nodes (one node, two nodes, three nodes,

four nodes, five nodes) that contain one thousand, five thousand,

ten thousand, fifty thousand, one-hundred thousand, five-hundred

thousand, one million of data records.

5.4.1 Data Deleting Without Index Condition

In the Figure 15 and 16, the graph show the number of

record data in one record, five records, ten records and fifty

records in our implementation and MongoDB sharding show that

the amount of time consuming is similar in both methods.

Figure 15: Deleting without Indexing Performance on Our

Implementation

Figure 16: Deleting without Indexing Performance on Sharding

In term of performance, the result was not good but not bad

because MongoDB with our implementation and sharding are

almost similar performance for deleting without index. However,

our implementation still has low power compulsion.

5.4.2 Data Deleting Using Index Condition

In the Figure 17 and 18, the graph above show the number of

record data in one record, five records, ten records and fifty

records in our implementation and MongoDB sharding show that

the amount of time consuming is similar in both methods.

Figure 17: Deleting with Indexing Performance on Our Implementation

0

2

4

6

8

10

12

14

16

 1,000 5,000 10,000 50,000 100,000 500,000 1,000,000

L
eg

ac
y
 (

m
il

li
se

co
n
d
)

Number of Data Records

Updating with Index on Our Implementation

1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes

0

2

4

6

8

10

12

14

16

 1,000 5,000 10,000 50,000 100,000 500,000 1,000,000

L
eg

ac
y
 (

m
il

li
se

co
n
d
)

Number of Data Records

Updating with Index on Our Implementation

1 Shard 3 Shards 4 Shards 5 Shards

0

500

1000

1500

2000

2500

3000

1,000 5,000 10,000 50,000 100,000 500,000 1,000,000

Deleting without Index on on Our Implementation

1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes

0

500

1000

1500

2000

2500

3000

1,000 5,000 10,000 50,000 100,000 500,000 1,000,000

L
eg

ac
y
 (

m
il

li
se

co
n
d
)

Number of Data Records

Deleting without Index on Sharding

1 Shard 3 Shards 4 Shards 5 Shards

0

2

4

6

8

10

12

14

16

1,000 5,000 10,000 50,000 100,000 500,000 1,000,000

L
eg

ac
y
 (

m
il
li

se
co

n
d
)

Number of Data Records

Deleting with Index on Our Implementation

1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes

Vol.2017-OS-139 No.7
2017/3/1

情報処理学会研究報告

IPSJ SIG Technical Report

ⓒ2017 Information Processing Society of Japan 8

Figure 18: Deleting with Indexing Performance on Sharding

In term of performance, the result was not good but not bad

either because MongoDB, with our implementation and sharding,

is almost similar, in terms of performance for deleting without

index. However, our implementation still has low power

consumption.

6. Discussion

As an evaluation result, we mainly use Raspberry Pi Model B

for each evaluation. Its power consumption rate is around

280~420 milliampere (mA) or ~1.4 watts (W) in idle state and

380~480 mA (~2W) in working state for database execution.

Then, we evaluated the database performance by comparing

between MongoDB non-sharding and sharding. The result was

very interesting because MongoDB with non-sharding used has

less power consumption than MongoDB with sharding. In my
opinion, all sharding node have to communicate with each node

all the time. In this point, it inspired us to run a MongoDB as

individual database that collect and store a data from the sensors

that are connected and using MQTT for asynchronous

communication for data distribution with low-power. A metadata

table was adopted into each database for data synchronization.

In inserting performance, the MongoDB with message queue

protocol by our implementation is similar to MongoDB with

sharding function when the number of data is small but it will be

different when the number of data is bigger; the MongoDB with

our implementing is better than MongoDB sharding because all

node of our implementation is run as individual node. In updating

and deleting performance, both of them has almost similar

performance. However, MongoDB with our implementing was

used has less power consumption as the pervious reason above.

7. Conclusion

To recapitulate my analysis, the construction database server

for IoT that has data distribution and low-power consumption by

using credit-card size computer like Raspberry Pi which have

acceptable performances and affordable price. It is perfect

platform for interacting with many ubiquitous sensing devices of

residential environment such as home, office, or farm.

Moreover, the MongoDB with message queue by our method

implementing compare to MongoDB sharding on credit-card size

computer. It shown MongoDB with our method implementing is

quick faster than MongoDB sharding. The benefit difference is

MongoDB with our method implementing used more less power

consumption because all node is work independently. It has good

inserting performance, updating performance, and deleting

performance. It achieved our goals for data distribution with low-

power on embedded system.

8. Future Work

As our implementation was focus on database as individual

running and used MQTT for metadata distribution. As this point,
we would like to make this system as no single-point of failure

and improve a performance of metadata synchronization.

8.1 No single-point of failure (SPOF)

Since, we are currently using MQTT Broker only for Master

Node, if the Master Node were to stopped working, all the other

nodes can still collect data from sensors but will not be able to

exchange any data.

8.2 Improve a performance of metadata

We are using various data of nodes for designing, for example,

AB. But if a parameter were to be added into the rules of Data

Node searching, it will hasten the process in which the data can

be recalled.

References

[1] Gubbi, Jayavardhana, et al. “Internet of Things (IoT): A

vision, architectural elements, and future directions.” Future

Generation Computer Systems, Vol.29 No.7, pp.1645-1660,

2014.

[2] Zarghami, Shirin. “Middleware for Internet of things.”,

Master Thesis of Faculty of Electrical Engineering,

Mathematics and Computer Science Software Engineering,

University of Twente, 2013.

[3] Kelly, Sean Dieter Tebje, Nagender Kumar Suryadevara,

and Subhas Chandra Mukhopadhyay. “Towards the

implementation of IoT for environmental condition

monitoring in homes.” IEEE Sensors Journal, Vol.13 No.10

pp.3846-3853, 2013.

[4] Anwaar, Waqas, and Munam Ali Shah. “Energy Efficient

Computing: A Comparison of Raspberry PI with Modern

Devices.” Energy Vol.4 No.2, 2015.

[5] Snyder, Robin M. “Power monitoring using the Raspberry

Pi.” 46th Annual Conference Proceedings of the 2014

ASCUE Summer Conference, pp.82, 2014.

[6] Aminu Baba, Murtala, “Design and Implementation of a

Home Automated System based on Arduino, Zigbee and

Android”, International Journal of Computer Applications,

Vol.97 No.9, pp.37-42, 2014.

[7] Parker, Zachary, Scott Poe, and Susan V. Vrbsky.

“Comparing NoSQL MongoDB to an SQL DB.”

Proceedings of the 51st ACM Southeast Conference. ACM,

2013.

0

2

4

6

8

10

12

14

16

1,000 5,000 10,000 50,000 100,000 500,000 1,000,000

L
eg

ac
y
 (

m
il

li
se

co
n
d
)

Number of Data Records

Deleting with Index on Sharding

1 Shard 3 Shards 4 Shards 5 Shards

Vol.2017-OS-139 No.7
2017/3/1

