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Experiments in Making VOCALOID Synthesis More
Human-like Using Deep Learning

MichaelWilson1,a) Pritish Chandna2 Ryunosuke Daido1,b) Yuji Hisaminato1,c)

Abstract: Deep learning has recently been used to improve the results of many speech-related tasks. We applied deep
learning to VOCALOID(TM), a singing voice synthesizer which uses concatenative synthesis, with the goal of making
the synthesized sound more human-like. Previous work in this area includes using Hidden Markov Models (HMMs) to
model the prosodic features of a specific singer or style, and using iterative parameter estimation to mimic target human
singing. We focused on methods which work directly on audio data and audio features which can be automatically
extracted, with no special markup or target singing required. We report the results of several experiments with various
models and parameterizations, and suggest avenues for further research.
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1. Introduction
Our ultimate aim is to make human-like singing synthesis, and

to quantify what that means. Although many singing synthe-
sis systems have been proposed [1] [3], we do not think that
there has been a system which produces satisfactory human-like
singing. Current mainstream singing synthesizers can be broadly
divided into unit concatenation systems such as VOCALOID [5]
and statistical parametric modeling systems such as Sinsy [9].
VOCALOID, by avoiding low-dimensional parameterization and
statistical processing, has an advantage in local naturalness of
sound. On the other hand, statistical methods have an advantage
in generating various sounds based on context information.

Recently, deep learning has produced significant improve-
ments in voice-related tasks. In singing voice synthesis, [8]
reported an improvement in naturalness by replacing Hidden
Markov Models (HMMs) with Deep Neural Networks (DNNs).
DNNs can be considered a type of statistical modeling. However,
due to the wide variety of DNN architectures and training meth-
ods the best deep learning method for synthesizing singing has
not been clarified. Furthermore, a wide variety of voice param-
eterizations are currently being considered. In [12], speech syn-
thesis using deep learning frameworks did not achieve the best
performance when using the traditional source-filter model. This
implies that the parameterization should not be assumed when us-
ing DNNs. For example, [13] forgoes the standard concept of pa-
rameterization and models waveforms directly to produce speech
synthesis.

We are using deep learning to explore singing. As discussed
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above, there is a lot of diversity in deep learning frameworks for
handling voice and singing synthesis. Therefore, we decided not
to start with conventional frameworks such as inputting score in-
formation and outputting singing voice audio. In this paper we re-
port the results of a series of early experiments which apply deep
learning to human singing and VOCALOID synthesis in order to
find compact representations, compare them, and adapt between
them.

The rest of the paper is organized as follows. Section 2 de-
scribes general methods, data, and tools. Section 3 describes five
different experiments. Section 4 provides a brief discussion of
the results and suggestions for future work. Section 5 contains
concluding remarks and acknowledgments.

2. Methods
This study takes the approach of obtaining or generating au-

dio data, performing transforms or feature extraction, then using
existing GPU-accelerated deep learning frameworks to build neu-
ral networks which operate on the transformed data or extracted
features. When possible and relevant, objective measures of per-
formance such as validation accuracy are computed. Formal sub-
jective listening tests are not performed in this study. In contrast
to other work based on HMMs [11] or iterative parameter estima-
tion [7] which modify synthesizer controls, this work attempts to
operate directly on audio data and features extracted from audio
data.

2.1 Audio Data
Natural human singing audio data (“Human Data”) was gath-

ered from the following sources:
• Recordings provided by Yamaha Corporation, consisting of

3.42 hours of amateur and professional Japanese singing in
168 files and 2.53 hours of professional English singing in
70 files
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• Recordings provided by the Universitat Pompeu Fabra Mu-
sic Technology Group, consisting of 1.47 hours of English
singing in 59 files and 0.24 hours of Spanish singing in 8
files

• MIR-1K dataset*1, consisting of 2.15 hours of Chinese ama-
teur singing in 110 files

The recordings include both male and female singers and were
recorded in a variety of acoustic environments. The recordings
were manually preprocessed to remove periods of silence over
two seconds in length, and had an equal loudness filter applied.

VOCALOID synthesized singing data (“VOCALOID Data”)
was generated using the VOCALODUCER [6] system, which
takes simple text lyrics as input. The Tatoeba text corpus*2 was
used to generate lyrics for each song. The lyrics for each song
were composed of four sentences from the corpus in the target
language, using up to 64 characters from each sentence. 797
English songs were synthesized with a single male VOCALOID
voice, resulting in 4.5 hours of data. 779 Japanese songs were
synthesized, split roughly evenly between four VOCALOID male
voices and four female voices, resulting in 4.4 hours of data. The
songs were evenly split among five different VOCALODUCER
styles.

A parallel corpus of human singing and VOCALOID singing
(“Parallel Data”) was also prepared. The human part of the corpus
consists of the original recordings that were used to create one fe-
male and one male English VOCALOID voice. Synthesizer con-
trol parameters which matched the pitch, phonemes, and overall
length of the original recordings were automatically generated.
These control parameters were run through the VOCALOID syn-
thesis engine to generate corresponding VOCALOID resynthesis
samples.

All audio data was converted to 16-bit monaural at 44.1 kHz
sampling rate if not already in that format.

2.2 Features
Magnitude and phase spectra were calculated from the audio

data using 1024-sample FFTs, Hanning window, and 256 sample
hop size (75% overlap). The magnitude spectra were normalized
by the hop size. Fundamental frequency, loudness, and MFCCs
were extracted from each of the 1024-sample frames using Es-
sentia *3. Finally, the frames were combined into batches of 30
or 513 consecutive frames to capture more time context (174.15
ms or 2977.95 ms, respectively), with 50% overlap between con-
secutive batches. These decisions were made based on [2]. This
representation produces two-dimensional arrays when the mag-
nitude spectrum is used, allowing convolution in both time and
frequency.

2.3 Execution environment
Experiments were conducted on a single computer with an In-

tel Core i7-6800K CPU, 64 GB of RAM, and one MSI Geforce
GTX TITAN X GPU. Major software and versions used were as
follows:

*1 https://sites.google.com/site/unvoicedsoundseparation/mir-1k
*2 http://tatoeba.org/eng/downloads
*3 http://essentia.upf.edu/

Table 1 Autoencoder models

Model 1 Model 2 Model 3 Model 4
Parameters 15,420 307,830 2,109,969 22,890

Layers
Freq. Conv

Deconv.
Freq. Conv

Deconv. LSTM

Freq. Conv
LSTM

Deconv.

Fig. 1 Magnitude spectrum of one Human Data sample

• Ubuntu 10.04.5 LTS
• Nvidia driver version 367.57
• Cuda 8.0.44
• Python 2.7.6
• Theano 0.8.2
• Lasagne 0.2.dev1
• Essentia 2.1-beta3
• Numpy 1.11.1

3. Experiments and Results
This section describes five different experiments which were

conducted.

3.1 Experiment 1: Autoencoder
The first experiment attempted to reduce the human singing

voice to a minimal representation. An autoencoder with bottle-
neck [10] was used on the Human Data to attempt to extract rele-
vant features. The hypothesis was that if the bottleneck could be
made very small while maintaining high reconstruction quality
then the representation in the bottleneck should contain a com-
pact yet sufficient representation of the singing voice.

Several models were explored as shown in Table 1. The mag-
nitude spectrum was used as the input feature and the Kullback-
Leibler divergence was used as the cost function during training.
Informal listening evaluation implies that LSTMs gave the best
quality, but observing their state does not give much insight into
what is learned by the network. Convolutional filters can be di-
rectly observed and applied individually to the input data after
training is complete. One of the convolutional filters appeared
to be influenced by the fundamental frequency of the voice as
shown in Fig. 1 and Fig. 2, but this assumption was not verified
or pursued further.

3.2 Experiment 2: Classifier
The second experiment explored binary classification between

VOCALOID and human singing using several network architec-
tures. The hypothesis was that if a good classifier could be con-
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Fig. 2 One autoencoder filter applied to sample from Fig. 1

Table 2 Classification results for magnitude spectrum (1/2)

Model A Model B Model C
Input 30,513 30,513 30,513

Conv
50 filters

Shape=(1,513)
50 filters

Shape=(10,513)
50 filters

Shape=(25,513)

FC1
512 units

Dropout=50%
1024 units

Dropout=50%
256 units

Dropout=50%

FC2
256 units

Dropout=50%
512 units

Dropout=50% N/A

Softmax
2 units

Dropout=50%
2 units

Dropout=50%
2 units

Dropout=50%
Valid 63.63% 75.83% 79.01%
Test 65.21% 75.07% 77.72%

Table 3 Classification results for magnitude spectrum (2/2)

Model D Model E Model F
Input 30,513 30,513 30,513

Conv
50 filters

Shape=(25,513)
50 filters

Shape=(15,513)
50 filters

Shape=(15,513)

FC1
512 units

Dropout=50%
512 units

Dropout=50%
1024 units

Dropout=50%

FC2
256 units

Dropout=50%
256 units

Dropout=50%
512 units

Dropout=50%

Softmax
2 units

Dropout=50%
2 units

Dropout=50%
2 units

Dropout=50%
Valid 91.13% 93.85% 94.09%
Test 89.92% 91.64% 93.63%

structed then it may give insight into the differences between
VOCALOID and human singing, and may also be useful as a
component in a system to make VOCALOID singing more like
human singing.

This experiment used the VOCALOID Data dataset and, since
this dataset includes only English and Japanese singing, the En-
glish and Japanese samples from the Human Data dataset. Us-
ing the magnitude spectrum, accuracy over 90% was achieved
as shown in Table 2 and Table 3. Classification accuracy of over
85% was achieved even when training was only done on extracted
pitch and loudness information, as shown in Table 4.

3.3 Experiment 3: Generative Adversarial Network
The third experiment explored using Generative Adversarial

Networks [4], which combine a generative network with a clas-
sifier. The goal of this experiment was to build a network which
would modify singing voice audio synthesized by VOCALOID
in order to make it more human-like.

In this experiment the trained autoencoder and classifier from
the previous experiments were used as a starting point for the
generative network and classifier respectively. The same datasets
as in Experiment 2 were used. Using the magnitude spectrum

Table 4 Classification results for pitch and loudness contours

Model X Model Y Model Z
Input 513,2 513,2 513,2

Conv1
32 filters

Shape=(15,1)

32 filters
Shape=(15,1)

ReLU

32 filters
Shape=(15,1)

ReLU

Conv2
32 filters

Shape=(15,1)

32 filters
Shape=(15,1)

ReLU N/A

FC1
1024 units

Dropout=50%
1024 units

Dropout=50%
1024 units

Dropout=50%

FC2
512 units

Dropout=50%
512 units

Dropout=50% N/A

Softmax
2 units

Dropout=50%
2 units

Dropout=50%
2 units

Dropout=50%
Valid 80.45% 86.05% 87.44%
Test 79.98% 88.04% 87.57%

as the input feature results in changes to the timbre but does not
induce large perceptual changes in the sound. Using pitch and
loudness as input features results in more noticeable changes but
does not necessarily result in a human-like output sound accord-
ing to informal listening evaluations. Fixing the classifier, that is,
allowing only the autoencoder to change, results in a strong hum-
ming noise at around 3,600 Hz when the magnitude spectrum is
used as the input feature. This implies that the classifier may use
information in this frequency range to distinguish between human
and VOCALOID singing voice sounds.

3.4 Experiment 4: Synthesizing voice from only pitch data
The fourth experiment attempted to synthesize singing from

very limited input data. This experiment used the Human Data
dataset. It started with an autoencoder which was trained on mag-
nitude spectrum data. Then an LSTM was applied to learn an
encoding between pitch curve data and the hidden representation
in the autoencoder. Once this encoding was learned, it was used
to produce synthesis of a full spectrogram using only pitch curve
information. According to informal listening evaluations the re-
sulting sound was very noisy and not very human-like. However,
some vocal sonorant and fricative sounds were perceivable.

3.5 Experiment 5: Parallel dataset
Finally, in the fifth experiment a simple neural network was

trained on the Parallel Data dataset to learn a mapping between
VOCALOID and a human voice. Applying this network to a
song which was not in the training set resulted in subtle changes
in loudness and timbre. Informal listening evaluations suggested
that this did not result in a more human-like sound, and the idea
was not pursued further.

4. Discussion
The five experiments conducted imply that some methods can

be used to produce only timbre changes, only pitch changes, only
subtle changes, or large changes. Each of the experiments sug-
gests avenues for further study. In particular:
• Experiment 1 suggests that convolutional filters may be able

to learn features such as fundamental frequency.
• Experiment 2, by virtue of the high classification accuracy,

suggests that there are detectable differences between the
human voice and VOCALOID synthesis used in the experi-
ment.

c© 2017 Information Processing Society of Japan 3

Vol.2017-MUS-114 No.4
2017/2/27



IPSJ SIG Technical Report

However, because of the lack of formal evaluation and follow-up
experiments at this early stage it is not possible to draw any strong
conclusions yet. Extensions of each experiment could include:
• Extend experiment 1 by searching for network architectures

which produce convolutional filters that map to commonly-
used audio features.

• Extend experiment 2 by quantifying the difference between
the human voice and VOCALOID synthesis using the clas-
sifier as a guide.

• Extend experiment 3 by experimenting with different combi-
nations of input features, network architectures, and training
methods and conduct formal subjective evaluations.

• Extend experiment 4 by conducting formal listening tests on
singing voice samples generated by neural nets using vari-
ous combinations of input features, in order to quantify what
level of quality can be obtained with a given set of input fea-
tures.

• Extend experiment 5 by conducting formal listening tests on
the parallel corpus results to quantify how the changes affect
the perception of the sound.

5. Conclusions
We have presented the results of applying deep learning tech-

niques in several different ways to the magnitude spectrum, pitch,
and loudness curves of human and synthesized singing voice au-
dio. Although we did not quantify what natural singing is, several
possible follow-up experiments were suggested. Future work will
incorporate these experimental results while investigating new
methods for making human-like singing.
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