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Abstract: This paper proposes a novel data compression method for artificial vision systems and its low-energy im-
plementation in order to reduce energy consumption in a wireless communication subsystem. The artificial vision
systems are one of the methods for realizing visual prosthesis by controlling stimulus to visual nerves, and they consist
of an inner stimulating unit and an outer image processing unit. The outer unit transmits information regarding stimu-
lation to the inner unit via wireless communication, which occupies a large portion of the whole energy consumption.
Reducing traffic in wireless communication is important to prevent damage caused by extra heat dissipation of the
inner unit, which leads to excess energy consumption. The proposed compression method marks a higher compression
ratio than the conventional compression methods by taking advantage of the analyses of stimuli position data, which is
dominant in traffic. The proposed method is implemented as an application-domain specific instruction-set processor
to achieve both configurability of stimulation control and compression efficiency. The evaluation results show that the
proposed implementation reduces energy consumption by about 87% and 62% in the compression and decompression
process, respectively. These results indicate that the proposed method can expect to reduce energy consumption in a
wireless communication receiver dramatically.

Keywords: application-domain specific instruction-set processor, lossless data compression, exponential Golomb
coding, entropy coding, cortical visual prosthesis, artificial vision system, low-energy consumption, implantable em-
bedded system

1. Introduction

About 285 million people suffer from visual disorder in the
world and the number of visually handicapped people increases
because of glaucoma, age-related macular degeneration, or dia-
betic retinopathy [1]. For one of method for visual prosthesis,
artificial vision systems have been researched. The artificial vi-
sion systems provide their user with pseudo vision, by means of
a phenomenon that stimulations to the visual nerves evoke bright
spots in vision (see Ref. [2]). As implantable embedded systems,
medical demands for artificial vision systems are safety for users,
long-time use, and minimizing the gap between vision and other
sensory nerves.

Artificial vision systems are roughly classified into two
types [3]: Non-retinal approaches and retinal approaches (e.g.,
Refs. [4], [5], [6], [7], [8]). At non-retinal approaches, cortical
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prosthesis and optic nerve prosthesis [9] have been researched. In
cortical prosthesis, researches by Dobelle (e.g., Refs. [10], [11]),
who was one of the pioneers, played a part in the dawn of portable
artificial vision systems. Although there are difficulties in the
mapping of stimulation to the visual cortex and occurring pseudo
vision [12], the advantage of cortical prosthesis is that the visual
cortex has a larger area to stimulate than the other visual nerves,
which allows the use of larger size electrodes.

Artificial vision systems consist of four components: A cam-
era device, an image-processing circuit, a stimulation control cir-
cuit, and stimuli electrodes, and they are often divided into two
parts: The camera device and image-processing circuit are out-
side of the body, and the others are inside of the body. For the
safety of artificial vision systems, in particular, it is important
to decrease heat dissipation caused by the energy consumption
of the inner components because excessive heat dissipation may
damage organs touching the components. In general, systems in-
clude a wireless communication component for the prevention of
infection, and, according to Ref. [13], a wireless communication
subsystem occupies over 50% of the whole energy consumption.
To reduce the energy consumption in wireless communication,
one solution is to lower the data transmission rate of the wire-
less communication. However, this solution may increase delay
in pseudo vision, which cannot satisfy the constraint of real-time
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Fig. 1 Organization of the artificial vision system.

operation. Due to improvements of miniaturization of electrodes
(e.g., Refs. [14], [15], [16], [17], [18]), the number of electrodes
has increased: 100 electrodes in 1991 [14] to 320 electrodes in
2015 [16]. Whereas this improvement can raise the resolution of
stimulation and pseudo vision, they also increase the amount of
stimulation data to transfer.

Another solution is to reduce the amount of data transmis-
sion by applying a data compression method. In the research
field of bio-information such as electrocardiogram and neuro-
recording, data compression has been researched to cope with
the increase of recoded data resolution and the number of elec-
trodes [19], [20], [21]. For the compression of stimulation data
for artificial vision systems, some different points are focused:
lossless and real-time operation. To examine the relationship be-
tween the configuration of stimulation and generated pseudo vi-
sion, the data compression method should be lossless. To mini-
mize the gap of the vision, the data compression method has to
be not only effective but also of low computational complexity.

This paper proposes a lossless data compression method
for stimuli position data used in artificial vision systems and
its low energy implementation as application-domain specific
instruction-set processor (ASIP). For the configurability of the
systems, the implementation includes a processor as an inner
stimulation controller. Paper [22] has proposed an ASIP imple-
mentation for stimuli position data compression previously. The
novelty of this paper is that the ASIP this paper proposes achieves
less energy consumption both in the compression and in the de-
compression process compared with Ref. [22]. This paper also
evaluates the amount of reduction of energy consumption in wire-
less communication by the proposed implementation.

The remainder of this paper is organized as follows. Section 2
explains our targeted artificial vision systems. Section 3 explains
the analysis results of targeted data for the compression, stimuli
position data, and proposes a low-computational and high effi-
cient data compression method. Section 4 introduces the imple-
mentation of the proposed compression method, and Section 5
shows its evaluation results. Finally, Section 6 concludes this pa-
per.

2. Targeted Artificial Vision Systems

This section explains an overview of our targeted artificial vi-
sion system and its engineering requirements for stimulation con-
troller. Figure 1 illustrates our developing artificial vision sys-
tem. It is divided into two components: outer unit and inner unit.
The outer unit is attached to the top of the skull, and the inner
unit is attached on the visual cortex. The outer unit is composed
of the silicon retina system with image-processing circuit (see
Refs. [23], [24], [25], [26]) and a wireless communication unit to
exchange data with the inner unit. The silicon retina system in
Ref. [26] can perform high-speed image processing, which mim-
ics the human retina with analog CMOS integrated circuits, and
it generates stimulation data, which consists of stimuli strength,
stimuli timing, and stimuli position. Figure 1 (a) shows an exam-
ple of an input image from a silicon retina system, and Fig. 1 (b)
depicts intermediate data, which is the halfway of image pro-
cessing: the edge enhancement and thresholding, and Fig. 1 (c)
depicts a part of the stimulation data from the silicon retina sys-
tem. The inner unit is composed of arrays of stimuli electrodes,
a stimulation controller, and a wireless communication unit. The
stimulation controller is divided into two parts: an analog circuit
block and a digital circuit block. The analog circuit block deals
with stimulations by controlling electrodes. The digital circuit
block consists of a processor core, an interface to the analog cir-
cuit block, an external memory, and peripherals. When the digital
circuit block receives the stimulation data via the wireless com-
munication unit, it transfers data to buffer memory in the analog
circuit block. Then, the analog block stimulates the visual cor-
tex with the stimuli electrodes based on the data in the buffer
memory. Figure 1 (d) illustrates the user’s visual recognition by
stimulation based on Fig. 1 (c).

Considering the medical demands for the artificial vision sys-
tems mentioned in Section 1, engineering requirements for the
artificial vision systems are small size, low energy consumption,
and real-time operation. To reduce energy consumption in the
stimulation controller, it is effective to reduce data transaction in
wireless communication. In general, power dissipation and exe-
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Fig. 2 Analysis results of appearance frequency of the run length of white and black dots in raw stimuli
position data and difference data (a) Appearance frequency of the run length in raw stimuli position
data, (b) Variance of appearance frequency of the run length of black dots in raw stimuli position
data, (c) Variance of appearance frequency of the run length of white dots in raw stimuli position
data.

cution time of the processing with a processor is larger than with
an application specific integrated circuit (ASIC), so that the extra
processing has to keep to a minimum from the aspect of real-time
processing. On the other hand, the inner unit should avoid in-
cluding ASIC for compression in terms of miniaturization. To
satisfy these requirements, the compression process performed in
the stimulation controller should be effective and low computa-
tional.

3. Data Compression Method

This section explains the statistical analysis of the stimuli po-
sition data and the proposed lossless data compression method.
This paper focuses on the stimuli position data because stimuli
position data occupies a large part of the traffic in wireless com-
munication. Figure 1 (c) shows an example of an image repre-
senting stimulus position data as a binary bitmap. The stimulus
data of the preliminary system is composed of 32 × 32, 1,024 bit
in all. Each pixel is related to the coordinate of electrodes, and the
value of each pixel represents whether the electrode at the same
coordinate provides a stimulus or not. If the data is ‘1’, repre-
sented as a white dot in Fig. 1 (c), the electrode stimulates. If the
data is ‘0’, represented as a black dot in Fig. 1 (c), the electrode
does not.

3.1 Analysis of Stimuli Position Data
In Fig. 1 (c), black dots occupy much space and most of all

these dots are successive in long length seen in the horizontal di-
rection. On the other hand, some white dots are successive in
short length and isolated. Therefore, we use the run length en-
coding to express stimulus data and we will analyze the distribu-
tion of run-length data to achieve the encoding method that marks
higher compression efficiency. The data set used in this analysis
consists of objects in the input image: walking people, running
cars, bicycles, and motor bikes on the road. Forty-five samples of
scenes are captured in various situations such as on narrow roads,
in the cross of arterial roads, and at the station.

Figure 2 shows the appearance frequency of the run length
of white dots and black dots in the stimuli position data. The
x-axes of Fig. 2 (a), (b), and (c) represent the value of the run
length, and the y-axes represent the appearance frequency of the
run length. In Fig. 2 (a), ‘raw-all’ indicates the average of the
whole run length from all data sets and ‘raw-white’ and ‘raw-

Fig. 3 Examples of stimuli position data and difference data (a) Stimuli po-
sition data, (b) Previous frame of Fig. 3 (a), and (c) Difference data
between Fig. 3 (a) and Fig. 3 (b).

black’ indicates the run length of white dots and black dots, re-
spectively. Figure 2 (b) and (c) shows the variance of appearance
frequency of the run length of each dot. In these figures, ‘-max’
and ‘-min’ indicate the data set that scores highest and lowest fre-
quencies of run length equaled to one, respectively, and ‘-ave’
indicates the average of appearance frequency from all data sets.
Figure 2 shows that the probability distribution of 0’s run-length
data is different from that of 1’s run-length data. In other words,
1’s run length is shorter than 0’s run length. A run length whose
length is one occupies about 30% in 1’s run length, while it oc-
cupies about 22% in 0’s run length. Furthermore, a run length
whose length is less than or equal to eight occupy about 90% in
1’s run length, but on the contrary, they occupy about 65% in 0’s
run length.

3.2 Difference Data of Successive Stimuli Position Data
Figure 3 (a) and (b) are continuous frames of stimuli position

data. Figure 3 (c) shows the difference between Fig. 3 (a) and (b)
by calculating exclusive or. In Fig. 3 (c), white dots represent the
change of the stimulus status from the previous frame as ‘1’ in
data, and black dots represent the same status in the previous
frame as ‘0’ in data. There are more successive black dots and
less isolated white dots in Fig. 3 (c) than in Fig. 3 (a). In the rest
of this paper, the stimuli position data is called raw data in dis-
tinction from difference data.

Figure 4 shows the appearance frequency of the run length of
the changed point and unchanged point of the difference data. As
in Fig. 2, the x-axes of Fig. 4 (a), (b), and (c) represent the value
of run length and the y-axes of these figures represent the appear-
ance frequency of the run length in the sample. In Fig. 4 (a), ‘diff-
all’ indicates the average of the whole run length from all data
sets and ‘diff-white’ and ‘diff-black’ indicate the run length of
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Fig. 4 Analysis results of appearance frequency of the run length of white and black dots in raw stimuli
position data and difference data (a) appearance frequency of the run length in difference position
data, (b) Variance of appearance frequency of the run length of black dots in difference data, and
(c) Variance of appearance frequency of the run length of white dots in difference data.

white dots and black dots, respectively. Figure 4 (b) and (c) show
the variance of the appearance frequency of the run length of each
dot. In these figures, ‘-max’ and ‘-min’ indicate the data set that
scores the highest and lowest frequencies of run length equaled to
one, respectively, and ‘-ave’ indicates the average of appearance
frequency from difference data generated from all data sets. Fig-
ure 4 (a) shows that the frequency of the occurrence of 1’s runs is
extremely biased to be short in the difference data. For the length
of 1’s run, the appearance frequency of run whose length is one
occupies about 64%, which is nearly twice as much as that in the
raw data. For the length of 0’s run, the frequency of occurrence
of run whose length is less or equal to eight occupies about 40%,
which is very different from that in the raw data, about 65%. In
the difference data, the frequency of occurrence of 0’s run whose
length is more than 32 occupies about 20%, while they occupy
about 3% in the raw data.

3.3 Proposed Data Compression Method
From the above analysis in Section 3.2, there is a different dis-

tribution between the length of 0’s run and the length of 1’s run
in the raw data, and the difference data makes more biased that
distribution. Then, a data compression method to take advantage
of these characteristics is proposed, which is called α-exponential
Golomb coding (α-EGC) in this paper.

The α-EGC compresses the stimuli position data in the follow-
ing steps:
( 1 ) It generates the difference data from the two successive

frames of stimuli position data,
( 2 ) counts the run of successive bits in the difference data with

raster scanning, and
( 3 ) encodes the length of runs into a bit stream

( a ) with the offset using the exponential Golomb coding
(EGC) [27] if the run consists of unchanged bits, and

( b ) with the offset using the Elias alpha coding [28] if the
run consists of changed bits.

The α-EGC encodes the length of runs with different encod-
ing methods. For the length of 1’s runs, the proposed method
uses the Elias α coding, also called unary coding. Algorithm 1
shows how the Elias α coding encodes an input integer value.
Figure 4 (a) show that 94% of whole 1’s run in the difference
data is less or equal to four. Shown in Algorithm 1, it is suitable
to encode short values because the Elias α coding can encode

Input: inVal

Output: codeword

1 codeword := ‘0’*(inVal - 1) & ‘1’

Algorithm 1: Elias alpha coding

Input: inVal, k

Output: codeword

1 tmp := inVal + 2k;

2 dLen := the number of binary digits without leading zeros of (tmp - 1);

3 codeword := ‘1’*(dLen - k) & ‘0’ & inVal[dLen .. 0];

Algorithm 2: Exponential Golomb coding

the numeric value to the code word, whose length is equal to the
value encoded. Therefore, the Elias α coding encodes the length
of 1’s run in difference data. For the length of 0’s runs, the pro-
posed method uses the EGC. Algorithm 2 shows how the EGC
encodes an integer value. ‘tmp’ and ‘dLen’ are temporary vari-
ables. The distribution of 0’s run in the difference data depends
on the objects of the input data. Shown in Algorithm 2, the EGC
has a parameter k, and the distribution of the length of the code
word depends on the value of k; with smaller k, the code words
make shorter in small value, and with larger k, the code words
make shorter in large value. Therefore, the EGC can encode the
0’s run in the difference data into less data size with suitable k.
In addition, the α-EGC uses an offset value because the smallest
length of both 0’s runs and 1’s runs are not zero but one, while
the Elias α coding and the EGC begin to encode from zero.

3.4 Evaluation
To evaluate the efficiency of the α-EGC, it is compared with

conventional compression methods, which are static Huffman
coding (SHC), adaptive Huffman coding (AHC), Elias gamma
coding (Gamma) [28], Golomb coding [29], and the original
EGC. In this evaluation, compression ratio (CR) is used as an
indicator of the effectiveness of compression methods, and the
value of the CR is defined as follows:

CR =
Dr [bit]
Dc [bit]

, (1)

where Dc is compressed data size and Dr is raw data size, 1,024.
The larger CR indicates that the target compression method can
reduce a larger amount of data size.
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Table 1 Compression ratio.

SHC AHC Gamma Golomb EGC Proposed
sample (m = 7) (k = 2) (α-EGC)

(k = 3)

bicy+car 1.55 1.29 2.17 2.00 2.36 2.48
bicycle 2.79 2.98 5.73 4.03 5.78 6.62

bike 1.60 1.35 2.55 2.13 2.54 2.74
bike+car 2.28 2.06 3.25 3.98 3.98 4.55

car 1.69 1.48 2.77 2.32 2.77 3.01
ped+car 2.07 1.70 3.00 2.82 2.98 3.31

pedestrian 2.46 2.54 4.55 3.44 4.65 5.20
face 2.40 2.34 4.45 3.36 4.46 5.08

average 1.12 2.07 3.68 3.00 3.68 4.16

Table 2 Relevance between values of k and CR in α-EGC.

α-EGC
sample k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

bicy+car 2.45 2.54 2.57 2.48 2.35 2.21 1.99
bicycle 5.85 6.20 6.43 6.62 6.78 6.92 6.54

bike 2.63 2.76 2.80 2.74 2.59 2.47 2.23
bike+car 4.06 4.31 4.48 4.55 4.52 4.48 4.15

car 2.86 3.00 3.06 3.01 2.88 2.76 2.49
ped+car 3.09 3.25 3.34 3.31 3.20 3.10 2.82

pedestrian 4.65 4.92 5.11 5.20 5.19 5.18 4.80
face 4.57 4.83 4.98 5.08 5.08 5.07 4.66

Average 3.77 3.98 4.11 4.16 4.13 4.09 3.81

In the comparison, the parameter k in the α-EGC is three and
the offset is one, which makes the CR highest. This comparison
experiment involved 45 sets of sample data, which are classified
according to objects and their combination: pedestrians, bicycles,
bikes, cars, and a person’s face captured at close range. The ex-
perimental results are summarized in Table 1. The average CRs
by object are in each row and all sets of samples are in the bottom
row. The α-EGC exhibited the best CR compared with the other
methods.

Table 2 shows the relevance between the values of k and CR
in α-EGC evaluated with the same samples used in Table 1. This
table indicates that the optimum value of the k in α-EGC depends
on the objects in the input data.

4. Implementation for Compression and De-
compression

This section explains how the proposed compression method
α-EGC is implemented with a processor as an ASIP, which has
dedicated functional units and an instruction-set of compression
and decompression. To enhance the configurability of the stim-
ulation, the inner controller circuits of artificial vision systems
need to include a processor, and the ASIP can satisfy the demand
for miniaturization of the inner components more than the imple-
mentation with processor and dedicated circuits connected via a
system bus. A 16-bit reduced instruction-set computer (RISC)
processor is selected as the base processor of the proposed ASIP
and its instruction-set is shown in Table 3. The base RISC pro-
cessor is low-energy consumption and it has enough performance
to control the pulse-generation circuit of the artificial vision sys-
tems.

The proposed α-EGC compression procedure is performed fol-
lowing Algorithm 3, and with the base RISC processor, the en-
coding and decoding stages in the α-EGC occupies a large part
of all the execution cycles in compression and decompression,

Table 3 Instruction Set of Base RISC Processer.

Operation class Operations

Arithmetic Ops. ADD, SUB, SLA, SRA
Logical Ops. AND, OR, XOR, NOT, SLL, SRL
Comparison Ops. SLT, SLTU, SEQ, SNEQ
Immediate Ops. ADDI, SLLI, SRLI, LHI, LLI
Bit Ops. SETB, CLRB, TSTB
Load/Store Ops. LHB, LLB, SHB, SLB, LD, ST
Branch Ops. BRZ, BRNZ
Jump Ops. JP, JPL, JPR, JPRL
Interrupt Ops. TRAP, RETI
Special Ops. NOP, SLEEP

Input: stimuli position data

Output: encoded bit stream

1 Initialize buffers;

2 repeat
3 Load stimuli position data to buffer register;

4 Generate difference data from the previous frame;

5 repeat
6 if curBit is different from preBit then
7 if curBit == ‘0’ then Exponential Golomb coding ;

8 else α-coding ;

9 Store encoded data to memory;

10 curBit := preBit;
11 end

12 else
13 Run length coding;

14 end
15 until the tail of memory;
16 until the tail of buffer register;

Algorithm 3: Compression procedure

Table 4 Breakdown of execution cycles of compression by base RISC pro-
cessor.

Execution Percentage
Process cycles [%]

1. Initialization & End process 24 0.06
2. Load & Generate difference data 9,338 25.23
3. Run length encoding 15,679 42.36
4. α-EGC encoding 10,448 28.23
5. Store code word 272 0.73

All 37,016 100.00

Table 5 Breakdown of execution cycles of decompression by base RISC
processor.

Execution Percentage
Process cycles [%]

1. Initialization & End process 26 0.03
2. Load encoded data 32 0.39
3. α-EGC decoding 3,694 45.33
4. Run length decoding 3,031 37.19
5. Restore & Store decoded data 1,364 16.74

All 8,149 100.00

respectively. The breakdowns of execution cycles of compres-
sion and decompression processes by the base RISC processor
are shown in Table 4 and Table 5, respectively. In the compres-
sion process, run length encoding is largely dominant and occu-
pies about 42% in all the execution cycles, and the α-EGC encod-
ing also occupies about 28%. In the decompression process, the
α-EGC decoding accounts for approximately half of the whole
execution cycles, which occupies about 45%, and the run length
decoding occupies about 37%. From these analyses, it seems very
effective to implement codecs of the α-EGC and run length cod-
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ing to the base RISC processor.

4.1 Dedicated Instruction-set and Circuits
From the results of Table 4 and Table 5, this section describes

the dedicated instruction-set of the proposed ASIP and its cir-
cuit. The proposed ASIP has the dedicated instruction-set for the
run length coding and the α-EGC coding in order to reduce ex-
ecution cycles effectively, and the proposed ASIP has codec for
these coding methods to reduce execution cycles of bit operation,
while the base RISC processor needs several instructions. The
dedicated instruction-set is listed in Table 6. The proposed ASIP
also has special purpose registers to save the number of work-
ing general-purpose registers (GPRs) and reduce memory access
to the data memory, which needs several extra cycles by waiting
for loading or storing the data. The special purpose registers are
allocated as shown in Table 7.

Table 6 Dedicated instructions.

Used in Used in
Instruction Compression Decompression

EGINIT (EGc INITialize) Y Y
RLEN (Run Length ENcoding) Y -
ALEN (Alpha ENcoding) Y -
EGENC (EGc ENCode) Y -
PACK (PACKing) Y -
STDATA (STore encoded DATA) Y -
EGFLASH (EGc FLASH) Y -
LDDATA (LoaD encoded DATA) - Y
ALDEC (ALpha DECoding) - Y
EGDEC (EGc DECoding) - Y
UNPACK (UNPACKing) - Y
INITRLD - Y
(INITialize Run Length Decoding)
RLDEC (Run Length DECoding) - Y
LDRL (LoaD Run Length) - Y

Table 7 Special purpose registers for codecs.

width
name [bit] description

bufpnt 6 index where data remain in codebuf
codebuf 48 buffer register for encode data
codelen 8 code length of code word from codec
codewd 33 code word from codec
membuf 48 code word snippets in one word

(16x3) (use in encoding only)
param 16 parameter for coding

(including k for EGC and offset)
pn 2 control signal for the times of memory access
rlpntr 4 pointer of tail of decoded run length data
rlbuf 16 buffer register for decoded run length data

Fig. 5 Dedicated circuits and registers for compression.

As shown in Table 4, the compression procedure is divided
roughly into five stages. In the stage of initialization, instruction
EGCINT initializes the special purpose registers; clears the buf-
pnt register, the codebuf register, the pn register, and the codewd
register, and sets the k of EGC and offset of coding to the param
register. In the stage of the run length encoding, instruction
RLEN is used to count the run of successive bit. Two operands
of this instruction indicate the data to encode and the index of
start to count up, and it writes the index of the switching posi-
tion of bits in the data, where the bit is changed from zero to one
and vice versa, to the GPR. In the stage of the α-EGC encod-
ing, instruction ALEN and EGENC encode the value of the run
to each code word individually, and the code word and its code
length are stored to the codewd register and the codelen register,
respectively. Instruction PACK is used at every step after execu-
tion of ALEN or EGENC. This instruction loads the code word
data from the codewd register and stores the data to the tail of data
in the codebuf register referring the bufpnt register, and then the
instruction also updates the bupnt register, the pn register, and the
membuf register. In the stage of storing the code word, instruc-
tion STDATA stores the encoded data in the codebuf register to
the data memory. This instruction refers the pn register that stores
the number of times for storing the data in the membuf register.
When the STDATA instruction is carried out, the data in the mem-
buf register is stored in 16 bits, and the membuf register is shifted
to MSB and the value of the pn register is subtracted by one. If
the value of the pn register is zero, the STDATA instruction is not
carried out, which is equal to the NOP instruction. In the stage of
the end process, the instruction EGFLASH stores the remains of
the code words in the codebuf register to the data memory.

As shown in Table 5, the decompression procedure is divided
roughly into five stages. The dedicated instruction-set is used in
the stage of initialization, loading, and decoding the code word.
In the initialization, instruction EGCINT is also used as in the
compression, and the instruction INITRLD is used to clear reg-
isters in the run length decoder. In the stage of loading the code
word, instruction LDDATA loads encoded data to the codebuf
register from the data memory, which requires the address of the
data memory as an operand. In the stage of α-EGC decoding,
instruction ALDEC and EGDEC decode the code word in the
codebuf register to the numerical value of the run of bit stream,
and then store the data to the GPR indicated as an operand. After
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Fig. 7 Dedicated circuits and registers for decompression.

Fig. 6 Circuit for packing codebuf register and updating bufpnt register, pn
register, and membuf register in encoding.

decoding by ALDEC or EGDEC, instruction UNPACK is used
and loads the encoded data from the codebuf register and stores
one code word to the codewd register in parallel with decoding
the header of the code word in order to get the code length of the
code word. In the stage of the run length decoding, instruction
RLDEC and LDRL are used. Instruction RLDEC expands the
numerical run in one of the operands to bit stream to the rlbuf reg-
ister. After execution, instruction RLDEC subtracts the value that
is equal to the length of the bit stream instruction which expands
from the numerical run. If the rlbuf register is full, instruction
RLDEC writes the status to the GPR indicated by an operand,
and then instruction LDRL is used to load the bit stream in the
rlbuf register to the GPR indicated by an operand.

Figure 5 illustrates components realizing the dedicated
instruction-set for compression, and Fig. 6 illustrates the block
diagram of ‘pack unit’ in Fig. 5. In Fig. 5, ‘data in’ indicates in-
put from one of the GPRs indicated by an operand, and ‘data out’
indicates output to the access unit of the data memory in the base
RISC processor. Figure 7 also illustrates components realizing
the dedicated instruction-set for decompression, and Fig. 8 and
Fig. 9 illustrate the block diagrams of ‘unpack unit’ and ‘load
& merge unit’, respectively. In Fig. 7, ‘data in’ indicates out-
put from access unit of the data memory, and ‘data out’ indicates
input to the one of the GPRs. In both Fig. 5 and Fig. 7, shad-
owed boxes indicate registers that are initialized by instruction
ECGINIT.

5. Evaluation

This section explains the comparison of the proposed ASIP and
the base processor in terms of the following points: area, execu-
tion cycles, power consumption, and energy consumption. The
area and power consumption based on the switching probabilities
of each gate were estimated using Design Compiler from Syn-

Fig. 8 Circuit for detaching decoded code word from codebuf register and
updating bufpnt register and pn register in decoding.

Fig. 9 Circuit for merging data from data memory to codebuf register and
updating bufpnt register in decoding.

Table 8 Comparison of execution cycles in compression.

Process Base Proposed Diff. [%]

1. Initialization & End process 24 47 +95.83
2. Load & Generate difference data 9,338 1,282 −86.27
3. Run length encoding 15,679 2,148 −86.30
4. α-EGC encoding 10,448 1,326 −87.30
5. Store code word 272 272 ±0.00

All 37,016 5,075 −86.30

opsys, Inc., with which the TSMC 0.18 μm typical library was
used. The power consumption was measured within the synthe-
sis limitation of the minimum area. The execution cycles and the
switching probabilities of each gate were based on the simulation
results from ModelSim by Mentor Graphics Corp. The energy
consumption E is defined as follows.

E = P
N
f
, (2)

where P is power [W], N is the number of execution cycles, and
f is operation frequency [Hz].

5.1 Results
The comparisons of execution cycles for compression and de-

compression with the proposed processor and the base RISC pro-
cessor are summarized in Table 8 and Table 9, respectively. For
compression, the proposed processor reduced the number of exe-
cution cycles by about 86% and 87% for run length encoding and

c© 2017 Information Processing Society of Japan
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Table 13 Comparison with proposed compression method and other methods in energy consumption.

Method Pd [μW/MHz] Ed [nJ] n [bit] Er (BLE [30]) [nJ] Er (BAN [31]) [nJ]

w/o compression 0 0 1,024 15,667 (±0.00) 4,198 (±0.00)
Gamma 46.42 117 278.26 4,374 (−72.08) 1,258 (−70.04)
EGC 46.52 100 278.26 4,358 (−72.19) 1,241 (−70.44)
Proposed 47.62 128 246.15 3,894 (−75.15) 1,137 (−72.93)

Table 9 Comparison of execution cycles in decompression.

Process Base Proposed Diff. [%]

1. Initialize & End process 26 215 +826.92
2. Load encoded data 32 234 +731.25
3. α-EGC decoding 3,694 64 −98.27
4. Run length decoding 3,031 1,372 −54.73
5. Restore & Store decoded data 1,364 792 −41.94

All 8,149 2,678 −67.14

Table 10 Comparison with base processor and proposed processor.

Base Proposed Diff. [%]

Area [μm2] 53,102 122,764 +131.19
Max Freq. [MHz] 303 222 −26.70
Power [μW/MHz] Compression 37.6 33.3 −11.44

Decompression 41.5 47.6 +14.42
Energy [nJ] Compression 1,391 169 −87.86

Decompression 338 128 −62.43

Table 11 Characteristics of low-power wireless communications.

Vs Pr T er

Standard [V] [mW] [kbps] [nJ/bit]

DA14580 [30] BLE 2.35–3.3 15.3 1,000 15.3
ISSCC2014 [31] BAN 0.74 3.66 971.4 4.1

Table 12 Comparison of estimation of energy consumption in receiver.

n Ed Er (BLE [30]) Er (BAN [31])
[bit] [nJ] [nJ] (Diff. [%]) [nJ] (Diff. [%])

w/o compression 1 024 0 15,667 (±0.00) 4,198 (±0.00)
Base 246.15 339 4,104 (−73.81) 1,347 (−67.92)
Proposed 246.15 108 3,894 (−75.15) 1,137 (−72.92)

the α-EGC encoding, respectively, and reduced the total num-
ber of execution cycles by 86%. For decompression, the pro-
posed processor reduced the number of execution cycles by 98%
and 54% for the α-EGC decoding and run length decoding. As
shown in Table 10, the power consumption of the proposed pro-
cessor decreased by 11% and increased 14% for compression and
decompression, respectively, and the proposed processor reduced
energy consumption by 87% and 62% for compression and de-
compression, respectively.

5.2 Discussion
From the evaluation results in Section 5.1, we estimate a re-

duction of energy consumption in wireless communication by the
proposed implementation. Some examples of low-power wireless
communication implementation and their parameters are listed
in Table 11 (see Ref. [32] to get more details). In Table 11, Vs

is supply voltage, Pr is power consumption of receiver in acti-
vation, T is data rate in wireless communication, and er is en-
ergy consumption per one bit in receiving. In communication
standards, Bluetooth low energy (BLE) and body area network
(BAN), which is also called IEEE 802.15.6 standard, are well-
known low-power communication standards, and BLE has been
already used for various purposes. The energy consumption of

receiving one stimuli position data in wireless communication Er

is defined as follows:

Er = ner + Ed, (3)

where n [bit] is the amount of received traffic data per one frame
of stimuli position data and Ed [nJ] is the energy consumption
in compression processing. Estimation results are summarized
in Table 12 that compares the proposed implementation with
the base RISC processor and Table 13 that compares the pro-
posed implementation of the α-EGC and other simpler meth-
ods: gamma coding and EGC. This table shows that the α-EGC
can reduce the energy consumption of a wireless communication
receiver more significantly than the other methods, and it also
shows that the increment of the energy consumption by adding
data compression processing is negligible in both standards.

The evaluation results also show that the proposed ASIP can
perform decompression in terms of real-time processing. It can
decompress data in 303 μs per one frame in 10 MHz. Compared
with the base RISC processor, the proposed processor reduced
execution times in decompression, which can achieve the equiva-
lent performance to the base RISC processor with less operation
frequency.

6. Conclusion

This paper proposed a lossless data compression method, α-
EGC, for stimuli position data used in artificial vision systems.
According to analyses of the stimuli position data, the proposed
method marked higher CR, 4.16, compared with the conventional
lossless coding methods. The implementation of the α-EGC was
also proposed as an ASIP, which encodes and decodes by smaller
number of instructions using a dedicated instruction-set. Evalua-
tion results showed that the proposed implementation reduced the
number of execution cycles by about 86% and 67% for compres-
sion and decompression, respectively, and reduced energy con-
sumption by about 87% and 62%, respectively. This paper re-
vealed that the ASIP implementation could reduce energy con-
sumption to about one tenth in compression with thirteen tenths
in the area of circuits. Based on the evaluation results, this paper
showed that the α-EGC can reduce energy consumption in wire-
less communication. Our future work is to evaluate fabricated
chips and verify the efficiency of the α-EGC to measure energy
consumption in wireless communication in observation.
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