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Abstract: With the dramatic increase in Internet of Things (IoT) related messaging volume, message queue systems
are highly required for both interoperability among devices, as well as for control message traffic between devices and
heterogeneous back-end systems (BES). When connected BES issue several dequeue requests to the message queue
and no message is available, the frequency of missed-dequeues increases, which causes a degradation of the maximum
throughput. Therefore, we propose the retry dequeue-request scheduling (RDS) method that decreases the number of
dequeue requests from the BES by delaying the replies to the BES when missed-dequeues occur. Simulation and ex-
perimental evaluations show that the throughput of the RDS method achieves 180% of that of the conventional dequeue
method.
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1. Introduction

In the Internet of Things (IoT) era, the amount of all digital data
in the world created by various devices and sensors is exponen-
tially increasing, and it is predicted to reach 40 ZB by 2020 [1].
IoT service systems utilizing data from devices typically consist
of 3 groups: field devices which send and receive data, back-end

application systems (BES) in a data center/cloud, and the message

queue (or message hub/message bus) systems located between the
devices and back-end systems.

Message queue systems are widely used for interoperability
and control of the huge message traffic between devices and
BES [2], [3]. Especially, the control of message traffic has be-
come an important requirement as the volume of IoT messages
has increased dramatically over the past years. There are sev-
eral solutions such as Kafka [4], Amazon Kinesis [5], Azure IoT
Hub [6], etc., following different approaches depending on their
respective objectives. In addition, to satisfy these requirements
as well as obtaining a high availability, such as a short failover
time of within one second for social infrastructure systems, we
proposed a high-throughput and reliable message queue sys-
tem based on a distributed in-memory key-value store (KVS) in
[7], [8], [9].

Here, we will address another issue of traffic control between
devices and BES for IoT services. Devices transmit messages pe-
riodically at their own intervals, such as the period of log collec-
tion for their service requirements. On the other hand, BES pro-
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cess messages at different rates to achieve maximum throughput
for the individual objectives of the IoT services, such as analysis,
management of devices, or data visualization. Therefore, to com-
pensate for the heterogeneity in message traffic between devices
and BES, message queue systems use buffering to handle mes-
sage traffic from devices. This compensation is achieved through
distributed message queue systems, which enables the distri-
bution and load-balancing of message processing on multiple
servers [9]. In the past, the specifications of field devices and BES
were defined in advance. However, today’s IoT service systems
as well as development and operations (DevOps) trends require
rapid implementation and continuous modification, additionally
to the BES also becoming adaptable [10], [11], [12], [13]. Fur-
thermore, progress of distribution platforms such as Spark [14] or
Storm [15], have dramatically improved the performance of BES.
In this background, updating the processes or parameter settings
of BES can impact the system’s performance.

Actually, when the number of BES connecting to the message
queue increases, we can observe that this situation impacts the
performance of our proposed message queue and degrades the
throughput for retrieving messages from the message queue (de-

queue). By analyzing the factor of throughput degradation, we
recognize a large number of missed-dequeues, which means that
the lack of messages in the selected queue wastes computational
resources.

Therefore, in this paper, we focus on the dequeue process of
distributed message queue systems and we propose a method
called Retry Dequeue-request Scheduling (RDS) to solve the
throughput degradation problem. We evaluate the RDS method
by simulation and also prove its advantage in experimental real
servers.
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The rest of this paper is organized as follows. The background
and issues of message queues are introduced in Section 2. Sec-
tion 3 presents our proposed method and its design. Section 4
shows its performance evaluation by simulation, followed by Sec-
tion 5 where we present the experimental evaluation. Section 6
describes related work and Section 7 concludes this paper.

2. Background

2.1 Outline of IoT Service System
2.1.1 Message Queue in IoT Service System

Figure 1 outlines an example of the system structure in IoT
services. Message queues are widely used for a large variety
of services, e.g., monitoring/optimization of services in indus-
try, smart meter services in electricity companies, connected ve-
hicle services, or services of a telecom company collecting data
from smart devices. Message queues are required for the inter-
operability and abstraction (absorption) of message traffic of de-
vices. By supporting IoT protocols, e.g., MQ Telemetry Trans-

port (MQTT) [16], Representational State Transfer (REST) [17],
or Constrained Application Protocol (CoAP) [18], and by making
devices and BES become loosely coupled (independent), mes-
sage queues enable the developer to interoperate between them
rapidly. Message queues buffer messages into a queue on a per-
sistent storage (enqueue) and enable the BES to retrieve the mes-
sages from the queue at their own timing. Under the condi-
tion that the message queue has both, sufficient performance to
process messaging traffic from devices and scalability in perfor-
mance and storage, the message queue enables the developers of
the BES to design their system without considering the entire vol-
ume of the messaging traffic.
2.1.2 Heterogeneity in IoT Message Traffic

It is generally agreed that IoT services require information
from historical or real-time data for their own objectives, such
as monitoring and optimization [19], [20], [21], [22], [23]. In
Refs. [19], [20], [22], IoT service systems are required to man-
age the massive volume of data generated by sensors in various
fields, such as smart grids, connected vehicles, and heavy equip-
ment, etc. In Ref. [21], optimization at the enterprise level in
smart manufacturing results in requiring only periodically col-
lected data. In Ref. [23], general smart sensors are organized in
simple packages, i.e., they may consist of single chips and gener-
ate simple periodical data.

The general approach in IoT to find values in data is to col-

Fig. 1 Structure of IoT service system.

lect much data from devices and learn through trial and error of
data analysis. This approach requires a large data volume for var-
ious analyses. Therefore, traffic volume from devices generating
periodical message data has become enormous in IoT service sys-
tems. The transmitted data sizes of sensors highly depend on their
service requirements and protocols, such as MQTT, REST, and
Transport Layer Security (TLS) [24], etc. From our past experi-
ences with specific use cases, such as monitoring or optimization
services, we assume in this paper that the data size is 1 KB, which
can be widely applied to IoT services.

On the other hand, BES collect data for various IoT objectives,
such as monitoring and optimization and retrieve messages from
the queue at their own timing, which is non-periodic and process-
dependent. These processing times differ by context of message,
message size, and other related data. To achieve higher through-
put by fully utilizing computational resources, the BES retrieves
messages from the queue with a pull-based method [4]. We de-
scribe further details in Section 6. In addition, progress in dis-
tribution platforms, such as Spark, leads to a dramatic change in
processing time of the BES.

Here it can be seen that while devices send massive amounts of
periodical messages, BES process messages at their own timing
in IoT. Therefore, the control function of the massive and hetero-
geneous message traffic in the message queue becomes a crucial
issue in IoT. In this paper, we are targeting these heterogeneous
environments in the IoT service system.

2.2 Conventional Approach using Distributed Message
Queues

2.2.1 Architecture for High Scalability and Availability
In our previous work, we proposed a high-throughput and re-

liable message queue system based on a distributed in-memory
key-value store (KVS) for social infrastructure systems [7], [8],
[9] (Fig. 2). The proposed messaging system adopts a fabric ar-
chitecture with connected full-meshed servers for high scalabil-
ity and availability. The proposed messaging system consists of
3 parts: the enqueue controller (E-Ctrl) for receiving and stor-
ing messages in a queue, the distributed queue to the KVS server
as persistent storage, and the dequeue controller (D-Ctrl) for re-
ceiving dequeue requests from BES and retrieving the messages
from queues. This structure enables eliminating a single point of
failure and enhances the horizontal scalability of each part.

Fig. 2 Overview of distributed message queue system. E-Ctrl and D-Ctrl
denote enqueue controller and dequeue controller, respectively.
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2.2.2 Transparency in Distributed Message Queues
In the proposed queue system as shown in Fig. 3, E-Ctrl and

D-Ctrl provide access transparency and location transparency for
devices and BES. Let us detail their transparency using Fig. 3.
In the message queue system, a logical queue consists of mul-
tiple physical queues based on KVS. E-Ctrl and D-Ctrl share
information of the logical queue, such as the location of physi-
cal queues, and enable devices/BES to access logical queues as
a single queue. When devices enqueue a new message into the
logical queue, the E-Ctrl selects one of the physical queues by
round-robin and physically enqueues it there.

On the other hand, when the BES dequeues messages from the
logical queue, the D-Ctrl searches for messages by round-robin
in multiple message queues and dequeues them from those. The
BES retrieves a fixed number of messages by a single dequeue-
request and the D-Ctrl can dequeue messages from multiple
queues. If the BES requires the maximum number of messages
and we define this number as Nmax, there are two types of D-Ctrl
dequeue procedures: (i) retrieving Nmax messages or (ii) retriev-
ing a number less than Nmax messages from one of the physical
queues. When the D-Ctrl gets Nmax messages, it sends these mes-
sages to the BES. On the other hand, when the D-Ctrl gets less
than Nmax messages from one physical queue, it continues with
dequeuing from the next physical queues by round-robin until it
has Nmax messages in total or the counter for dequeue trials ex-
ceeds the setting of dequeue trials (retry out). Each D-Ctrl per-
forms dequeues in parallel.

This distribution of dequeue accesses enables the BES to get
the messages without considering the location where they were
physically stored.

2.3 Throughput Degradation Problem of Message Queue
As mentioned above, BES are required for rapid implementa-

tion and continuous modification due to DevOps trends in IoT
services. Developers modify BES parameters or data processing
methods to adjust for variable requirements or objectives of the
IoT service. For example, an interval of dequeue requests is re-
quired by the data processing time of BES for achieving the IoT
service requirement. The developers also determine the number
of BES to ensure sufficient throughput.

However, as a result of the real-world performance test in the
case where a large number of BES is connected to our proposed
message queue, the throughput is degraded by 20 percent from

Fig. 3 Transparency in distributed message queues.

the expected message traffic volume. The reason for the degra-
dation of throughput is that a large number of dequeue requests
wastes computational resources of the message queue system.
Especially missed-dequeues, which occur when there are no mes-
sages to retrieve from the selected queue, consume the compu-
tational resources for enqueue and dequeue operations (see Sec-
tion 3.1).

We focused on the enqueue traffic in the conventional approach
and extended the system based on the enqueue traffic. However,
dequeuing (D-Ctrl) can become the bottleneck of the IoT service
system in the above case. For IoT services, it is a fundamental
issue for BES to modify data processing continually without the
need for parameter tuning. To solve this issue, we propose novel
dequeue methods in the distributed message queue in this paper.

3. Analysis of Throughput Degradation and
Proposal

In this section, we first analyze the processing of the message
queue in order to solve the problem of throughput degradation.
Next, we analyze the problem of throughput degradation based
on computational resources. Finally, we propose two new de-
queuing methods that decrease the number of dequeue requests
from the BES.

3.1 Process of Distributed Message Queue
Figure 4 shows a simplified view of each process of the mes-

sage queue. There are three kinds of processes: enqueue, de-

queue, and delete. Furthermore, we distinguish between two
kinds of dequeues: missed-dequeue and hit-dequeue. Here, hit-

dequeue describes the successful retrieval of messages from the
selected queue. Note that hit-dequeues always include at least
one message.

When D-Ctrl receives a dequeue request from the BES, it se-
lects one of the message queues and sends a dequeue request.
Here, BES sets the number of maximum messages and we de-
fine this number as Nmax. If there are no messages in the selected
queue, D-Ctrl gets a negative response that we refer to as missed-

dequeue including no messages. If there are one or more mes-
sages in the selected queue, D-Ctrl gets a positive response that
we denote as hit-dequeue regardless of whether D-Ctrl gets Nmax

messages or not. If D-Ctrl does not get Nmax messages in total, D-
Ctrl selects another message queue by round-robin and sends the
dequeue request to it. D-Ctrl continues to select another message

Fig. 4 Process of distributed message queue.
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queue until it gets Nmax messages in total or a retry out occurs.
After the BES finishes processing data, it issues a delete re-

quest to D-Ctrl. A delete process corresponds to each message
in the hit-dequeue process. Therefore, we define the computa-
tional cost of hit-dequeues including delete processes simply in
the following consideration.

3.2 Analysis of Throughput Degradation
First, we consider the computational resources of data process-

ing in a distributed messaging queue. For calculating the maxi-
mum throughput, if we define all the computational resources of
the message queue system as Rc, the total cost of the enqueue pro-
cess as Ce, the total cost of the hit-dequeue process as Cdh, and
the total cost of the missed-dequeue process as Cdm, we obtain the
following expression.

Rc = Ce +Cdh +Cdm (1)

This expression means that the enqueue and dequeue processing
share all computational resources. If we define the enqueue mes-

sage traffic as E [msg/s], the cost of the enqueue process per mes-
sage as ce0, the missed-dequeue message traffic as Dm [msg/s],
and the cost of the missed-dequeue process per message as cdm0,
we obtain the following expression.

Rc = Ece0 +Cdh + Dmcdm0 (2)

In Eq. (2), Cdh is a variable depending on how many messages are
retrieved by D-Ctrl in a single dequeue request from a selected
queue. On the other hand, ce0 and cdm0 are constant because en-
queue and missed-dequeue are processed individually.

The total cost of the hit-dequeue process Cdh can be divided
into two parts: the cost of constant processing and the cost of
variable processing depending on the number of messages D-Ctrl
retrieves by one dequeue. If we define hit-dequeue message traf-
fic as Dh [msg/s], the cost of constant processing per message as
cdh0, the number of messages D-Ctrl obtained by one dequeue
request as Ni, and the cost of variable processing when D-Ctrl
gets Ni messages by one dequeue request as cdhNi, we obtain the
following expression in Eq. (3).

Cdh = Dhcdh0 +

Dh∑

i=1

NicdhNi (3)

Since the number of input messages to a message queue equals
the number of output messages, enqueue message traffic E equals
the hit-dequeue message traffic Dh. Hence, we obtain the follow-
ing expression in Eq. (4).

Rc = E(ce0 + cdh0) +
Dh∑

i=1

NicdhNi + Dmcdm0 (4)

In this expression, the first term represents the cost depending
on enqueue message traffic. The second term is the hit-dequeue

cost depending on both how many messages D-Ctrl gets by one
dequeue request and the hit-dequeue process. If D-Ctrl can get
messages efficiently by a single dequeue request, the second term
would decrease. The third term is the cost of missed-dequeues

and it is in proportion to missed-dequeue message traffic Dm,

Fig. 5 Periodical monitoring and scheduling (PMS) method.

which is independent of the enqueue message traffic E. This term
represents the loss and is independent of the input message traffic.

Here, we consider the problem of throughput degradation de-
scribed in Section 2.3, where the enqueue message traffic is not
changed and the dequeue message traffic is changed. Therefore,
we focus on the third term and take an approach to reduce the
number of missed-dequeue requests.

3.3 Proposed Methods
In this section, we propose two dequeue methods to reduce

missed-dequeue requests to avoid throughput degradation.
3.3.1 Periodical Monitoring Scheduling (PMS)

Figure 5 outlines a dequeue method we call Periodical Mon-

itoring and Scheduling (PMS). PMS aims at reducing the num-
ber of missed-dequeues by periodically monitoring each message
queue to gather the message counter information. D-Ctrl can ac-
cess a message queue, which has sufficient messages (Fig. 5 (a))
by status monitoring. If there are no queues which have enough
messages, D-Ctrl regulates the access to the message queues
(Fig. 5 (b)). PMS efficiently accesses the message queues to re-
duce the number of missed-dequeues trading off for the additional
cost of periodical monitoring. If we define the monitoring traffic
as M [msg/s] and the cost of monitoring one queue as cM , we
obtain the following expression.

Rc = E(ce0 + cdh0) +
Dh∑

i=1

NicdhNi + Dmcdm0 + McM (5)

In this expression, the missed-dequeue cost (third term) and the
monitoring cost (fourth term) are in a trade-off relationship.
3.3.2 Retry Dequeue-Request Scheduling (RDS)

Figure 6 outlines a dequeue method we call Retry Dequeue-

Request Scheduling (RDS). RDS aims at reducing the sending of
dequeue requests to message queues by waiting until messages
arrive at the message queues. When D-Ctrl receives a dequeue re-
quest from BES, D-Ctrl accesses the selected message queue. If
D-Ctrl cannot get any messages (i.e., missed-dequeue occurs), D-
Ctrl holds responses to BES and registers this request to the dis-
tributed dequeue scheduler where each registered request waits
for its next retrial after a certain interval. After this interval,
BES send the next dequeue request. RDS can reduce the third
term missed-dequeue cost and the second term hit-dequeue cost
of Eq. (4). Scheduling time (sleep time) of RDS is in a trade-off
relationship with the latency of the message queue, which impacts
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Fig. 6 Retry Dequeue-request Scheduling (RDS) method.

BES’s data processing time.

4. Simulation Evaluation

4.1 Description of the Simulation Model
To investigate the effectiveness of the proposed PMS and RDS

methods for maintaining high-throughput in the heterogeneous
environment described in Section 2.1.2, we calculate through-
put of these methods in a simulation model as shown in Fig. 7.
We set parameter values, such as enqueue/dequeue/monitoring
cost, based on measured values from existing real-world message
queue systems. In fact, in our message queue system, compared
with the enqueue operation, the dequeue operation only includes
dequeue lock and specific mutual exclusion [9]. To emphasize
this characteristic in this simulation, the cost of the dequeue op-
eration is set to 20 times larger as that of the enqueue operation.
Additionally, we set 3 as the maximum number of dequeued mes-
sage queues for single dequeue to meet the setting of the real mes-
sage queue. This parameter contributes to keeping low latency of
one dequeue by reducing access overhead of multiple servers.

Here, detailed views of E-Ctrl and D-Ctrl are also depicted in
Fig. 8. In Fig. 8, the client application regularly generates mes-
sages and sends them to E-Ctrls of the message queue system,
since most devices send periodic messages in IoT services. We
assume that a client selects one of the E-Ctrls randomly each time.
E-Ctrl receives this message and stores it into one of the queues
selected by the queue selection unit in Fig. 8 (a). In this simu-
lation, the queue selection unit selects the queue by round-robin
ordering.

On the other hand, BES send dequeue requests to D-Ctrl at
random intervals following a Poisson process. Here, if we define
the dequeue request rate as D [msg/s], the expected arrival rate
of dequeue requests from one of the BES used for the definition
of a Poisson process as λ, the maximum number of messages to
collect in each dequeue request as Nmax, and the number of BES
as B, we obtain the following expression.

D = λNmaxB (6)

In this expression, dequeue request rate D includes both, hit-

dequeue and missed-dequeue. In other words, a part of λ is spent
for missed-dequeues. λ depends on the processing time and set-
tings of BES in real systems.

In this simulation, we set that one of the BES corresponds to
one D-Ctrl without duplication. After D-Ctrl receives a dequeue

Fig. 7 Simulation model of message queue systems.

Fig. 8 Structures of E-Ctrl and D-Ctrl.

Table 1 Simulation setup.

request, D-Ctrl accesses queues selected by the queue selection
unit in Fig. 8 (b). The function of this unit is different between
PMS and RDS methods. In PMS, the queue selection unit selects
the queues in descending order of the number of stored messages
by referring to the message counter information of the monitor-
ing unit, which is periodically updated by monitoring all queues.
In RDS, the queue selection unit selects the queue by round-
robin ordering. In addition, when a missed-dequeue occurs, the
dequeue request is registered to a distributed dequeue scheduler
without responding to the BES and retried after a certain interval.

Based on the above models for RDS and PMS methods, we
computed throughput estimated by the number of received mes-
sages by the BES. The simulation setup is listed in Table 1. In
this table, ce0, cdh0, cdh, cdm0, and cM correspond to Eqs. (4) and
(5). For implementation, we used the library for the discrete event
simulator NS3 [25] and implemented the simulation program in
C++ language. We used the data size from the recommendation
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Fig. 9 Throughput comparison between conventional method (solid line)
and proposed PMS/RDS methods (dashed lines).

Fig. 10 Hit-dequeue rate comparison between conventional method (solid
line) and proposed PMS/RDS methods (dashed lines).

of the equipment monitoring service.

4.2 Simulation Results and Discussion
Figure 9 shows the throughput comparison of message queue

systems achieved by conventional, PMS, and RDS methods.
Here, conventional method indicates the simple dequeuing based
on round-robin without monitoring and scheduling. As men-
tioned before, dequeue request rate is obtained by Eq. (6) and
includes both hit-dequeue and missed-dequeue. In this simula-
tion, we set arrival rate of dequeue requests from one of BES

λ [/s] in the range from 10 to 200.
In Fig. 9, by applying the conventional method, throughput is

gradually degraded as the arrival rate of dequeue requests λ in-
creases. For PMS, when λ is in the range of 100 to 200, through-
put of the PMS method is higher than throughput of the conven-
tional method. Moreover, compared with conventional and PMS
methods, the RDS method maintains the highest throughput, re-
gardless of the increase in arrival rate of dequeue requests.

Figure 10 shows the hit-dequeue rate comparison achieved by
conventional, PMS, and RDS methods. The hit-dequeue rate rep-
resents the number of hit-dequeues as a percentage of the number
of all dequeue requests. Comparing Fig. 10 to Fig. 9, it is obvious
that throughput of the message queue system has a strong rela-
tionship with the hit-dequeue rate. As mentioned in Section 3.2,
the RDS method reduced the third term missed-dequeue cost of

Fig. 11 A comparison of average number of messages per hit-dequeues
between conventional method (solid line) and proposed PMS/RDS
methods (dashed lines).

Eq. (4). On the other hand, for PMS, when λ is in the range of
100 to 200, the hit-dequeue rate of the PMS method is lower than
that of the conventional method. This result indicates that the
PMS method cannot reduce the third term missed-dequeue cost
of Eq. (4), however, the throughput in Fig. 9 is higher than the
throughput of the conventional method when λ is in the range of
100 to 200.

Here, we consider the second term hit-dequeue cost of Eq. (4).
Hit-dequeue cost depends on how many messages there are
for one dequeue request. Unlike the missed-dequeue cost, hit-

dequeue cost contributes to efficient dequeuing and throughput
enhancement. Figure 11 shows the comparison of the average
number of messages per hit-dequeue achieved by conventional,
PMS, and RDS methods. The average number of messages per
hit-dequeue means the average number of messages D-Ctrl re-
trieves by one dequeue request. For the PMS method, when λ is
in the range of 100 to 200, the average number of messages per
hit-dequeue of the PMS method is higher than that of the conven-
tional method. From this result, we proved that the PMS method
dequeues more efficiently than the conventional method and the
second term hit-dequeue cost of Eq. (4) enhances the throughput
of the PMS method.

Here, we discuss why PMS does not contribute to maintain-
ing the high throughput we expected and why RDS contributes
to maintaining a high throughput. A conceivable explanation is
as follows. In the PMS method, each D-Ctrl dequeues from a
message queue by periodically monitoring each message queue
to gather the message counter information. At first, we predicted
that D-Ctrl can successfully access the queue having the largest
number of messages with high accuracy, which increases the hit-

dequeue rate. However, hit-dequeue rate decreases in the PMS
method as shown in Fig. 10. On the other hand, the PMS method
increases the efficiency of dequeue as shown in Fig. 11. These
facts suggested that access contentions from D-Ctrls occur in the
PMS method. We consider that multiple D-Ctrls dequeue from
the same message queue which has the most messages at the
same time. Although a D-Ctrl which accesses the queue first
processes all messages from the queue as hit-dequeue, the others
following it cannot dequeue any messages and generate missed-

dequeues. In other words, PMS potentially gives D-Ctrls the ac-
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cess direction toward the same queues by referring to monitoring
results, which increases the probability of access contention from
D-Ctrls.

In contrast, in RDS, each D-Ctrl independently selects queues
to dequeue by round-robin, which is comparable to D-Ctrls ran-
domly selecting queues. Therefore, the RDS method increases
the hit-dequeue rate as shown in Fig. 10 and the average number
of messages per hit-dequeue as shown in Fig. 11 by waiting for
dequeue requests in order to increase the probability of messages
arrival at the message queues. In short, we show that our analy-
sis of Eq. (4) is valid for the throughput degradation of message
queues.

4.3 Evaluation and Discussion of Optimal Sleep Time for
RDS

In Section 4.2, we showed the superiority of the RDS method.
As mentioned in Section 3.2.2, sleep time of RDS determines
the highest latency. Moreover, to increase the sleep time means
limiting active connections between D-Ctrls and BES. This phe-
nomenon may be either effective in enhancing throughput due to
reducing excessive resource usage or ineffective due to limiting
connections to dequeue excessively. Therefore, we assumed the
existence of an optimal sleep time to achieve maximum through-
put without critical latency degradation. To investigate this as-
sumption, we evaluated the relationship between sleep time and
throughput for RDS method as described in Fig. 12.

In this figure, when sleep time is 5.0 seconds, the message
queue systems achieve the highest throughput. When the sleep
time is longer or shorter than 5.0 seconds, we observed a through-
put degradation. These results indicate the existence of an opti-
mal sleep time. The duration of sleep time strongly affects the
obtained throughput.

Here, we discuss why throughput in the condition that sleep
time is 5.0 seconds is highest. A conceivable explanation is as
follows. As mentioned in Section 4.2, increasing hit-dequeue rate
and the average number of messages per hit-dequeue improves
dequeuing efficiency resulting in a higher message throughput.
RDS enables efficiency of dequeue by waiting for dequeue re-
quest for sleep time in order to increase the probability of mes-

Fig. 12 Relationship between sleep time and throughput for conventional
method (solid line) and RDS (dashed lines).

sages arrival at the message queues. However, the higher the
sleep time is, the lower the throughput of the dequeue request
becomes. If there are messages in a queue, decreasing through-
put of the dequeue request means also decreasing the hit-dequeue

throughput. Therefore, in RDS, there is trade-off between the
efficiency of dequeue and throughput of the dequeue request.
This trade-off is included in the second term hit-dequeue cost of
Eq. (4), which is dependent on the queue status whether a queue
has messages or not. We consider that sleep time of 5.0 s is a
well-balanced value to obtain good values for both, efficiency of
dequeue and throughput of dequeue request.

5. Experimental Evaluation

5.1 Implementation and Methodology for Evaluation
From simulation results in Section 4, we revealed that high

throughput of message queue systems is successfully maintained
by applying the RDS method, even though the dequeue request

rate is much higher. Actually, between the simulation and real
environment, small differences of parameters/costs and deviation
of processing timing are acknowledged. Therefore, to investi-
gate the effectiveness of RDS in a real message queue, we imple-
mented RDS for a message queue in real servers and evaluated
its throughput. We evaluate RDS method in the real heteroge-
neous environment described in Section 2.1.2. We designed en-
queue/dequeue communication based on Representational State

Transfer (REST) [17] protocol and prepared message data based
on text log data of an equipment monitoring services.

Figure 13 describes the environment of the experimental eval-
uation system with message queues. As shown in Fig. 13, we pre-
pared a message queue having 10 sets of E-/D-Ctrls and a queue
with 10 virtual machines on 5 servers. 1 CPU is assigned to each
set of E-/D-Ctrl, and 2 CPUs are assigned to each queue. To eval-
uate this message queue, traffic test tools on other servers send
enqueue and dequeue requests. Traffic test tools represent both
field devices as message senders and BES as message receivers.
The average number of received messages per second is estimated
as throughput of the message queue systems.

Table 2 lists the parameter settings for the experimental evalu-
ation setup. Note that we unified configurable design parameters
of experimental evaluation with those of the simulation.

Fig. 13 Environment of experimental evaluation of a message queue.
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Table 2 Setup of experimental evaluation.

Fig. 14 Throughput comparison between conventional and RDS method on
experimental evaluation. Several patterns of are set for RDS to in-
vestigate the optimal sleep time.

5.2 Result and Discussion
Figure 14 shows the throughput comparison of real mes-

sage queue systems achieved by conventional and RDS meth-
ods with varying dequeue request rate from traffic test tools.
As the dequeue request rate increases, throughput of the con-
ventional method is degraded, however, throughput of RDS is
maintained at a high level. When the arrival rate of dequeue re-
quests reaches 200 and compared with the conventional method,
the RDS method with sleep time of 0.1 seconds contributes to 80
percent improvement of throughput. Compared with simulation
results, although the absolute throughput value is different, the
tendency of the graph is relatively similar.

From the viewpoint of sleep time in RDS, high throughput is
well maintained in the range of 0.1 seconds to 0.5 seconds. When
the sleep time exceeds 1.0 seconds, we observe visible through-
put degradation. This result strongly supports the assumption that
excessive sleep time causes throughput degradation as explained
in Section 4.2.

As a result, we reveal that the RDS method is effective to
maintain high throughput of message queue systems even if the
amount of dequeue requests from BES increases largely.

6. Related Work

We describe related work on polling system models from two
perspectives: queuing theory and IoT systems. Our proposed
methods are based on research on polling system models. While
a typical polling system consists of multiple queues accessed in
cyclic order by a single server [26], our proposed system consists
of multiple distributed message queues mesh-accessed by multi-
ple servers.

There is a large number of publications on polling systems that

have been developed since the late 1950s [27]. In several sur-
veys, the most notable ones written by Takagi [26], detailed com-
prehensive descriptions of the mathematical analysis of polling
systems are presented. Boon et al. [28] provided comprehensive
descriptions of applications to polling systems, such as a produc-
tion system, which consists of a single queue accessed by multi-
ple processes.

However, to the best of our knowledge, there have been few re-
ports on polling methods, which have multiple queues with mesh-
access from multiple servers as in our proposal. In this paper,
we simulated the polling model, which has a client application
putting messages onto these queues at regular intervals and back-
end application polling data at random intervals.

Regarding IoT systems, dequeuing methods follow not only the
polling (“pull”) model, but also the “push” model. In the “push”
model, the message queue system automatically sends messages
to preliminarily registered BES at the timing when the message
queue system receives messages from field devices. In the “pull”
model, BES send dequeue requests to the message queue system
and retrieve messages.

Generally, the “push” model is effective in the case when BES
have sufficient computing resources to process messages sent by
the message queue system. Jiang et al. [29] indicate that “push”
service can be faster and more energy efficient for BES because
in this approach BES do not need to look up a message queue or
synchronize periodically.

On the other hand, the “pull” model is effective in the case
when consumers make full use of its computing resources to pro-
cess messages and it is frequently used in cloud computing sys-
tems [4], [5], [6]. Kreps et al. [4] also mentioned that the “pull”
model is more suitable for their applications since each consumer
obtains some advantages: sustainability of retrieving the mes-
sages at the maximum rate and avoidance of message flooding by
being pushed faster than it can handle. Therefore, our pull-based
proposal has advantages to achieve high throughput of message
processing for fully utilizing computational resources of BES.

7. Conclusion

For the IoT era, message queue systems are required for in-
teroperability and control of the huge message traffic between
devices and BES. In this paper, we proposed the dequeuing
method called Retry Dequeue-request Scheduling (RDS) to solve
the throughput degradation of distributed message queue systems.

RDS can reduce the unnecessary transmission of dequeue re-
quests to the message queues by waiting during the scheduling
time for messages to arrive at the message queues. Especially,
RDS can better reduce throughput degradation due to missed-

dequeue messages than the conventional method.
By simulation evaluation, we compared throughputs achieved

by the conventional method, RDS, and Periodical Monitoring

and Scheduling (PMS), which is another dequeuing method pro-
posed for reducing the number of missed-dequeues by periodi-
cally monitoring each message queue to gather message counter
information. Simulation evaluation results show that only RDS
maintains highest throughput, regardless of an increase in the de-
queue request rate.
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Experimental evaluation results show that the RDS method
achieves 80 percent higher throughput than the conventional
method in real systems. Furthermore, we demonstrated that the
setting of the optimal sleep time improves the efficiency of the
proposed method even further.
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