相互補完型Wi-Fi・地磁気フィンガープリンティング 手法の評価

東 和樹^{1,a)} 新井 イスマイル^{2,b)}

受付日 2016年5月24日, 採録日 2016年11月1日

概要:設備負担のない屋内測位手法で,スマートフォン搭載センサを駆使するものとして Wi-Fi・地磁気 フィンガープリンティング(以下,FP)の双方を組み合わせた手法が提案されている.Li らの研究では Wi-Fi FP の測位結果周辺で地磁気 FP を行うことで測位する.しかし提案されている手法では一方の FP が良い精度であっても、もう一方の FP の精度に測位結果が大きく影響されるという性質がある.この問 題点を解決するために,観測した Wi-Fi アクセスポイント(以下,AP)の BSSID 観測状況に応じて制限 したエリア内で地磁気 FP を行った結果と,Wi-Fi FP の結果を,Wi-Fi FP の信頼度で加重平均すること で,安定した精度を得る手法を提案する.評価の結果,測位誤差の平均値 6.95 m,中央値 3.48 m,測位失 敗率 0%となった.また実験環境上に存在する AP の BSSID を無作為に 75%削減したときの,測位誤差が 5 m 以内に収まる確率について,Li らの手法は 28%に対し,提案手法は 48%を達成し,Wi-Fi FP の高い 精度を維持したまま,Wi-Fi FP で測位できないエリアも安定した精度で測位できた.

キーワード:位置情報サービス,ユビキタスコンピューティング

Evaluation of Complementary Indoor Positioning System with Wi-Fi and Geomagnetic Fingerprinting

Higashi Kazuki^{1,a)} Arai Ismail^{2,b)}

Received: May 24, 2016, Accepted: November 1, 2016

Abstract: An indoor positioning method using Wi-Fi and Geomagnetic FP (FingerPrinting), which is utilizing built-in sensors in a smartphone with no pre-deployed infrastracture, has been deployed by some researchers. Li et al. deployed a method which conducts Geomagnetic FP with in a result of Wi-Fi FP. This method has a problem that an accuracy gets down if the accuracy of either FP is low. To solve this problem, we propose an stable indoor positioning method, which calculates a position with the weighted average of Wi-Fi FP and Geomagnetic FP whose search space limited by AP (Wi-Fi Access Point)'s BSSID. As a result, mean error, median error and rate of positioning failure are 6.95 m, 3.48 m and 0% respectively. Probabilities that positioning errors are equal to or less than 5 m of proposed method and Li's method are 48% and 28% respectively when AP's BSSID in the experiment environment was reduced 75% at random. Thus, the proposed method achieved near accuracy of Wi-Fi FP and a perfect coverage.

Keywords: location based services, ubiquitous computing

1 大阪大学基礎工学部

- School of Engineering Science, Osaka University, Toyonaka, Osaka 560–0043, Japan
- ² 奈良先端科学技術大学院大学総合情報基盤センター Information Initiative Center, Nara Institute of Science and Technology, Ikoma, Nara 630–0192, Japan
- ^{a)} u796356g@ecs.osaka-u.ac.jp

^{b)} ismail@itc.naist.jp

1. はじめに

近年,スマートフォンの普及により,測位技術がさかん に研究され,ナビゲーションや人流解析等に応用されてい る.屋外環境ではGPS (Global Positioning System) に代 表される測位技術が普及しており,高精度に測位できる. ところが,衛星電波が十分に届かない屋内環境では利用不可能であり,別の手法が求められている.

Wi-Fi フィンガープリンティング(以下,フィンガープ リンティングを FP とする)は、AP から発信されるビーコ ンの電波強度 (RSSI: Received Signal Strength Indicator) を各地点で計測することで RSSI のフィンガープリント データ(以下,指紋データ)を作成し,被測位地点から得 られたデータとマッチングすることで測位する手法である (以下,指紋データの作成のためにデータを収集すること を計測とする). この手法は新たなインフラの設備が不要 で比較的高精度に測位できるため,現在もさかんに研究さ れている [1], [2]. 最近では屋内で鉄筋コンクリート, 金属 等の影響を受け特徴を持った値になる地磁気も FP を行え ることが分かり、注目されている [3], [4]. しかし、Wi-Fi FP は AP が少ないエリアに関してはマッチングに十分な データが得られず,また地磁気 FP は測位エリアが広くな るほど測位精度が低くなる等、それぞれ単独では原理的な 限界を迎えつつある.

Liら [10] は、Wi-Fi FP の結果を中心とした半径 3 mの 円内で地磁気 FP を行うことで、さらに測位誤差を低減させ る Wi-Fi aided Magnetic Matching 手法(以下, WaMM) を提案している.WaMM は Wi-Fi FP が測位可能なエリ アでは、Wi-Fi FP と比較して測位誤差の低減に成功してい る.ところが、AP が少なく Wi-Fi FP の誤差が大きいエ リアでは、地磁気 FP の誤差の良し悪しにかかわらず最大 3 m しか測位誤差を補正できない.また、AP が多く Wi-Fi FP の誤差が小さいエリアでも、地磁気 FP の誤差が大きい 場合、最大 3 m の誤差が生じる可能性がある.このように 実環境では測位時の状況により測位誤差が変化するため、 2 つの FP を効果的に組み合わせその影響を低減させる必 要がある.

これらの課題を解決するため、Wi-Fi,地磁気 FPの特徴 に着目した.Wi-Fi FPは,APがユニークな BSSID (Basic Service Set IDentifier)を持ち,電波到達範囲が 100m程 度であることから,おおよそのエリアを推定することに秀 でており,地磁気 FP は測位エリアが狭いほど安定した精 度で測位でき,かつインフラを必要としない.これらの特 徴から,2つの手法を適切に組み合わせれば,互いの欠点 を補完し合い,精度を高められるのではないかと考えた. そこで本論文では,BSSID 観測状況に応じて測位範囲を計 測範囲内で動的に生成し,その中で Wi-Fi FP と地磁気 FP の測位結果を組み合わせ,測位誤差を低減させる手法を提 案する.この手法により,AP が少ないエリアでも,地磁 気 FP によってその精度を保つことができ,BSSID 観測状 況に応じてエリアを推定することで,地磁気 FP を行うエ リアを狭められるため,欠点が補完されると考えた.

本提案手法を実装し,BSSID が少ない・まったくない エリアを含んだ屋内環境で評価実験を行った結果,Wi-Fi FPの測位誤差の平均値 6.88 m, 中央値 2.87 m, 測位失敗 率 28%に対して,提案手法の測位誤差の平均値 6.92 m, 中 央値 3.48 m, 測位失敗率 0%となり, Wi-Fi FP の高い精 度を保持したまま, Wi-Fi FP で測位できないエリアも安 定した精度で測位することに成功した.また指紋データ・ 測位時データから観測できる BSSID を 50%削減した場合 (Wi-Fi AP の観測情報を利用する測位手法において不利な 条件)でも,測位誤差の平均値 8.49 m, 中央値 4.45 m と 約 25%の劣化に抑えることができた.また,指紋データか ら BSSID を 75%削減したときの測位誤差が 5 m 以内に収 まる確率について, Li らの手法は 28%に対し,提案手法は 48%を達成した.

本論文では、2章に現在まで研究されてきた屋内測位手 法について紹介し、3章で提案手法について説明する.そ の後、4章に評価方法、実験結果について述べ、5章でまと める.

2. 屋内測位手法の既存研究

屋内測位手法は,現在までさかんに研究されており,様々 な手法が提案されている.本章では既存の屋内測位手法に ついて概説するとともに,その利点,欠点を述べる.

2.1 超音波・BLE ビーコン等を利用した手法

超音波や,BLE (Bluetooth Low Energy)の電波を発 信するモジュールを屋内に多数設置することで測位する 手法が提案されている.超音波を用いる手法 [5] では, 600 mm×1600 mm のエリア内で測位端末が発信した超音 波を,部屋内に設置した6つの超音波受信機で受け取り伝 搬時間差から位置を推定する逆 GPS 法を実現した結果,平 均測位誤差 32.91 mm で測位可能であった.また BLE を 用いる手法 [6] では,BLE ビーコンを 20 m 間隔に設置し た T 字路上を 60 m 歩行し,実測値 RSSI ベクトルと理論 値 RSSI ベクトル間の類似度が最も大きい地点を測位結果 とする手法を提案し,平均測位誤差 0.94 m を達成した.と ころが 2 これらの手法では新たなインフラを屋内環境に整 備する必要があり,広範囲での屋内測位では,設置コスト が問題となる.

2.2 歩行者デッドレコニング

スマートフォンに搭載されている加速度センサ,角速度 センサを利用し,センサデータから歩幅,歩数,回転等を 算出し,歩行軌跡を得る手法として歩行者デッドレコニン グ (Pedestrian Dead Reckoning)が相対測位手法として知 られている [7].近年のセンサ性能の向上もあり,測位精度 は向上している.しかし,センサデータを用いた歩行軌跡 の推定であることから,1度誤った検出をすると,その誤 差が累積されるという欠点がある.したがって,誤差のリ セットができる,絶対測位は必須となる.

2.3 Wi-Fi FP

屋内環境では、インターネット利用を目的とした AP が 多数設置されていることが多い.このようなすでに存在し ている Wi-Fi 電波を利用した屋内測位手法が提案されて いる.

その中でも、Wi-Fi FP 手法が現在注目を集めている. この手法は、屋内環境に多数設置した計測点上で BSSID・ RSSIの計測を行い、測位時に得られたデータとマッチング することで、測位する手法である。データの計測に人的・ 時間的コストがかかることが問題であるが、新たなインフ ラの整備が必要ないこと、高い精度を得られることから、 現在さかんに研究されている. Kawauchiら [1] は, 自己 測位可能な自動歩行ロボットを指紋データ作成に用いた, Wi-Fi FP の基礎技術について研究し、計測点の密度と測 位精度の関連を調査している.10cm 間隔で計測し、測位 した結果,65m²の測位エリア内で平均測位誤差1.07mを 達成している.また、データの計測に自動歩行ロボットを 用いることで、人的コストの削減にも貢献している.谷内 ら [2] は、ブースティングを用いた AP の重要性に考慮し た屋内測位手法を提案している.単にブースティングを用 いた平均測位誤差が 2.29 m に対し,重要度を考慮した際, 0.15mの推定精度向上を達成しており、環境の変化や不安 定な AP の課題に対して,一定の成果をあげている.また, AP の重要度を決定する指標として, AP の平均電波強度 と、APの持つ BSSID を観測した計測点数が精度向上の要 因となっていることを検証により明らかにしている.

ところが、上述の研究成果は測位に十分な AP を用意し た際の結果であり、AP 密度が疎なエリアの測位精度に関 しては不明である.屋内環境によっては、AP 密度が低い エリアが存在し、そのような場所では Wi-Fi FP による測 位精度が低くなり、測位精度のムラが発生すると考えら れる.

2.4 地磁気 FP

ほとんどのスマートフォンには3軸磁気センサ,3軸加 速度センサが搭載されており,端末の方位を推定できる. しかし,屋内では正しい方向を示さないことがある.これ は,建物の構造に用いられる鉄筋・鉄骨や,屋内に存在す る金属の影響によるものである.したがって,屋内では特 徴を持った地磁気データを得ることができ,地磁気によ る FP が可能である.Vandermeulen ら [3] は,地磁気 FP 手法を提案し,9×12mの屋内環境において平均測位誤差 2.5mを達成した.ところが,14×16mの屋内環境では, 平均測位誤差 3.1mとなっており,計測範囲が拡大するほ ど精度が低くなっている.地表上で磁束密度は 25 μ T から 60 μ T で分布するが,計測範囲が広くなると,類似する磁 束密度の指紋データが離れた位置でも現れるようになり, 測位誤差が大きくなると考えられる.

Fig. 1 Summary of WaMM.

2.5 Wi-Fi・地磁気 FP, PDR を組み合わせた手法

さらなる精度向上、安定化を図るため、上述の手法を組み 合わせた手法が現在さかんに研究されている [8], [9], [10]. Li ら [10] は、Wi-Fi FP の測位結果を中心として計測間 隔×3mの半径内の計測点群を対象に、地磁気 FP を行う Wi-Fi aided Magnetic Matching 手法(以下 WaMM)を提 案している.WaMMの概要を図1に示す.地磁気 FP で は、歩行したときの地磁気データの変動の波形と、あらか じめ保存していた指紋データ上の地磁気データを動的時間 伸縮法(DTW:Dynamic Time Warping)で比較し、最も DTW 距離の小さい計測点を測位結果とする.マッチング に利用する地磁気データは、3.2.1 項で述べる地磁気ベク トルを加工する手法によって決定される.Wi-Fi FP を地 磁気 FP の適用エリアの制限に用いることで、DTW の計 算量の削減、マッチングの精度向上を目的としている.

AP が少なく、磁束密度が測位エリア内で約 25μ T の変動しかない環境で評価実験を行った結果、誤差の二乗平均 平方根の値は、Wi-Fi FP が 7.2 m、地磁気 FP が 16.6 m、 WaMM が 4.2 m と WaMM が良い精度を得た.このこと から、AP の数が少ない場合、または、磁束密度の変動が 乏しい場合には、提案手法が最も精度良く測位できること が示された.

しかし,この手法では Wi-Fi FP と地磁気 FP の結果を 同じ重みで利用しているため,片方の精度が良くても,も う片方の精度が悪ければ,それに大きく影響されるという 性質を持つと考えられる.

3. 提案手法

3.1 概説

本論文では,好条件時のWi-Fi・地磁気 FP の測位精度 と,地磁気 FP の適用範囲の広さを考慮し,WaMM では 達成できなかった測位時の状況による測位誤差の変化の影 響を低減させる測位手法を提案する.図2に提案手法のシ

ステム図を示す.以下に本手法の流れを示す.

(1) 計測フェーズ

Wi-Fi・地磁気 FP に用いる指紋データを作成するため に、測位エリア内に計測点を配置し、RSSI・BSSID, 地磁気,重力加速度のデータを計測する.

(2) 準備フェーズ

計測フェーズで得たデータを測位用に加工する.また, 最終的にWi-Fi・地磁気 FPの各結果を加重平均する 際のパラメータである,Wi-Fi FPの信頼度の決定関 数(信頼度関数)のパラメータを決定する.

(3) 測位フェーズ

測位時に得られた BSSID から, それぞれに紐付いたエ リア内で地磁気データを kNN法 (k-Nearest Neighbor algorithm)でマッチングし,それらの結果を加重平 均したものを地磁気 FP の測位結果とする.その後, Wi-Fi FP を行い,あらかじめ定義しておいた信頼度 を用いて,両手法の加重平均をとったものを提案手法 の測位結果とする.

3.2 地磁気 FP

WaMM に対し,地磁気 FP を独立して利用する提案手 法では,地磁気 FP 単体で低い測位誤差を達成することが 重要である.そこで,本手法では既存手法を改良した地磁 気 FP を提案する.以降提案手法で用いる地磁気 FP を, 単に地磁気 FP と呼ぶ.

地磁気 FP に DTW 等の波形マッチングを用いる手法 は、マッチングに時系列データが必要となるため、ある程 度の精度を得るまでに一定の時間を要する.したがって、 PDR 等の初期座標や補正時の座標を求める際には適用が 難しい.本論文では、上記の問題に対応するため、1 回の 計測で得たデータから測位する手法を提案する.

3 軸磁気センサによって得られる磁束密度は,端末の座 標系でのベクトル値で与えられる.したがって,センサ データを無加工で利用すると,同じ場所でも,端末の向く

方向によって得られる値が異なる.しかし指紋データとし て記録・マッチングするためには,同じ座標において同じ 値が得られる必要がある.これを解決するため,本手法で は,マッチングに用いるパラメータの決定手法を2つ検証 する.以下に2つのパラメータ決定手法を示す.

3.2.1 地磁気ベクトルを加工する手法

屋外環境では,端末の座標系での地磁気・重力加速度から,端末の方位・仰角を推定することが可能である.ところが,屋内環境では地磁気が屋内の構造等の影響により,本来の値と異なるため端末の方位を推定できず,絶対座標系に一意に変換できない.

上記の問題を解決するため、本パラメータ決定手法では 絶対座標系における地磁気ベクトルを、鉛直方向強度、水 平方向強度、全体強度の3つのスカラ量に変換し、パラ メータとして使用する.この決定手法は理論上、ある1点 で端末がどの方向を向いていても、重力方向の算出による 地磁気の回転変換により一定の値を得ることができる.計 測・測位時の方向を考慮しなくてもよく、計測方向は1点 につき1方向でよいため計測コストが低くなる反面、パラ メータがすべて正の値になる等、データの特徴が欠落する ため、マッチング精度が落ちると考えられる.

本手法の概念図を図3に示す.指紋データ上のj番目の 計測点の地磁気ベクトルは,次のように表現できる.

$$\boldsymbol{m}^{j} = \left(m_{v}^{j}, m_{h}^{j}, m_{w}^{j}\right) \tag{1}$$

ただし, m_v^j , m_h^j , m_w^j はそれぞれ,j番目の計測点で得られる鉛直方向,水平方向,全体の磁束密度である.

スマートフォンから得られる地磁気の値は,端末の座標 系での値となる.これを端末の方位に依存しない絶対座標 系に変換するために, *j* 番目の計測点上での重力加速度ベ クトル $g^{j} = \{g_{x}^{j}, g_{y}^{j}, g_{z}^{j}\}$ を用いて端末のロール角 θ_{r}^{j} , ピッ チ角 θ_{p}^{j} を次のように計算する.

$$\theta_r^j = \arctan\left(-\frac{g_x^j}{g_z^j}\right) \tag{2}$$

$$\theta_p^j = \arctan\left(\frac{g_y^j}{\sqrt{g_x^{j^2} + g_z^{j^2}}}\right) \tag{3}$$

したがって, *j* 番目の計測点の地磁気ベクトルはそれぞ れ次のように計算できる.

$$m_v^j = -m_x^j \cos \theta_p^j \sin \theta_r^j + m_y^j \sin \theta_p^j + m_z^j \cos \theta_p^j \cos \theta_r^j$$
(4)

$$m_w^j = \sqrt{m_x^{j2} + m_y^{j2} + m_z^{j2}} \tag{5}$$

$$m_h^j = \sqrt{m_w^{j2} - m_v^{j2}} \tag{6}$$

ただし, m_x^j , m_y^j , m_z^j は,j番目の計測点で得られた端末の座標系での地磁気ベクトルのx成分,y成分,z成分である.

3.2.2 無加工の地磁気ベクトルを用いる手法

本パラメータ決定手法では、計測・測位時に端末を水平 に保ち、進路・屋内の壁面に平行・交差方向のみの地磁気 ベクトルを得ることで、無加工の地磁気ベクトルをマッチ ングに用いる.この決定手法は、端末の座標系での地磁気 ベクトルをそのままマッチングに使用するため、屋内環境 に遍在する地磁気ベクトルデータを最大限マッチングに活 用することができる.しかし、1つの計測点につき、測位 したい方向分データを採取しなければならないため、計測 コストが上昇し、また測位したい方向が多くなるほど、離 れた計測点で類似した地磁気データが出現するようになり マッチングの精度が落ちると考えられる.

指紋データ上の j 番目の計測点の地磁気ベクトルは次の ように表現できる.

$$\boldsymbol{m}^{j} = \bigcup_{i \in \boldsymbol{D}} \boldsymbol{m}^{j,i} \tag{7}$$

ただし, Dは, 計測点j上で必要となる方向の集合で, $m^{j,i}$ は, 計測点j上でi方向を向いたときの, 端末の座標系での地磁気ベクトルである.

3.2.3 地磁気 FP マッチングアルゴリズム

本手法では、2.4 節で示した「測位エリアが狭いほど、地 磁気 FP の精度は高くなる」という既存研究の考察を基に、 地磁気 FP を考える、測位エリアを絞るため、測位時に得 られた n 個の BSSID 1 つ 1 つについて、その BSSID に紐 付いた計測点を含むエリアを生成し、エリア内地磁気マッ チングによる測位結果を算出する. i 番目のエリアでの地 磁気マッチングの結果の座標を GPos_i(m) とする. AP 密 度が疎な環境では、測位時に BSSID が観測できない可能 性がある. BSSID が観測できなかった場合は、指紋デー タ上の BSSID が観測できなかったよりアでマッチングす る.エリア内地磁気マッチングでは、測位時に得られた地 磁気ベクトル m と、指紋データ上の j 番目の計測点の値 m_j 間のユークリッド距離が最も小さい k 個の計測点の座 標の加重平均が、測位結果となる.本手法では k = 3 と定 める. GPos_i(m) は次のように計算する.

$$\operatorname{GPos}_{i}(\boldsymbol{m}) = \frac{\sum_{j=1}^{k} \operatorname{Euc}\left(\boldsymbol{m}, \boldsymbol{m}^{j}\right)^{-1} \cdot \boldsymbol{pos}^{j}}{\sum_{j=1}^{k} \operatorname{Euc}\left(\boldsymbol{m}, \boldsymbol{m}^{j}\right)^{-1}}$$
(8)

ただし、 pos^{j} はj番目の計測点の座標、Euc (m, m^{j}) は $m \ge m^{j}$ のユークリッド距離である.

その後, n 個の GPos_i (**m**) を, エリアに含まれる計測 点の個数の逆数で加重平均することで, 地磁気 FP の測位 結果 GPos(**m**) を算出する. GPos(**m**) は次のように計算 する.

$$\operatorname{Gpos}(\boldsymbol{m}) = \frac{\sum_{i=1}^{n} N_i^{-1} \cdot \operatorname{GPos}_i(\boldsymbol{m})}{\sum_{i=1}^{n} N_i^{-1}}$$
(9)

ただし, N_i はエリア i に含まれる計測点の個数である.

3.3 Wi-Fi FP

j番目の計測点上の Wi-Fi データは、BSSID・RSSI のリ ストで次のように表現できる.

$$\boldsymbol{w}^{j} = \bigcup_{i=1}^{N^{j}} \boldsymbol{w}_{i}^{j}$$

$$= \bigcup_{i=1}^{N^{j}} \left(bssid_{i}^{j}, rssi_{i}^{j} \right)$$
(10)

ただし, N^{j} は j 番目の計測点で得られた Wi-Fi BSSID の 個数で, $bssid_{i}^{j}$, $rssi_{i}^{j}$ はそれぞれ, j 番目の計測点で得ら れた, i 番目の AP の BSSID と RSSI である.

本手法では、測位時に得られた Wi-Fi データ w と、指紋 データ上の各計測点で観測した Wi-Fi データ間のコストを 計算し、そのコストが最も小さい k 個の計測点の座標を、 コストの逆数で加重平均した結果を測位結果とする.本手 法ではk = 3と定める. Wi-Fi FP の測位結果を Wpos(w) とする.コストは、測位時に観測された BSSID ごとに、 指紋データ上の計測点で観測されていればその RSSI の差 の二乗を, 観測されていなければペナルティ値を加えるこ とで求める.したがって、コストは指紋データと観測時の Wi-Fi データ間の類似度を表すものである.ペナルティ値 が大きいほど Wi-Fi FP の結果は BSSID によって強く制 限され、より正確な測位が可能となる. ところが Wi-Fi 電 波は、障害物の影響、端末のアンテナの性能によって、場 所によって観測が不安定となることがあり、そのような場 所では、ペナルティ値が高い場合思わぬ誤差を生む可能性 がある.本論文では上記の問題を考慮し、十分に大きい値 としてペナルティ値を経験的に 500 と定めた. コストは次 の関数で定義する.

$$\operatorname{cost}(\boldsymbol{w}, \boldsymbol{w}^{j}) = \sum_{i=1}^{N} \operatorname{dist}(\boldsymbol{w}_{i}, \boldsymbol{w}^{j})$$
(11)

ただし, N は w に含まれる BSSID の個数である. dist 関数は, 次の形で定義する.

$$\operatorname{dist}(\boldsymbol{w}_{i}, \boldsymbol{w}^{j}) = \begin{cases} (rssi_{i} - rssi_{i}^{j})^{2} & (bssid_{i} \in \boldsymbol{bssid}^{j}) \\ 500 & (bssid_{i} \notin \boldsymbol{bssid}^{j}) \end{cases}$$
(12)

ただし, $bssid_i$, $rssi_i$, w_i は,式 (10) と同様に与えられる,測位時に観測した i 番目の AP の BSSID と RSSI, およびそのタプルのリストである. $bssid^j$ は, j 番目の計測点で得られた AP の BSSID の集合である.

したがって、Wpos(w) は次のように計算できる.

$$Wpos\left(\boldsymbol{w}\right) = \frac{\sum_{j=1}^{k} \cos\left(\boldsymbol{w}, \boldsymbol{w}^{j}\right)^{-1} \times \boldsymbol{pos}^{j}}{\sum_{j=1}^{k} \cos\left(\boldsymbol{w}, \boldsymbol{w}^{j}\right)^{-1}}$$
(13)

3.4 計測フェーズ

Wi-Fi・地磁気 FP のための指紋データを作成するため に、測位エリア内に 1m の計測間隔で計測点を配置し、 RSSI・BSSID,地磁気、端末から見た重力加速度のデータ をスマートフォンを用いて収集する.1つの計測点につき、 地磁気・重力加速度のデータは、約0.1秒の間隔で 30 回程 度、Wi-Fi データは、約0.2秒の間隔で11 回サンプリング し、これを1回の計測とする.

3.5 準備フェーズ

指紋データの安定性を高めるため、計測フェーズで得た データの平均を指紋データに登録する.地磁気、重力加速 度データは計測点ごとに平均し、Wi-Fi RSSI データは計 測点内の BSSID ごとに平均する. *j* 番目の計測点に含まれ るデータは、

$$\boldsymbol{F}\boldsymbol{P}^{j} = \left\{\boldsymbol{pos}^{j}, \boldsymbol{m}^{j}, \boldsymbol{w}^{j}\right\}$$
(14)

と表される.ただし, pos^{j} はj番目の計測点の座標, m^{j} はj番目の計測点で得られた地磁気ベクトル, w^{j} はj番目の計測点で得られた BSSID・RSSI のリストである.

次に最終的な測位結果となる,地磁気 FPと Wi-Fi FP の測位結果の加重平均の際に用いる,Wi-Fi FPの信頼度 関数のパラメータを決定する.Wi-Fi FPの精度は,測位 時に得られた BSSID の個数と,観測された最大の RSSI の 値に相関があると仮定して,Wi-Fi FPの信頼度関数のパ ラメータを決定する.上記の2つを信頼度関数のパラメー タ決定の指標に選んだ理由を,以下に述べる.

- [仮説 1] 測位時に得られる BSSID の個数が多いほど, マッチングに使用できるデータ数が増えるため,測位 精度が向上すると考えられる.
- [仮説 2] 観測される RSSI は AP からの距離の対数に比 例して減衰することが知られており, AP からの距離 が大きくなるほど, RSSI の減衰量は小さくなる [11]. したがって,測位時のデータの最大 RSSI が高いほど, RSSI と AP からの距離との一意性が高まり,マッチ ングの精度が向上するため,測位精度が向上すると考

えられる.

パラメータ決定のため,異なる時間に計測した2つの指 紋データを用意する.前の指紋データを使用し,次の指紋 データ上の全計測点を測位時データとして Wi-Fi FP を行 い,その測位誤差と各計測点で得られた BSSID の個数と最 大 RSSI を記録する.その後記録したデータから BSSID 数 に対する誤差特性,最大 RSSI に対する誤差特性をプロッ トし,最小二乗法によるフィッティングで,2つの関数の パラメータを決定する.その後,2つの関数を残差平方和 の逆数によって加重平均したものを信頼度関数とする.

 $R(N_b, max_r)$ を信頼度関数とし、以下のように定義する.

$$R(N_b, max_r) = 1 - \frac{RSS_b \cdot F_b(N_b) + RSS_r \cdot F_r(max_r)}{RSS_b + RSS_r}$$
(15)

ただし、 N_b , max_r は測位時に得た BSSID の個数,最大 RSSI である. $F_b(N_b)$, $F_r(max_r)$ は BSSID 数に対する誤 差特性,最大 RSSI に対する誤差特性にフィッティングす る関数, RSS_b , RSS_r は,フィッティングの際に得られた 2つの残差平方和である.フィッティングに利用する関数 F(x) は、次のとおりである.

$$F(x) = d\left(\frac{a}{x+b} + c\right) \tag{16}$$

ただし, x は入力, a, b, c は各誤差特性と F(x) の残差平方 和が最小となるように学習するパラメータである.式 (16) は最大値が無限の関数であるため, Wi-Fi FP の信頼度を 表すモデルとしては不適切である.そこで信頼度関数の値 を $0\sim1$ に正規化するために, フィッティング関数に正規化 係数 d を加える.学習中は d = 1 としておき, その後誤差 特性の観測データをもとに d の値を経験的に設定する.

3.6 測位フェーズ

測位時に観測した BSSID の個数,最大 RSSI を信頼度関 数に代入し,得た信頼度で,Wi-Fi FP と地磁気 FP の測位結 果を加重平均したものを提案手法の測位結果 Ppos (*w*, *m*) とする. Ppos (*w*, *m*) は次のように計算できる.

 $\operatorname{Ppos}\left(oldsymbol{w},oldsymbol{m}
ight)$

$$= \mathbf{R} \left(N_b, max_r \right) \mathbf{W} \mathbf{pos} \left(\boldsymbol{w} \right) + \left(1 - \mathbf{R} \left(N_b, max_r \right) \right) \mathbf{G} \mathbf{pos} \left(\boldsymbol{m} \right)$$
(17)

信頼度による加重平均の様子を図4に示す. 観測 BSSID によって生成されるそれぞれのエリアで地磁気マッチング を行い,それらをエリアの広さで加重平均した結果を地磁 気 FP の測位結果としているため,既存研究の地磁気 FP より高い精度で測位できると考えられる.

測位対象のまわりで,Wi-Fi FPの測位誤差が大きく,地磁気 FPの測位誤差が小さい状況下での測位のイメージを図5に示す.WaMMによる測位結果は,Wi-Fi FPの測

Fig. 4 Reliability based weighted average of Wi-Fi FP and Geomagnetic FP.

- 図 5 Wi-Fi FP 測位誤差大,地磁気 FP 測位誤差低の条件下での WaMM と提案手法の測位結果のイメージ図
- Fig. 5 Comparison of WaMM and Proposed method when Wi-Fi FP is not accurate and Geomagenetic FP is accurate.

位誤差が大きいため、測位対象を含んだエリアで地磁気 FP を適用できず、地磁気 FP が異なる位置を測位結果とし、 その結果測位誤差が大きくなる.提案手法では、Wi-Fi FP と地磁気 FP を独立して行い、かつ Wi-Fi FP の信頼度を 用いて、Wi-Fi FP の測位結果を地磁気 FP との加重平均 により補正するため、WaMM と比較して測位誤差が小さ くなると考えられる.

4. 評価実験

4.1 実験環境とデータセット

本手法の実験環境として,明石工業高等専門学校本棟1 階廊下(全長約200m)を利用する.実験環境の図面を図6 に示す.指紋データのための計測点は,図6の赤・青点の ように,1m間隔で340点配置した.データの計測および 測位にはSamsung Galaxy Nexus (Android 4.2.1)を使用 した.

使用するデータセットとして,図6に示す計測点上で BSSID・RSSI,地磁気,重力加速度を計測,その6日後, 11日後に同様に計測し,3.5節に示したデータ加工により 3つの指紋データを作成する.計測フェーズでは,各計測 点で1回ずつ,端末を水平に保った状態で計測する.1回 目,2回目の指紋データを用いてWi-FiFPの信頼度関数

図 6 実験環境 Fig. 6 Experiment environment.

図 7 各計測点上で観測された BSSID ヒートマップ Fig. 7 Heatmap of BSSID on each measuring point.

のパラメータを決定する.その後,2回目の指紋データを 基に,3回目の指紋データを測位時データとして測位し, 評価する.3回目の指紋データを測位時データとして利用 する理由は,計測エリア全域での測位誤差の評価の際に計 算が容易であるためである.また,計測点上以外を歩行し たときのデータを 42 日後に計測する.

実験環境では,BSSID が 99 個観測された.1回目の指 紋データの各計測点上で得られたBSSID の個数は図7の ように分布している.上下を結ぶ中央通路はWi-Fi電波が 得られないエリアとなっており,Wi-Fi FP や WaMM で は測位結果を出力できないと考えられる.

4.2 実験項目

4.2.1 地磁気パラメータ決定手法の比較

どちらの地磁気パラメータが,地磁気 FP の測位精度向 上につながるかを検証するため,3.2.1 項,3.2.2 項で述べ た2つの決定手法の測位誤差を評価する.測位時データと して,3回目の指紋データ上の図6に示した全計測点を使 用する.また,Wi-Fi環境が十分でない屋内環境での性能 を評価するため,指紋データと測位時に観測されたBSSID を無作為に削減し,両手法の測位誤差の変化を評価する.

加工地磁気パラメータでの地磁気 FP は端末の向きにか かわらず測位可能である.ところが,無加工地磁気パラ メータでの地磁気 FP は計測時の方向のみしか測位できな い.各計測点に1方向しか計測していないとき,その方向 で測位すると無加工地磁気パラメータによる地磁気 FP が 有利になる.公平に評価するため,無加工の地磁気ベクト ルを用いる際は,各計測点上の4方向の地磁気データを 指紋データに登録する.本実験では人的コストの削減のた め,1方向のデータを回転行列によって4方向のデータに 拡張している.

4.2.2 地磁気 FP における測位エリアの制限による測位 精度変化の検証

地磁気 FP について,2.4 節で述べた「計測範囲が拡大す るほど精度が低くなる」という事実について検証する.指 紋データと測位時に観測された BSSID を 100%削減したと きの測位誤差は,計測範囲全域を計測エリアとする地磁気 FP に等しく,その他の削減率の測位誤差は,観測 BSSID によって地磁気 FP を適用するエリアを制限したときの地 磁気 FP である.BSSID を 100%削減したときと,それ以 外の削減率の地磁気 FP について,測位誤差とその分布の 違いについて評価する.

4.2.3 各誤差特性の検証

3.5 節で述べた信頼度関数の決定要因である,Wi-Fi FP の観測 BSSID 数に対する測位誤差,観測最大 RSSI に対す る測位誤差の相関を評価し,3.5 節で述べた仮説を検証す る.測位時データとして,3回目の指紋データ上の図6に 示した青点群を矢印に沿って時系列順に並べたものを使用 する.

4.2.4 既存研究との比較

既存手法・提案手法の性能を評価するため,2.5節で述べたWi-Fi FP,WaMM,地磁気FP,提案手法のBSSID 削減率に対する測位誤差の分布・測位失敗率を求める.測 位時データとして,3回目の指紋データ上の図6に示した 矢印に沿った点群を時系列順に並べたものを使用する.こ れはWaMMが時系列データを利用した測位であるためで ある.測位失敗率は,測位時にBSSIDが観測されなかっ たために,測位不可能となる割合を示す評価指標である.

また,測位誤差・測位失敗率を総合的に評価するため, 測位誤差が5m,または3m以下となる確率(以下,収束 確率)を求める.ショッピングモールや事務所等の環境で 屋内測位を利用する際,測位対象がどの店舗・部屋の前に 存在するかが分かれば,測位誤差として十分であると考え た.また,敷地が通路に面する標準的な長さを考慮して店 舗の推定には5m,部屋の推定には3mの以下の誤差であ れば十分とし,この2つのユースケースにおいて,提案手 法と既存手法の性能を評価する.

4.2.5 計測点上以外を歩行したときの測位誤差の評価

実際の FP による屋内測位では計測コストの観点から, 計測点の密度が低いほど,測位時に計測点上を歩行しない 割合が多くなる.この状況が測位誤差に与える影響を評価 するため,配置した計測点間を歩行したときの測位誤差の 分布を求め,4.2.4 項で得た分布と比較しその違いについ て考察する.

4.3 実験結果・考察

4.3.1 地磁気パラメータ決定手法

図 8, 図 9 に 4.2.1 項の実験結果を示す. 図中の箱ひ げ図は,全測位誤差の上下 5%を外れ値として除外し作成 している. 図中の赤い四角は平均値を表す. 両手法とも, BSSID 削減率上昇による測位誤差の変化度合いに大きな違 いは見られず,50%以下の削減率では,測位精度に大きな 変化はないことが分かる.

2つの地磁気パラメータについて,各 BSSID 削減率にお ける測位誤差の有意差について有意水準 0.05 の t 検定で確 認したところ,BSSID 削減率 100%のみ有意差が見られず, その他の BSSID 削減率では有意差が認められた.したがっ

Fig. 8 Positioning error of Geomagnetic FP using raw or processed geomagnetism every BSSID reduction rate.

図 9 無加工・加工地磁気パラメータを用いた地磁気 FP の BSSID 削減による平均測位誤差・中央値の推移

Fig. 9 Median and mean positioning error of Geomagnetic FP using raw or processed geomagnetism every BSSID reduction rate.

て,BSSIDによって測位エリアを制限できる場合のみ,無 加工データのほうが精度良く測位できることが分かった. これは無加工データにとって廊下という実験環境が計測・ 測位時の端末の方向を制限しやすく,遍在した地磁気の特 徴を十分に得られたので,マッチングの精度が上がったた めだと考えられる.ただし,BSSID 削減率 100%のとき, 両パラメータによる測位誤差に差がないため,ホール等の 自由空間では加工データが有利になる可能性がある等,環 境によって加工・無加工の適正が変わると考えられる.

本論文の実験環境は廊下であり、また多くの場所でWi-Fi APが観測できるため、以降の実験では条件の良い無加工 の地磁気パラメータを用いて地磁気 FP を行うこととする.

4.3.2 地磁気 FP における測位エリアの制限による測位 精度変化の検証

図 8 から 4.2.2 項の内容を検証する.両パラメータを利 用した地磁気 FP について,BSSID 100%削減時の測位誤 差と比較して,その他の削減率の地磁気 FP は 15~20 m 測 位誤差が小さくなった.したがって,「測位エリアが狭い ほど,地磁気 FP の精度は高くなる」という既存研究の考 察が正しいことを改めて確認した.

4.3.3 Wi-Fi FP における各誤差特性の検証

図 10, 図 11 に観測最大 RSSI, 観測 BSSID 数に関する Wi-Fi FP の誤差特性を示す.Wi-Fi FP の観測最大 RSSI・ 観測 BSSID 数と測位誤差には相関があり, 観測最大 RSSI・ 観測 BSSID 数が小さいほど反比例的に測位誤差が大きく なることが分かる.よって 3.5 節で述べた仮説 1, 仮説 2 の正当性が示された.本実験では図 10, 図 11 に示す各 データにフィッティングした関数を利用し信頼度関数を作 成する.本実験に用いる信頼度関数のパラメータは,図 10 に示したデータにフィッティングした関数(式(16))にお いて, a = 235.5, b = 100.1, c = -5.0, $RSS_r = 18882.2$, 図 11 に示したデータにフィッティングした関数(式(16)) において, a = 41.5, b = 1.01, c = -1.0, $RSS_b = 18775.1$ である.また,両関数とも正規化係数*d* は 0.025 とした.

図 10 Wi-Fi FP の観測最大 RSSI に対する誤差特性

Fig. 10 Relation between max observed RSSI and positioning error of Wi-Fi FP.

図 11 Wi-Fi FP の観測 BSSID 数に対する誤差特性

Fig. 11 Relation between number of observed BSSID and positioning error of Wi-Fi FP.

図 12 BSSID 削減率に対する測位失敗率の推移

4.3.4 既存研究との比較

図 12 に BSSID 削減率に対する測位失敗率の推移を示 す. BSSID 削減率が上昇すると, Wi-Fi FP・WaMM は測 位失敗率が上昇するが, 地磁気 FP および提案手法は測位 失敗率がつねに 0%となった. これは地磁気 FP が, AP か らの電波の有無にかかわらずどこでも測位できることから,

Fig. 13 Error distribution on each reduction rate of BSSID.

図 14 BSSID 削減による平均測位誤差の推移

Fig. 14 Relation between BSSID reduction rate and mean positioning error.

測位に失敗しないためである.また,WaMMがWi-FiFPより高い理由は,Wi-FiFPによって得られた位置を中心に生成した範囲に,計測点がない場合,測位できないためである.

図 13, 図 14, 図 15 に Wi-Fi FP, WaMM, 地磁気 FP, 提案手法の,各 BSSID 削減率での測位誤差を示す.BSSID が十分にある場合は,Wi-Fi FP が最も良い精度で測位で き,BSSID が少ない場合は,地磁気 FP が最も良い精度で 測位できることが分かる.提案手法は Wi-Fi FP と地磁気

Fig. 15 Relation between BSSID reduction rate and median positioning error.

図 16 5m 以下収束確率

Fig. 17 Probability that positioning errors are equal to or less than 3 m.

FP の中間あたりで測位誤差が分布しているが,測位失敗 率が0%であること,地磁気 FP よりも提案手法の測位誤差 の分布が低く収まっていることから,提案手法は,Wi-Fi FP と地磁気 FP を適切に組み合わせた安定な手法である といえる.

提案手法は,BSSID 無削減のとき,平均値 6.95 m,中 央値 3.48 m,測位失敗率 0%となった.また,指紋・測位 データから無作為にBSSID を 50%削減しても,測位誤差 の平均値 8.49 m,中央値 4.45 m と BSSID を削減しない場 合と比較して測位失敗率を 0%のまま約 25%の測位精度低 下に抑えることができた.

図 16, 図 17 に Wi-Fi FP, WaMM, 地磁気 FP, 提案 手法の収束確率, および BSSID 削減に対する変化を示す. 地磁気 FP 以外は,BSSID 削減率が増加するごとに,収 束確率は低下している.また,BSSID を 75%削減したとき の地磁気 FP を除き,すべての BSSID 削減率について他手 法と比較したとき,提案手法がより優れた結果となった.

BSSID を 75%削減したとき,3m以下収束確率について は WaMM が 24%,提案手法が 28%と大きな違いは見られ なかった.しかし,5m以下収束確率については WaMM が 28%,提案手法が 48%となった.これは,WaMMの測 位誤差が Wi-Fi FP の測位誤差・測位失敗率の悪化に大き く影響を受けていることに対し,提案手法は比較的安定な 地磁気 FP を利用し,Wi-Fi FP の測位誤差・測位失敗率 の悪化を抑制したためと考えられる.

BSSID を 75%削減したときの地磁気 FP について、他の BSSID 削減率の地磁気 FP の収束確率と比較して、その値 が大きくなっている. これは, 提案手法において Wi-Fi FP 信頼度の値が観測 BSSID が少ない場合でも高い値となり、 そのような状況でも Wi-Fi FP に加重がかかった結果, 地磁 気 FP の測位精度を活かせなかったことが原因である.提 案手法では、図 10、図 11 のとおり、式 (16) をフィッティ ングすることで Wi-Fi 信頼度関数(式 (15))を求めてい る. ところが,式(16)という反比例のグラフでフィッティ ングしたことにより、図 11 において、観測 BSSID が多い 等,精度が良いときのサンプルの影響が強く表れ,BSSID が極端に少ない場合でも Wi-Fi FP 信頼度が下がりきらな かった.具体的な1測位サンプルとして,BSSID 観測数が 1で,提案地磁気 FP の測位誤差が 1.20 m, Wi-Fi FP の測 位誤差が11.81mのとき、Wi-FiFP 信頼度が0.62となり、 提案手法の測位誤差が 7.41 m となった. BSSID 観測数が 0のときを除けば、地磁気 FP の測位誤差が Wi-Fi FP の 測位誤差より小さい割合は0.57であり、また、そのときの 平均 Wi-Fi FP 信頼度は 0.67 となった. したがって, 地磁 気 FP が Wi-Fi FP の測位誤差の補正に大きく貢献できな かったため、提案手法の測位誤差が地磁気 FP より大きく なったと考えられる.

4.3.5 計測点上以外を歩行したときの測位誤差の評価

図 18 に計測点上以外を歩行し、測位時データを収集し たときの、各測位手法の BSSID 削減に対する測位誤差の 変化を示す.図 13 と比較して、地磁気 FP 以外は測位誤 差の四分位範囲(箱ひげ図における箱の高さ)は大きくな り、測位誤差は悪化していることが分かる.ところがこの 場合も、測位失敗率がつねに0かつ、全体的に地磁気 FP より測位誤差が小さいという提案手法の安定性は失われて いないため、計測点密度を上げる等で Wi-Fi FP の精度を 維持できれば、この場合でも提案手法は有効な屋内測位手 法になると考えられる.

5. おわりに

本論文では測位エリアが狭いほど精度良く測位できる地

図 18 計測点上以外を歩行したときの各 BSSID 削減率での測位誤 差分布

磁気 FP と,おおよその位置を推定することが可能・AP 密度が高いほど高精度な測位が可能な Wi-Fi FP を互いの 欠点を補完するように組み合わせることで,Wi-Fi 環境が 十分でない屋内環境でも安定して測位できる絶対測位手法 を提案した.また,組み合わせる際に用いた Wi-Fi FP の 信頼度関数の決定指標として,観測最大 RSSI・BSSID 数 が有効であることを確認した.

評価実験により,Wi-Fi FP や WaMM が測位に失敗す るエリアを含んでいても,提案手法では測位誤差の平均値 6.95 m,中央値 3.48 m,測位失敗率 0%となり,測位失敗 率を加味したうえで WaMM,Wi-Fi FP と同程度の測位 誤差を達成した.また,指紋・測位時データから無作為に BSSID を 50%削減しても,測位誤差の平均値 8.49 m,中央 値 4.45 m と BSSID を削減しない場合と比較して約 25%の 劣化に抑えることができ,Wi-Fi 環境が不十分である環境 での,インフラを必要としない屋内測位について一定の 成果をあげた.観測できる BSSID を 75%削減した場合の 5 m 以下収束確率においては,Wi-Fi FP が 23%の減少に 対し,提案手法は 14%の減少に抑えられた.計測点上以外 で測位を行った場合も,提案手法は有効な手法であること が示された.

今後の課題として,より広い屋内環境において,異なる 位置にWi-Fi BSSID が観測できないエリアが複数存在す る場合に,Wi-Fi BSSID が得られないエリアを分割し,エ リア生成および測位することがあげられる.また,相対測 位手法である PDR や,画像認識による絶対測位手法等と 本手法を組み合わせることでさらなる測位精度向上を検証 すること,地磁気 FP における測位誤差を低減させるため のエリア選定手法の検討,低い計測コストで計測点密度を 向上させる手法の検討,端末の個体差による測位誤差の悪 化の防止,信頼度関数の決定手法の改良があげられる.

謝辞 本研究の一部は, JSPS 科研費 25730066, 16K00147 の助成によるものである

参考文献

- Kawauchi, K. and Rekimoto, J.: FineMesh: High-Density Sampling Platform Using an Autonomous Robot, 2012 IEEE International Conference on Green Computing and Comunications, pp.477–486 (2012).
- [2] 谷内大祐,前川卓也:ブースティングを用いたアクセスポ イントの重要性を考慮した Wi-Fi 屋内位置推定手法,情報 処理学会研究報告, Vol.SIG-UBI-43, No.3, pp.1-7 (2014).
- [3] Vandermeulen, D., Vercauteren, C. and Weyn, M.: Indoor localization Using a Magnetic Flux Density Map of a Building, AMBIENT 2013, The 3rd International Conference on Ambient Computing, Applications, Services and Technologies, pp.42–49 (2013).
- [4] Li, B., Gallagher, T., Dempster, A. and Rizos, C.: How feasible is the use of magnetic field alone for indoor positioning?, *International Conference on Indoor Positioning and Indoor Navigation*, pp.1–9 (2012).
- [5] 屋良朝克,五百蔵重典,田中 博ほか:シミュレーションによる超音波測位システムの測位誤差要因の検証,マルチメディア,分散協調とモバイルシンポジウム 2014 論 文集,pp.30-35 (2014).
- [6] 古舘達也,堀川三好,菅原光政:歩行者を対象とした屋 内測位手法の提案,情報処理学会第77回全国大会講演論 文集,Vol.2015, No.1, pp.313–315 (2015).
- [7] 梶 克彦,河口信夫:安定歩行区間に基づく歩行軌跡推 定手法,情報処理学会研究報告,Vol.2014-UBI-44, No.19, pp.1-8 (2014).
- [8] Pritt, N.: Indoor navigation with use of geomagnetic anomalies, Proc. 2014 IEEE International Geoscience & Remote Sensing Symposium, pp.1859–1862 (2014).
- [9] Ban, R., Kaji, K., Hiroi, K. and Kawaguchi, N.: Indoor positioning method integrating pedestrian Dead Reckoning with magnetic field and WiFi fingerprints, 2015 8th International Conference on Mobile Computing and Ubiquitous Networking, pp.167–172 (2015).
- [10] Li, Y., Zhuang, Y., Lan, H., Zhang, P., Niu, X. and El-Sheimy, N.: WiFi-aided magnetic matching for indoor navigation with consumer portable devices, *Micromachines*, Vol.6, No.6, pp.747–764 (2015).
- [11] 久保田僚介,田頭茂明,荒川 豊,北須賀輝明,福田 晃: 無線 LAN を用いた屋内位置推定における学習コスト削 減のための高精度データ補間手法,情報処理学会論文誌, Vol.54, No.4, pp.1609–1618 (2013).

東 和樹 (ジュニア会員)

2016年明石工業高等専門学校電気情 報工学科卒業.大阪大学基礎工学部在 学.Wi-Fi,地磁気を利用した測位シ ステムの研究に従事.

新井 イスマイル (正会員)

2002年明石工業高等専門学校専攻科機 械・電子システム工学専攻修了.2008 年奈良先端科学技術大学院情報科学研 究科博士課程修了.博士(工学).2008 年立命館大学ポスドク研究員,2011年 明石工業高等専門学校助教・講師・准

教授を経て、2016年より奈良先端科学技術大学院大学総合 情報基盤センター准教授.屋内測位システム、センサネッ トワーク等、ユビキタスコンピューティングの研究開発に 従事.ACM 会員.