Vol.41 No. SIG 3(TOD 6)

AN EA e
2yl j( W

May. 2000

Designing A Language for Querying XML Data

Hiroshi Ishikawa, * Kazumi Kubota, +* and Yasuhiko Kanemasa **

XML data have begun to be widely used in EC/EDI applications, digital libraries, and Web
information systems. Such applications usually use a large number of XML data. First, we must

allow users to retrieve only necessary portions of XML data by specifying search conditions to

flexibly describe such applications. Second, we must allow users to combine XML data from

different sources to produce new XML data. To this end, we will provide a query language for XML

data called X@L. We have designed XQL, keeping in mind its continuity with database standards

such as SQL and OQL although we don’t stick to its strict conformity. In this paper, we describe

the requirements for a query language for XML data and explain the functionality of XQL with its

semantics based on set theory. Finally, we make brief comments on the implementation of XQL.

1. Introduction

XML data are expected to be widely used in
Web  information systems and EC/EDI
applications. Such applications usually use a
large number of XML data. First, we must
allow users to retrieve only necessary portions of
XML data by specifying search conditions to
flexibly describe such applications. Second, we
must allow users to combine XML data from
different sources. To this end, we will provide a
query language for XML data tentatively called
XQL (Xml data Query Language) ©, which has
coincidentally the same name as a query
language proposed by Microsoft and et al.®)

One goal of XQL is to provide integrated
access to heterogeneous data sources with
different schemas. For example, XQL enables the
client to retrieve the cheapest shopper for the
same item from multiple on-line shopping sites
like so-called Iinfomediary® or information
intermediation businesses on the Internet (See
Figure 1) although catalogues and prices may
have different structures depending on shops,
which we call semi-structured data. Another goal
associated with heterogeneity is to combine
heterogeneous data-intensive applications. For
example, XQL enables the client to check where
the ordered item exists by combining the
order-entry system and the item tracking system
with the same order number. Thus, XQL will
serve as a central role for constructing both
kinds of EC applications: Business to Customer
and Business to Business.

+ Tokyo Metropolitan University
++ Fujitsu Laboratories Ltd.

XML-based
Tnfomediary -product data
-order data
Server
-customer data
XML DB

Figure 1. An XML data-intensive application

A second goal of XQL is to select digital
contents by specifying search conditions on
XML-based descriptions. For example, XQL will
help the customer or mediator to find digital
contents satisfying search conditions on
XML-based properties, distributed at different
sites such as digital libraries and museums. XQL
will also help to find interesting programs among
hundreds of digital TV channels by querying
XML-based EPG (Electronic Program Guide).

A third goal of XML is to tailor XML data
published at Web sites for custom needs. For
example, XQL helps filter technical manuals
containing different versions to produce a
manual for a dedicated purpose. XQL also allows



2 LI 223 R

the customer to gather only
information  from  disclosure
published at EDGAR-like sites for making
customized reports.

A query language called XML-QL » has
already been proposed to W3C, which has largely
inspired the design of XQL. The first workshop
on XML query language was successfully held 9.
As a result, W3C has launched a workgroup
XML-Query to propose standard query
languages for XML data. We have designed XQL,
keeping in mind its continuity with standards
such as SQL v and OQL ? although we don’t
stick to its strict conformity. We will describe
the requirements for a query language for XML
data in Section 2 and explain the functionality of
XQL with its semantics based on set theory by
using the example data in Section 3. We will
compare XQL with other proposals and describe
implementation XQL

necessary
information

the current of our

processing system in Section 4.

2. Requirements
We consider the following requirements as
mandatory for a query language for XML data:

(1) XML query languages must take XML data
as input and give XML as output. This is
necessary to combine queries in succession.
For example, the customers in the above
infomediary services interactively refine
search results of product data.

(2) XML query languages must understand
features of XML data structures such as
elements, tags, and attributes. In particular,
the wusers able to specify
hierarchical (e, nested
structures) of tag paths in a query. This is a
basic necessity for a data model of XML
query languages, capturing semantics of
applications such as infomediary services.

(3) XML query languages must provide
operations on XML data, that is, XML
versions of relational operators such as
selection, join, sort, and grouping. XML
query languages must be also able to
produce new elements by using retrieved
elements. This is a basic necessity for XML
query languages themselves, enabling
efficient application development such as

must be
structures

infomediary services.
(4) XML query languages must view XML data

(5

()

(D

May. 2000

as ordered sets of elements and must
preserve the order. They must provide
indexed access to ordered elements. For
example, the customer requests
recommendations from multiple suppliers
and chooses the first one from each group of
recommendations by using an index number.
Further, they must provide set operators
over XML data such as union, intersection.
For example, infomediary services merge
catalogue data from different suppliers by
using a set operator union.

XML query languages must be able to
combine heterogeneous XML data from
different sources specified by different URIs.
For example, infomediary services combine
ordering databases at suppliers and tracking
databases at logistics with the same order
number. They must be also able to provide
universal access to multiple data sources
even with slightly different schemas. For
example, infomediary services merge price
and availability data for the same item from
different suppliers, which autonomously
have slightly different schemas depending
on suppliers. This 1s
integrating Web-based XML data-intensive
applications. Note that SQL and OQL don’t
provide this function.

XML  query languages
specification of regular expressions both on
tag paths and text strings although full
capability may be unnecessary because of its
computational complexity. This is necessary
to resolve semi-structured-ness of XML. For

necessary for

must  allow

example, customer databases slightly differ
from channel to channel such as the Internet,
telephony, and postage for optimal design.
Infomediary services such
semi-structured databases to
prospective customers. This is helpful for

combine
mine

querying heterogeneous data sources and
uncertain data sources. This is also helpful
for flexibly filtering XML data. Note that
neither SQL nor OQL provides this function.
XML query languages must allow the users
to define views on base XML data, which are
analogous to relational views. That 1s, the
users must be able to define XML data views
as functions by using XML query languages
and to specify such functions in a query.



Vol. 41 No. SIG 3(TOD 6)

This is necessary for tailoring base XML

data for custom needs and reusing them. For

example, frequently asked queries in
infomediary services are defined as functions
for reuse.

(8) An XML query must be embedded in XML
data and be evaluated to produce XML data.
This is necessary for extending dynamic
aspects of XML data. For example, the prices
embedded in product catalogues in
infomediary services change in time course,
so on-demand access through an embedded
query is necessary for refreshing most
current prices.

(9) XML query languages must keep syntactic
and semantic continuity with other
standards such as SQL and OQL although
SQL and OQL’s lack of the above important
functions (5) and (6) necessitates new XML
query languages other than SQL and OQL.
This feature is necessary for increasing
efficiency in application development such as
infomediary services because the developers
have already been familiar with the
standards, which are nonprocedural.

(10) XML query languages must be processed
efficiently. Efficiency is always a key to
success in new applications such as
infomediary  services. The  language
processor must provide query optimization.
The processor must use schema information
if available although it doesn’t assume the
existence of schemas.

3. Design

3.1 Database schema

We use database schemas or DTD by slightly
changing example DTD used in XML-QL?® as
follows:

<IELEMENT bib (book*, article*)>
<IELEMENT book (author+, title, publisher)>
<!ATTLIST book year CDATA>

<IELEMENT article (author+, title, publisher)>
<!IATTLIST article year CDATA >
<IELEMENT publisher (name, address)>
<IELEMENT author (firstname?, lastname,
office+)>

<IELEMENT office #PCDATA | (building, -
room))>

<IELEMENT title #PCDATA)>

<IELEMENT name #PCDATA)>
<IELEMENT address #PCDATA)>

Designing A Language for Querying XML Data 3

<IELEMENT firstname @PCDATA)>
<IELEMENT lastname #PCDATA)>
<IELEMENT building #PCDATA)>
<IELEMENT room #PCDATA)>

Here DTD for book elements indicates that a
book has at least one author and one mandatory
title and publisher. DTD for article elements
indicates that an article has one mandatory
author and title and one optional year. An article
has a year as an attribute. Note that an author
has at least one office, which has a variant
structure of either literal data or a pair of
building and room. Like this example, XML data
are inherently semi-structured, which XML
query language design must take into account.

The following is a part of XML data with
conformity to the above DTD:

<bib>
<book year="1993">
<author>
<firstname>Hiroshi</firstname>
<lastname>Ishikawa </lastname>
<office>
<building> L2 </building>
<room> S210 </room>
</office>
</author>
<title>Object-Oriented DatabaseSystem
</title>
<publisher> Springer Verlag </publisher>
</book>
<book year="1996">
<author>
<firstname>dJeff </firstname>
<lastname>Ullman </lastname>
<office> Gates Building</office>
</author>
<author>
<firstname>Jennifer</firstname>
<lastname>Widom</lastname>
</author>
<title>A First Course in Database Systems
</title>
<publisher> Prentice-Hall</publisher>
</book>
</bib>

We take an ordered directed graph as a
logical model for an XML query language. That
is, the data model of an XML query language can
be represented as data structures consisting of
nodes and directed edges, which are ordered.



3.2 Functionality

We describe the functionality of XQL by
using schemas introduced in the previous section.
XQL has a select-from-where construct as a basis,
similar to SQL and OQL.

(1) Data match for selection

The basic function of XQL is to select
arbitrary elements from XML data by specifying
search conditions. The following query retrieves
authors of books published before 1995 by
Springer Verlag:

select $book.author
from bib URI “www.a.b.c/bib.xml”,
book $bib.book
where $book.publisher.name
=‘Springer Verlag” and
$hook.@year < “1995”

The basic unit of XQL is a path expression,
that is, an element variable (explained just
below) followed by a series of tag names such as
“$bib.book”. The user must declare at least one
element variable in a from-clause such as bib
and book. In particular, the user can bind XML
data as input specified by URI to element
variables such as bib. This declares a context
where an XQL query is evaluated. References of
element variables are done by prefixing “$” to
them such as $bib.book. In a select-clause, the
user specifies XML data as a result such as
$book.author. Result elements have a tag for
author as default in this case. The user checks a
data match condition for selection in a
where-clause. In general, conditions consist of
logical combination of simple conditions such as
$book.publisher.name =“Addison-Wesley”. Note
that attributes such as year are referenced
similar to tags by prefixing “@” to attributes,
such as $book.@year. Basically, two values of
elements are compared in an alphabetical order.

The result of an XQL query is XML data. In
our current design, the resultant XML data have
no DTD, that is, they are well-formed XML data.
As XQL doesn’t assume the existence of DTD or
schemas and it can retrieve just well-formed
XML data, this causes no problem. However, we
have a future plan to provide an option to
dynamically create resultant DTD for valid XML
with assistance of users’ hints such as XML data
construction specification in XQL queries.

May. 2000

For example, the result of the above query
has the following structure, automatically
wrapped by a tag “XQL:result”:

<XQL:result>
<author>
<firstname>Hiroshi</firstname>
<lastname>Ishikawa </lastname>
<office>
<building> L2 </building>
<room> S210 </room>
</office>
</author>
<author> ... </author>

</)‘§.QL1resu1t>

In general, of course, the users have to know
schemas for XML data before they submit
queries. They usually consult DTD or schemas
defined by currently proposed XML schema
definition languages if there are any DTD or
schemas available. Otherwise, a possible
approach is to automatically extract schemas
from individual XML data. However, we
currently think that this is not a mature
technology applicable to XQL.

We briefly describe the semantics of XQL
based on set theory. A set of XML elements is
either ordered or unordered. XML elements have
hierarchical structures; XML elements contain
other XML elements, (i.e., sub-elements). We
consider sub-elements and attributes as
semantically the same although attributes have
no hierarchical structures. In fact, elements are
restricted by conditions specified on their
sub-elements and XQL queries
produce a set of elements satisfying conditions.
Assuming that an element KEa satisfies
conditions Ca and C’a over an element variable &,
we define the semantics of XQL queries as

attributes.

follows:

Query: select a from a where Ca

Semantics: { Ea | Ca}

Query: select a from a where Ca and Ca

?emanticsi {Ba | Ca} intersection { Ea |
Ca

Of course, if “or” is specified instead of “and”
in the second query, then “intersection” is
replaced by “union” in the semantics.



Vol. 41 No. SIG 3(TOD 6)

Elements can contain more than one

sub-element of the same type, such as authors of

books. In that case, consider the following query:

select $book.title
from bib URI “www.a.b.c/bib.xml’,
book $bib.book
where $book.author.lastname
=“Dshikawa” and
$hook.author.lastname ="“Kubota”

The query result has the following structure:

<XQL:result>
<title> ...
</title>
<title> ... </title>

</XQLiresult>
Its semantics is as follows:

{book | book.author.lastname =“Ishikawa’}
intersection {book | book.author.lastname
=“Kubota’}

Although the condition of the above query
seems nonsense superficially, its semantics is
valid G.e., a nonempty set) and the query returns
books co-authored by Ishikawa and Kubota.

(2) Data constructor

XQL allows any combination of retrieved
elements to produce new element constructs. The
following query produces mnew elements
consisting of titles and authors of books
published by Prentice-Hall:

select result <@book.title, $book.author >
from bib URI “www.a.b.c/bib.xml’,

book $bib.book
where $book.publisher.name

= “Prentice-Hall”
Here “<>” in a select-clause enclosing
elements delimited by “” creates new XML
elements of a specified construct such as author
and title tags. New elements have a name result

as follows:

<XQL:result>
<result>
<title>A First Course in Database Systems
</title>

Designing A Language for Querying XML Data 5

<author>
<firstname>Jeff </firstname>
<lastname>Ullman </lastname>
<office> Gates Building</office>
</author>
<author> ... </author>
</result>
<result> ... </result>

</X.QLiresult>

As a book has more than one author, each
result element consists of a series of authors and
one title. Of course, authors of results have
further structures such as lastname and office.
Like this, the select-clause allows extraction and
combination of sub-elements at any level.

(3) Join

XQL joins different elements by comparing
their values in a where-clause. The following
query joins books published after 1995 and
articles by authors as a join key within the same
XML data:

select result <$article, $book>
from bib URI “www.a.b.c/bib.xml’,
article $bib.article, book $bib.book
where $book.author.firstname
= $article.author.firstname and
$book.author.lastname
= $article.author.lastname and
$book.@year > “1995”

The query result has the following structure:

<XQL:result>
<result>
<article year="...”>
<author> ...</author>
<title> ... </title>
<publisher> ...</publisher >
</article>
<book year="...">
<author> ...</author>
<title> ... </title>
<publisher> ...</publisher>
</book>
</result>
<result> ... </result>

</XQL:result>

We define the semantics of a join query as
follows (Ca,b is a join condition):.



Query: select <a, b> from a, b where Ca,b and
Ca and Cb

Semantics: {{ Ba | Ca} product { Eb | Cb} |
Ca,b}

(4) Regular path expression

XQL allows regular path expressions for
retrieving slightly heterogeneous elements. The
following query retrieves last name of authors
whose office is either a whole house or a room in
a building:

select result <$author.lastname>
from bib URI “www.a.b.c/bib.xml”,
author $bib.book.author,
office $author. (office | office.room)
where $office = ‘2457

Here “office” is bound to “Sauthor.office” or
“$author.office.room”. “|” denotes choice between
more than one path. Like this, XQL allows the
user to query against semi-structured XML data.

The query result has the following structure:

<XQL:result>
<result>
<lastname> ... </lastname>
</result>
<result> ... </result>

</XQLresult>

The above query is alternatively expressed

like this:

select result <$author.lastname>
from bib URI “www.a.b.c/bib.xmli”,
author $bib.book.author
where $author. (office | office.room) = “245”

We don’t use tag variables introduced by
XML-QL ®. Instead, we
expressions as path expressions so that the user

allow regular
can simulate tag variables by using element
variables declared as regular path expressions.
The following query retrieves authors of any
material such as book and article whose name is
Ishikawa.

select result <$anyauthor>

from bib URI “www.a.b.c/bib.xml”,
anyauthor $bib. %.author

where $anyauthor.lastname =“Ishikawa”

May. 2000

“%” denotes “wild card”. “$bib.%.author”
matches  both  of “book.author”  and
“article.author”. The query result has the
following structure:

<XQLiresult>
<result>
<author> ... </author>
</result>
<result> ... </result>

</XQLresult>

Consider a more complicated example. The
following  query  retrieves  heterogeneous
elements such as book titles published in 1995
with either authors or editors whose name is
Smith:

select result <$any.title, $Aork>
trom bib URI “www.a.b.c/bib.xml”,
any $bib. %,
AorE $any.(author | editor)
where $any.@year= “1995” and
$Aork. lastname =“Smith”

Here “$any.(author | editor) ” matches path
expressions such as “book.author”, “book.editor”,
“article.author”, and “article.editor”. The query
result has the following structure:

<XQLresult>
<result>
<title> ... </title>
<author> ... </author>

</result>

<result>
<title> ... </title>
<editor> ... </editor>

</result>
</XQL:result>

Note that multiple occurrences of “%”
specified by “any” in a from-clause are supposed
to be bound to the same path at the same time in
a query. We are afraid that full regular
expressions can cause extra burdens on servers,
so we temporarily restrict expressions to
combinations of “%” and “|”.



Vol.41 No.SIG 3(TOD 6)

(5) Text match

The user can do approximate search over
texts by using wild card “%” in strings. The
following query obtains titles and authors of
books authored by “Ishi” something:

select result <$book.title, $book.author>
from bib URI “www.a.b.c/bib.xml”,

book $bib.book
where $book.author.lastname =“Ishi%”

(6) Access to ordered elements

XQL preserves orders of XML data specified
in a query implicitly. Further, XQL allows
indexed access to ordered elements by specifying
an index /i/. The following query obtains only the
first author and title of each book published by
Addison-Wesley:

select result <$book.title, $book.author/0]>
from bib URI “www.a.b.c/bib.xml”,
book $bib.book
where $book.publisher.name
=Addison-Wesley”

The query result has the following structure:

<XQL:result>
<result>
<title> ... </title>
<author> ... </author>
</result>
<result> ...</result>

</)'(.QLiresu1t> '

We provide a special index Jas¢ or “-1” to have
access to last elements of an ordered set. Note
that $book.author [last] denotes last authors of
books.

(7) Ordering elements

XQL can explicitly order elements by other
elements. For example, an orderby-clause sorts
book publisher names and titles in an
alphabetical order by publisher name as follows:

select result <$book.publisher.name,
Shook.title >
from bib URI “www.a.b.c/bib.xml’,
book $bib.book
where $book.author.lastname =“Ishikawa”
orderby $book.publisher.name

Designing A Language for Querying XML Data 7

Book titles of result elements are not
automatically nested. That is, each element
consists of exactly one publisher name and one
title as follows:

<XQL:result>
<result>
<name> ... </name>
<title> ... </title>
</result>
<result>
<name> ... </name>
<title> ... </title>
</result>

</XQL:result>

(8) Grouping
XQL can group any elements by other
elements. The following query groups book titles
for each book publisher:

select result <$book.publisher.name,
$book. title>
from bib URI “www.a.b.c/bib.xml”,
book $bib.book
where $book.author.lastname =‘Ishikawa”
groupby $book.publisher.name

Here, a groupby-clause indicates that result
elements are grouped by book publisher name.
Although the groupby query seems similar to the
previous orderby query, book titles of result
elements are automatically nested in groupby,
unlike orderby. That is, book titles with the same
publisher name are grouped into a set of
elements as follows:

<XQL:result>
<result>
<pname> ... </name>
<title> ... </title>
<title> ... </title>

</result>

<result>
<name> ... </name>
<title> ... </title>
<title> ... </title>

<result>

</).(QLiresult>



This operation is called nesting, which is
denoted as nest({<publisher name, title>},
publisher name). So each element consists of one
publisher name and more than one title. We
define the semantics of the groupby query as
follows:

Query: select <al, a2> from a where Ca
groupby al

Semantics: nest ({<al, a2> | Caj, al)

We don’t use nested query for grouping
unlike XML-QL 3.

(9) Set operation

We provide set operations union, intersection,
and difference operated on sets of elements. Note
that set operators allow sets with heterogeneous
structures. The last query in (4) can be expressed
alternatively by using a set operator union as
follows:

(select result <$book.title, $book.author>
from bib URI “www.a.b.c/bib.xml’,
book $bib.book
where $book.@year= “1995” and
$book.author.lastname = “Smith”)
union
(select result <$book.title, $book.editor>
from bib URI “www.a.b.c/bib.xml’”,
book $bib.book
where $book.@year= “1995” and
Sbook.editor.lastname ="Smith”)
union

Its semantics is literally as follows:

Semantics: {Ea | Ca} union {Ea’ | Ca}
union ...

(10) Join of data from multiple data sources

The user can specify join of heterogeneous
XML data from different data sources indicated
by different URIs. The following query produces
book author name and income by joining social
security numbers of book authors and taxpayers
at different data sources indicated by different
URIs such as b and ¢

select result <$author.lastname, $t.income>
fromh URI “www.a.b.c/bib.xml”,
t URI “www.Irs.gov/taxpayers.xml’,
author $b.book.author
where Sauthor.ssn=3§%t.ssn

May. 2000

The semantics of join of multiple sources is
the same as that of join within the same source.
The query result has the following structure:

<XQL:result>
<result>
<lastname> ... </lastname>
<income> ... </income>
</result>
<result> ... </result>

</XQL:result>

In general, there are two approaches to
resolving heterogeneity in schemas of different
databases: schema based on
ontologies and schema relaxation based on query
facilities. XQL takes the latter approach, that is,
XQL uses regular path expressions and element
variables to enable the user to retrieve multiple
databases with heterogeneous schemas by a
single query at one time because the regular
path expressions can match with more than one
path and the element variables can be bound to
more than one path. Further, we allow
well-formed XML data containing a set of
heterogeneous element as a query result. We
think that a simple solution to schema
translation between heterogeneous DTD based
on XSL (.e., XSL Transformations) if there are
any DTD available.

translation

(11) Multiple binding

The wuser can have universal access to
multiple data sources by binding a single
element variable to multiple URIs. The following
example retrieves books authored by the same
author from two different sources by only one
query at the same time:

select result  <$book.title, $hook.author>

from bib URI “www.a.b.c/bib.xml”
“www.x.y.z/bib.xml”, book $bib.book

where $book.author.lastname =“Ishikawa”

Tts semantics is as follows (a is bound to al
and a2):

Query: select a from al a2, a where Ca
Semantics: { Eal | Cal} union {Ea2 | Ca2}



Vol. 41 No. SIG 3(TOD 6)

(12) Embedding query

The user can embed an XQL query in XML
data although XML parsers must be extended to
recognize XQL. Queries delimited by a reserved
tag name “XQL” are evaluated to produce sets of
elements. The following XML data result to a set
of book titles published after 1995:

<books>
<XQL>
select $book.title
from bib URI “www.a.b.c/bib.xml’,
book $bib.book
where $book.@year > “1995”
</ XQL>
</books>

That 1is, the

structure:

result has the following

<books>
<XQL>
<XQL:result>
<title> ... </title>
<title> ... </title>

</).(QLiresult>
</XQL>
</books>

(13) Function definition

The user defines a function by specifying an
XQL query in its body. The role of functions is
similar to that of relational views. The following
finds declared income of employees by joining
two sets of elements passed as parameters
Taxpayers and Employees: )

FUNCTION findDeclaredIncomes (Taxpayers,
Employees) as
(select result <§Employees.name,
$Taxpayers.income>
from Taxpayers, Employees
where $Employees.ssn=$Taxpayers.ssn)

See (14) in this section for invocation of
functions. Note that function definition by more
general programming languages such as Java is
one of open issues.

(14) Function invocation
XQL allows invocation of functions in a
query.

Designing A Language for Querying XML Data 9

select result <@id =
PersonID($author.firstname, $author.lastname),
$author.firstname,
$author.lastname,
publicationtitle $title>
from bib URI “www.a.b.c/bib.xml”,
any $bib. %, author $any.author,
title $any.title

Here, in a select-clause, the user inserts to a
new attribute 7d values of functions such as
“PersonID($author.firstname, $author lastname)”
and introduces “publicationtitle” as a new tag as
follows:

<XQL:result>
<result id="...">
<firstname> ... </firstname>
<lastname> ... </lastname>
<publicationtitle> ... </publicationtitle>
</result>
<result id="...”> ... </result>

</§‘(-QLiresult>

(15) Namespaces and other XML standards

Element tags and  attributes have
namespaces corresponding to URIs specified in
from-clause as default namespaces. However, the
user can explicitly specify namespaces by
prefixing tag and attribute names as follows:

select result <$book.title, $book.author>
from bib URI “www.a.b.c/bib.xml”
“www.x.y.z/bib.xml”, book $bib.book
where $book.author.lastname =“Ishikawa”
and $book.JPN-price < “10000”

In this query, only books with JPN:price (i.e.,
prices in a namespace specified by JPN) are
retrieved.

Note that how to relate other related XML
standards such as RDF, XML Schema, XSL,
Xpointer, Xlink, and DOM to XQL is another
open issue.

We classify the above functionality into two
groups. We call functions (1), (2), (3), (4), (5), and
(6) XQL core (level 1). We call the other functions
XQL extensions (level 2) because the former is
more basic than the latter. '



10 TR S 22 3R S

Supported features FJ XQL MS XQL XML-QL
Selection Yes Yes Yes
Construction Yes No Yes
Join Yes No Yes
Regular path | Partially Partially Yes
expression Yes Yes
String regular | Partially No Partially
expression Yes Yes
Indexed access Yes Yes Yes
Order by Yes No Yes
Group by Yes No Partially
Yes
Set operation Yes Yes No
Multiple data source | Partially No Yes
join Yes
Multiple binding Yes No No
Embedding Yes No Yes
Function Yes Yes Yes
Conformity to XSL No Yes No
Nonprocedural-ness Yes Yes No

Table 1. Comparison of XML query languages.

4. Conclusion

4.1 Comparison with related work

We have proposed XQL as a query language
for XML data of continuity with database
standards in particular, in syntactic constructs
and nonprocedural-ness. We would like to
activate emergence of a query language which is
both syntactically and semantically more
understandable. We compare our XQL with
other proposals in order to clarify our advantage.
XML-QL ¥ has much functionality in common
with our XQL, such as selection, construction,
join, regular path expressions, string regular
expressions, indexed access, order by, multiple
data source join, embedding, and function
definition and use. Unlike our XQL, however,
XML-QL lacks some functionality such as set
operations, multiple binding, and user-friendly
grouby. In particular, the major drawback with
XML-QL 1s that it 1is not necessarily
nonprocedural unlike our XQL; its multiple
conditions are assumed to be sequentially
evaluated. This makes query formation rather
complex and decreases much efficiency 1n
application development. Another XQL of
Microsoft and et al.® has common functionality
with our XQL such as selection, regular path
set operations,

expressions, indexed access,

May. 2000

function definition and and
nonprocedural-ness. Unlike our XQL, however, it
lacks rather basic functionality
construction, join, string regular expressions,
orderby, groupby, multiple data source join,
multiple binding, and embedding although it

focuses more on filtering a single XML document

use,

such as

by flexible pattern match conditions similar to
XSL. This requires the user to write application
logic in addition to query formation and also
efficiency in application
results  of

decreases much
development. We  summarize
comprehensive comparison of three XML query
languages FJ XQL (our XQL), MS XQL
(Microsoft and et al), and XML-QL in table 1,

including future extensions.

4.2 Implementation

We conclude this paper by describing the
implementation and some feedback from the
experiences.

First, we describe storage schema for XML
data. We have explored approaches to mapping
DTD to databases (RDB such as Oracle or ODB
such as Jasmine ) and to implement an XQL
processing system 7. If any DTD or schema
information is available, we basically map
elements to tables and tags to fields, respectively.
We call this approach DTD-dependent mapping
(See Figure 2), where the user must specify
mapping rules individually. Otherwise, we take
a DTD-independent mapping or universal
mapping approach (See Figure 3), which divides
XMI data into nodes and edges of an ordered
directed graph and stores them into separate
tables for nodes and edges with neighboring data
physically clustered. Note that the order fields
are necessary for providing access to ordered
elements by index numbers. Further, we provide
separate tables for nonleaf and leaf nodes.
Identifiers, such as ID and IDREF, realizing
internal links between elements are declared as
attributes and are stored as Value of
Attribute_Node. So references through

XML data
Tag namel Tag_name2
Value Value

Figure 2. DTD-dependent mapping.




Vol.41 No. SIG 3(TOD 6)
Edge
Identifier Order Label_identifier Child_Node
identifier

Edge_Id value | Number | Label ld value

Node Id value

Nonleaf Node
Identifier
Node_Id_value

Path_identifier
Path_Id value

Leaf Node
Identifier Order Value
Node_ld value

Number Value

Attribute Node ]

Identifier
Node_Id_value

Label identifier Value
Label Id value Value

Figure 3. DTD-independent mapping.

identifiers are efficiently resolved by searching
node identifiers matching with specified
identifiers in the Attribute Node table. Please
note that XLink functionality such as simple and
extended links has not been incorporated into
the current version of our XQL because our
current XML parser doesn’t understand syntax
and semantics of XLink. We have a future plan
to extend our XQL to conform to such
XMlLrrelated standards.

We cluster data in node and edge tables on a
breadth-first tree search basis. We have found
this way of clustering contributing very much to
reducing I/O cost. We also have found that
label id and path id fields, but not fields for
labels and paths themselves, reduce storage
space and search time. Further, we have known
from our preliminary experiments that the
DTD-dependent mapping approach is mostly two
times more efficient than the universal mapping.
However, we have focused on more of our
implementation efforts on the universal mapping
approach. The reasons are as follows:

(1) The approach can free the burden of
defining idiosyncratic mappings from the
users.

Designing A Language for Querying XML Data 11

Us er] Application

Language Processor

Query Processor

Execution Engine

XML
data

Indices

Figure 4. XQL Processing Sy stem Architecture.

(2) The approach can store XML data whose
DTD are unknown in advance.

(3) The approach can store heterogeneous
XML data, in particular, semi-structured
XML data in the same database.

Next, we describe the system architecture for
an XQL processing system (See Figure 4). We
make appropriate indices on tag values,
element-subelement relationships, and tag paths
by pumping XML data from XML data sources in
advance. We have understood from our empirical
study that the multi-key indices such as
(identifier, path identifier) for nonleaf nodes are
better than alternative single-key indices such as
(identifier) in our current system because of
higher selectivity.

We describe how the XQL processing system
works. The XQI language processor parses an
XQL query and the XQL query processor
generates and optimizes a sequence of access
methods for efficient execution. In our current
implementation of the universal mapping, the
primitive access methods are basic operations on
node sets, such as GetNodeIDbyPathIDandVAL,
GetParentIDbyChildID, and GetVALbyNodeID,
which are executed by the XQL execution engine.
We have known that both RDB and ODB are
usable as the underlying database systems of the
XQL execution engine with the upper layers



12 WAL S

unchanged only if the same set of the primitive
access methods is dedicated to XQL execution
engine by using the underlying database systems.
In reality, we have implemented Oracle and
Jasmine versions of XQL processing systems to
make sure this fact.

Although we focus on the implementation of
XQL processors on local XML data servers for
the time being, we will approach to global XQL
queries as follows: When the users issue a query
against global servers for XML data, if the
servers can understand XQL, the system obtains
query results as XML data. Otherwise, it obtains
whole XML data specified by URIs and processes
the query against them locally. We think that
detailed capability of XQL servers can be
described by using RDF.

References
1) ANSI X3: SQL,
httpgatekeeper.dec.com/pub/standards/sql,
1998.
2) Cattell, R.G.G. and Barry, D.K,, Eds.: Object
Database Standard: ODMG 2.0, Morgan
Kaufmann Publishers, Inc., 1997.
3) Deutsch, A., et al: XML-QL: A Query
Language for XML,
httptwww.w3.org/TR/1998/NOTE-xml-ql-19950
819, 1998.
4) Hagel 1II, JH. and Singer, M. Net Worth,
Harvard Business School Press, 1999.
5) Ishikawa, H., et al: An Object-Oriented

Database System Jasmine: Implementation,
Application, and Extension.,, [EEE Trans.

Knowledge and Data Engineering, vol. 8, no. 2,
pp-285-304,1996.

6) Ishikawa, H., ef al:
httptwww.wS.org/TandS/QL/QLIS pp/flab. doc,
1998.

7) Ishikawa, H., et al: Document Warehousing
Based on a Multimedia Database System, Proc.
IEEE 15th Intl. Conference on Data Engineering,
pp.168-173,1999.

8) Robie, J. et al: XML Query Language (XQL),
httpwww.w3.org/TandS/QL/QLIS pp/xql html,
1998.

9) W3C: W3C Query Language Workshop,
httpwww.w3.org/TandS/QL/QLIS/Overview. ht
ml, 1998.

May. 2000

(Received September 20, 1999)
(Accepted December 27, 1999)

(Editor in Charge: Kazumasa Yokota)

Hiroshi Ishikawa received the
B.S. and PhD degrees in
Computer Science from the
University of Tokyo in 1979 and
1992, respectively. He worked for
Fujitsu Laboratories Ltd., from
1979 to 2000. He ‘is now a
professor of the Department of Electronics and
Information Engineering at Tokyo Metropolitan
University. His research interests
databases and e-commerce. He has published

include

actively in international, refereed journals and
conferences, such as ACM TODS, IEEE TKDE,
VLDB, IEEE ICDE. He authored a book entitled
Object-Oriented Database System
(Springer-Verlag). He received the Sakai
Memorial Distinguished Award from IPSJ in
1994 and the Director General Award from
Science and Technology Agency in 1997. He is a
member of IEEE, ACM, IPSJ, and IEICE.

Kazumi Kubota received the B.S.
and M.S. in computer science
from the Tokyo University of
Agriculture and Technology. He
joined Fujitsu Laboratories Ltd.,
in 1992. His research interests
include databases. He 1is a
member of IPSJ.

Yasuhiko Kanemasa received
the B.S. in computer science
from Tokyo Institute of
Technology and M.S. in
information science from Japan
Advanced Institute of Science
and Technology. He joined
Fujitsu Laboratories Ltd., in 1998. His research
interests include databases. He is a member of
IPSJ.



