
A Combination Approach for Distributed
Information Flow Processing in Multi-purpose IoT

Sunyanan Choochotkaew1,a) Hirozumi Yamaguchi1,b) Teruo Higashino1,c)

Megumi Shibuya2,d) Teruyuki Hasegawa2,e)

Abstract: A study to process bursting information flowing around is continuously developed for long time
and is still ongoing under Information Flow Processing (IFP) terminology. There are various types of process-
ing goals such as for tracking some circumstance, extracting any extra knowledge or detecting some critical
events. Until now, there are two main ways to implement the processing engine: Data Stream (DSMS) and
Complex Event Processing (CEP). Each approach is designed for different tasks. The former is superior
for processing relational relation among data in the stream while the latter is superior for detecting specific
events. To support multi-purpose IoT, we also define a new language covering the most expressive language in
both approaches. In the second place,we propose a new IFP engine that exploits advantage points from both
approaches: relational operations in structural database and matching operations in powerful rule engine
in distributed-deployment architecture. In the final part, we preliminary test our implementation design on
Java streaming in a number of various-type data. We give examples of superior and inferior subscriptions for
the rule-based approach and the relational-stream-based approach and compare our combination methods to
relational-stream-based approach against each example subscription.

1. Introduction

Nowadays, people become aware of an extended concept

from a machine-to-machine communication to an Internet

of Things (IoT) as an important role for improving human

life. Without human intervention, physical things observe

themselves as well as their surroundings, process those infor-

mation and then might activate some actions to serve human

needs without the boundary of just one network.

One of the most challenging issues to realize IoT concept

is the way to deal with the information flow with large vol-

ume, fast velocity, and high variety. A pile of research is

proposed and arranged under the topic called information

flow processing (IFP) [5]. It is mainly classified into two

categories: Data Stream Management System (DSMS) and

Complex Event Processing (CEP). According to [5], there

are many ways to classify but the most significant one is

the data-model aspect. From the viewpoint of this aspect,

the former manipulates generic-data streams while the latter

deals with event notifications. To the best of our knowledge,

the most expressive language for DSMS is CQL [1] while the

common language for CEP is TESLA[3].

Both DSMS and CEP are developed almost indepen-

1 Graduation School of Information Science and Technology
Osaka University, Osaka, Japan

2 KDDI R&D Laboratories, Saitama, Japan
†1 Presently with DICOMO2016
a) sunya-ch@ist.osaka-u.ac.jp
b) h-yamagu@ist.osaka-u.ac.jp
c) higashino@ist.osaka-u.ac.jp
d) shibuya@kddilabs.jp
e) teru@kddilabs.jp

dently. Each of them has its own proper use; however, it

could not support the other efficiently. Although there are

some work that add a simple event detection feature to the

DSMS system, they, still, are not available for complex event

detection as good as the absolute CEP system.

Complex event processing (CEP) considers data in the

flow independently not as a stream to detect the interesting

events in parallel. On the other hand, it has to keep tempo-

rary copies of partial detected events in nonstructural man-

ner. Consequently, the relational processing including ag-

gregation, parametrization (join) consumes extra cost com-

paring to the stream-based approach. Also, some operations

such as outer-join, grouping are not defined in TESLA. Fur-

thermore, in the automaton-based engine, the same event

is likely to remain in multiple automata for the same sub-

scription [4]; meanwhile, rule-based engine mostly keeps the

partial detected event in the same working memory. As a

result, those partial detected events have to activate every

time a new event comes even though it hardly has a chance

to be matched [2]. Accordingly, CEP is proper for detect-

ing, but not for processing relational relation among events.

On the contrary, stream-based approach (DSMS) can sup-

port all relational operations efficiently because of the struc-

tural database [1]. However, the detection must be per-

formed in order as well. In addition, it requires window-

ing process before starts processing. All data have to be

organized structurally even though it will never be needed

if it was tested with some condition first. Thus, DSMS is

designed for massively processing relation relations among

data which flowing as streams not specific to some detection.

― 1200 ―

「マルチメディア，分散，協調とモバイル
(DICOMO2016)シンポジウム」 平成28年7月

No.0 1–8 (??? 1992)

In the multi-purpose IoT system, a various kind of pro-

cessing is required. For instance, in smart home system, a

stream process is needed for energy saving while an complex

event like fall detection is also needed for monitoring elderly

people. To achieve all purposes with just one IFP engine, we

design a new framework concerning advantage points of both

approaches: parallel detection and relational operation. We

consider information flows as streams of events. All flowing

events will be tested with defined conditions before memo-

rized into the relational database for further processing re-

lational operations.

To support our general purpose IFP engine, we analyze

the overlapping between TESLA and CQL and, then, define

a new event-definition language based on TESLA outline

structure. Besides, windowing operation as well as relational

operations including outer join and grouping are added.

Generally, IFP can be deployed in both centralized and

distributed manner. For the latter one, it can be further

classified into two groups: clustered and networked [5]. For

better scalability, higher tolerance and more available mo-

bility, we design our system in a distributed manners, specif-

ically networked. Basically, we apply the publish-subscribe

protocol, the rule-matching mechanism with simple rela-

tional database.

Our proposed engine is designed on the application layer

with the knowledge of one-hop neighbors. In the deployment

we implement our engine in Java over an ad-hoc network

running B.A.T.M.A.N. routing protocol in Layer 2.

2. Related Works

An Information Flow Processing (IFP) terminology covers

a wide area of processing continuous and timely information

from multiple peripheral nodes responding to some points of

the system which is hard to be accomplished efficiently by

the traditional database management systems (e.g. TinyDB

[10]). A long history of evolution in this field is primarily

summarized in [5]. Broadly, there are two kinds of solutions:

Data StreamManagement Systems and Complex Event Pro-

cessing. The significantly differentiating characteristic is the

viewpoint of information flow. The former considers as mul-

tiple streams of data while the latter considers as multiple

events.

2.1 Data Stream Management Systems: DSMSs

Instead of working on infrequently-updated data, Data

Stream Management Systems (DSMSs) are specially de-

signed for continuously-updated data. However, most of

query representations in DSMSs are still based on SQL

which used in traditional DBMSs including Continuous

Query Language (CQL) which is the most expressive lan-

guage for data stream applications according to the equiva-

lence proofs shown in [1]. CQL is firstly supported by Stand-

ford DSMS, named STREAM, and now applied in the Ora-

cle CEP runtime component.

To handle streams in a relation manner, CQL provides

three groups of operations: Stream-to-Relation, Relation-

to-Relation, and Relation-to-Stream. The first one converts

a stream to relation by windowing with the range of time

or the number of rows as well as partitioning by some at-

tributes (i.e. grouping). Then, most of basic operations

in traditional database are supported in the second oper-

ation groups. Finally, the operated results can be con-

verted back to stream by the last operation group by creat-

ing insertstream (Istream), deletionstream (Dstream), or

relationstream (Rstream).

Many DSMSs have focused on efficiency of processing mul-

tiple data streams with complicated operations to extract

some knowledge from those streams in real-time. On the

other hand, most of them cannot support complex event de-

tections which are dependent on historical records. Besides,

simple detections in the DSMSs have not done efficiently.

For instance, there is no reuse of similar detections in the

system and mostly done in a centralized manner.

2.2 Complex Event Processing: CEP

Whereas DSMSs flows information as data tuples, Com-

plex Event Processing systems (CEP) flows that as event no-

tifications. According to [5], CEP could be concluded that

it is originated from publish-subscribe domain and then ex-

tends functionality by improving expressive power of sub-

scriptions. Similar to the general system, there are two

main ways of deployments: centralized and distributed. In

earlier studies, distributed solutions usually limit powerful-

ness of complicated processing compared to centralized so-

lutions. Conversely, the rapidly growing scale of sensing

nodes also make centralized system weighty. As the best of

our surveys, a formally-defined-event-specification language

called TESLA [3] is mostly referenced in many proposals to

represent powerfulness of processing complicated composite

events.

• Centralized deployment One of the most important

advantages of centralization in CEP is that, it allows

system to compute any composite event easily no matter

how complicated they are. Because all information are

clearly available at the central node, the relations be-

tween them are also easy to be discovered at one point.

As the best to our survey, the following solution is the

most outstanding one.

– T-Rex: Among a pile of researches, T-Rex is a cen-

tralized solution which combines expressiveness and

efficiency [4]. It is likely-firstly adopts TESLA while

provides efficient automaton-based-algorithm for event

detection. Its evaluation-results show that through-

puts significantly depends on complexity of the events.

• Distributed deployment While some researchers

aim at powerfulness of complicated event processing,

there are some researches more concern about the scal-

ability, single point of failure, as well as over workload

issue due to centralization. We would like to bring up

some significantly contributing works as follows:

– PADRES: As the best of our observation, a PADRES

system is proposed as a distributed publish/subscribe

― 1201 ―

No.0 1–8 (??? 1992)

systems dealing with composite subscriptions at prior

time. It consists of a brokers distributively deployed

with static binary-tree topology [7]. Subscriptions are

mapped to rules and publications are mapped to facts

feeding to rule-based engine. Composite subscriptions

are trivially decomposed from knowledge of advertise-

ments of publication and tree-topology. Nevertheless,

aggregate operations are not mentioned. Besides, the

complex event such as an event of event or an event-

dependent event are not supported.

– RACED: With regard to those indistinct issues, there

are many studies further extend PADRES concepts

in various aspects. RACED widens expressiveness by

adopting TESLA for event definition and make avail-

able of complex event detections in distributed man-

ner [2]. Likewise, it still straightforwardly decompose

the composite subscriptions based on publication ad-

vertisements and tree-based topology. Nonetheless, it

isn’t limited to only binary topology as in PADRES.

Besides, the authors also proposed a master-slave sub-

scription protocol to reduce the number of unimpor-

tant packets in the network by letting children with

slave subscriptions wait for child who holding master

subscription to submit first.

– Adaptive Content-Based Routing in General Overlay

Topologies: In the meanwhile, there are some propos-

als specially focuses on the limitation of tree topology

of PADRES. An adaptive content-based routing pro-

tocol in general overlay topologies is proposed in [8] to

handle cyclic and dynamic topology. In addition, the

authors also suggest a cost model to determine whether

decompose the composite subscriptions or not based on

in-node and network conditions along with cardinality

of subscriptions themselves.

– DistCED: Prior to PADRES, there is a useful gen-

eral framework proposed for event composition in dis-

tributed system with defined language named CE [11].

Nodes in the systems is called CE detector. This

framework sets a goal at large-scale application with

existing of event patterns (i.e. event of event). The au-

thors also suggest the way to define distribution poli-

cies as well as detection policies by addressing several

dimensions. Still, it was only a framework without

real implementation. Also, the defined language, CE,

is less expressive than the current TESLA one.

2.3 Co-existing concept

For multi-purpose IoT system, both kinds of process-

ing (i.e. DSMSs and CEP) are generally required for on

the same information flows. There are many works realize

the scenario where both kind of information flows are co-

existing. RushNet prioritizes event-notification flows over

general massive flows [9]. StreamBase, a commercial soft-

ware run by TIBCO company provides event detections with

different modules of relational query on the data stream [12].

However, to the best of my knowledge, the existing meth-

Fig. 1 Overview of Designed IoT Communication Network

ods with co-existing concept never exploit the powerfulness

of rule engine for detecting the simple conditions declar-

ing by the event itself. All query is done in the relational

database. While the approaches that uses such as paral-

lel comparison engine like Padres, Raced, and T-Rex, are

restrained from relational operations.

We take an advantage of rule engine for primarily detect-

ing the independent condition of each event to allow only

worth-to-be-processed data flow into the relational database.

With these idea, we remains benefit of the both approaches

for Information Flow Processing in the multi-purpose IoT

system. Even more, we also define a new combination lan-

guage for our engine covering both TESLA and CQL in an

expressive way.

3. System Design

A Flow-driven Distributed Information Flow Process-

ing System is designed for Multi-purpose IoT environment

where flows of information in the networks can vary with the

user specifications. Our design principles is also concerned

about scalability, dynamicity and mobility. We limit the

constraints of pre-knowledges and static installation. The

system is composed of many powerful mobile brokers to pro-

cess information flowing in the network.

We adopt a concept of content-based publish/subscribe

architecture where subscriber is system client and publisher

is sensing device. However, instead of trivially returning a

matched publication to subscriber, we extent the action part

to allow subscriber to specify what to do with the matched

results and who is the final actor to get those processed re-

sults (i.e. the final actor is not limited to the subscriber).

All brokers hold the same information of subscription and

play the same role of processing. As a consequence, the

simple matching process could be done at the point of pub-

lishing no matter where it happens. To handle overload pro-

cessing on any one node, we propose a flow-driven analysis

model to decide which publication could be forwarded with

just small changes of the information flows in the networks.

3.1 Network Architecture Design

An overview architecture of communication networks is

― 1202 ―

No.0 1–8 (??? 1992)

Fig. 2 Broker Class Model

simply pictured as in Fig. 1. All devices communicate to

each other through broker nodes connecting to the mo-

bile ad-hoc network with the same independent BSSID. We

apply the Better Approach To Mobile Adhoc Networking

(B.A.T.M.A.N.) protocol which independently implemented

in Layer 2 for the basic network construction of our system.

In general, there are many ways to connect the device to

IoT system via a tiny computer-on-module (e.g. Intel Edi-

son). System clients (i.e. Human) remotely connect to the

system over cloud server. They could be both subscribers

and actors at the same time. For the machine devices, the

communication could be performed in one-way or two-ways

as well, but as a sensing device (i.e. publisher) or an ac-

tor. We might bridge broker to the local network router

or directly connected to device by other available interfaces

which could be wired (e.g. physical pin, USB serial port) or

wireless (e.g. bluetooth).

3.2 Broker Design

Broker nodes play all main roles of the system: linking the

rest components including subscribers, sensing devices, and

actors, processing information flow from sensing device in re-

sponse to subscriptions from system clients and forwarding

to the final actors. It might be noted that some processed

event might be further required by another subscription.

An overview of a broker node can be simply depicted from

designed class models in Fig. 2, where the arrows denote

information flows in the broker. There are three modules

working together: network, rule-engine, and subscription.

• Network Module is responsible for cooperating with

the other brokers for distributed deployment. It fun-

damentally contains four components: Receiver and

Sender for basic functions of ad-hoc network commu-

nication, Synchronizer for synchronize all brokers to be

in the same state, and Load balancer to balance the

workloads for all nodes in the network. Additionally,

we present some example idea of implementation for

the last two components as follows:

– Synchronizer should keep synchronizing subscrip-

tions for all brokers in the system with very light

control. All brokers might periodically broadcast the

small hash value representing the holding subscrip-

tions. When a hash value is not synchronized, only

the older one will request for synchronization. For re-

ducing network cost, a requested node will return just

only some subscription based on some assumption, for

instance, the subscription that was updated after the

global synchronized time of the requester. However,

a second request must be sent if the next hash-value

comparison still results as not synchronized to ask for

the rest subscriptions that were not sent from the last

request.

– Load Balancer might concern some cost model for

distributing the workload. Basically, we should con-

sider in three dimensions: processing complexity of the

subscription, resources, and, finally, information flows.

There are a number of publications for the first two di-

mensions but not for the last one. We suggest to deter-

mine probabilities of information-flow change over the

network, and then decide which events to be processed

by itself and which events to be forwarded for further

processing by the next node. Fundamentally, there

are two factors influences the flow change probabil-

ity: network condition to the final actor and historical

statistic of flow-in and flow-out. To decide the action,

we must first consider the state of the node retrieved

from node monitor unit is the node now overloading

or not. If yes, it will then suggest to forward the in-

formation determined as causing no or small change of

flow. However, the feedbacks of neighbors from feed-

back detector should be concern as well

• Rule Engine is responsible for testing tests the event

flows with only simple constant condition defined in the

subscription in primary step before forwarding to the

subscription agents in the subscription module. How-

ever, some events might be forwarded from receiver to

some subscription agents without passing through this

module because of no simple condition required. In that

case, broker will perform in the same way as stream pro-

cessing. In our implementation, we apply a Java Expert

System Shell: JESS [6] as a rule engine worker. Sub-

scription agents will directly register new template as

well as ask for setting a detecting rule for its simple

conditions to the Rule Engine manager (RE manager).

RE manger will simply handle duplicate request from

different agents and then command the worker to do

task. Afterwards, RE manager will cooperate with the

subscription manger when subscriptions are revoked.

• Subscription is mainly responsible for processing the

subscriptions. When a new subscription comes, Sub-

scription manager (Subs manager) will initiate a new

subscription agents to take a responsibility. An agents

will parse the subscriptions and keep as a set of unit

patterns (further explained in Section 4, and 5). It will

notify the manager when the event corresponding to the

subscription is fired. The event will be fired if all unit

patterns are all correspondingly valid at the same time.

― 1203 ―

No.0 1–8 (??? 1992)

Table 1 General Form of Unit Pattern

Type General Form
Simple subCEA

Time-range F (subCEA) within T from subCEB

Event-bound F (subCEA) between subCEB and subCEC

*F refers to selection, aggregation, negation

4. Combination Language

To support both continuous query and complex event de-

tection, we define a new combination language referencing

to the most expressive language in each area: TESLA, CQL.

The advantage of the continuous query language (e.g. CQL)

is that it can represent the relational operations between a

set of windowed and structured tuples. Conversely, complex

event detections handle detected event in the engine like

rule-based engine or automaton engine. Owning to no need

of database connection, the complex event can be detected

faster and in parallel. Also, TESLA language can represent

the condition in terms of sequence much more expressive

than CQL.

4.1 TESLA

According to [3], a general structure of composite-event

specification (i.e. rule) in TESLA language is represented

as follow:

define CE(cAtt1, ..., cAttn)

from Pattern(subCE1, ..., subCEj , ..., subCEm)

= UP1 and ... and UPt

where wAtt1 = f1, ..., wAttk = fk, ..., wAttn = fn

; fk := f(xk
1 , ..., .x

k
p , .., x

k
q); xk

p ∈ cAtt(∃subCEj)

consuming e1, ..., ei, ...eh; ei ∈ subCE, h ≤ m

Pattern in from clause composes of a set of unit pat-

terns (UPs) associated with and conjunction. There are

three possible unit patterns represented in general form

as shown in Table 1. A unit pattern has one base sub-

event (i.e. subCEA) with matching attribute-conditions.

To define matching conditions, there are two types of op-

erators: comparison, [cmp op] ∈ {>,<,≤,≥,=, ! =}, and
parameterization, $. The general form of sub-event with

matching conditions in TESLA language is represented as:

subCEA((fAtt [cmp op] value)∗|(pAtt = $varname)∗)

4.2 Continuous Query Language (CQL)

Continuous Query Language (CQL) is based on SQL with

additional constructs to support data stream processing.

Similarly, the general form is basically composed of select

clause, where clause, and from clause. Nevertheless, CQL

further defines three groups operations to processing data

streams by the input and output of the operation: stream-

to-relation, relation-to-relation, relation-stream.

First, a stream-to-relation operation group is the oper-

ation group for windowing the continuous stream to keep

in relational database. CQL defines three operations: (1)

Time-based, S [Range T], (2) Tuple-based, S Rows[N],

Table 2 Unit Pattern

General Form:
[Sel] SubCEA([Comp]) [Group by Attribs] [Limit]

Selection Policy[Sel]: ϕ(≡ each) [distinct|outer]| first | last

Comparison Condition[Comp]
Independent* Dependent
f(Attribi)⊕ constant Attrib⊕ f(subCEx,x̸=A.Attrib)
f(Attribi)⊕ f(Attribj,j ̸=i)] Attrib = $varname
*Relational: f function is aggregation
⊕ includes all comparison operators defined in TESLA

Relational Limitation Policy[Limit]
Dependent Independent
ϕ (≡ Unbounded) within T from subCEx,x̸=A

Range T between subCEx,x̸=A

Rows N and subCEy,y ̸={A,X}
Partition By Attribs

Rows N
Now

and (3) Partitioned, S [Partition By A1, ..., Ak Rows N].

Second, a relation-to-relation group includes all relational

operations referenced in SQL query. Third, a stream-to-

relation operation group defines the way to create a stream

from the continuous changed database. CQL also defines

three operations for this group: (1) Insert stream, in-

serted tuples, Istream(R), (2) Delete stream, deleted tu-

ples, Dstream(R), and (3) Relation stream, all tuples,

Rstream(R).

4.3 Combination Language

A TESLA structure can cover CQL structure while CQL

cannot due to consuming clause. A select clause in CQL is

presented in where clause in TESLA while from and where

clauses are combined and presented in from clause. The

alias name for temporary table can be considered as event

name in define clause. So, we hold to TESLA structure.

At the same time, some operations are not directly sup-

port in the current TESLA especially for sliding window.

Because TESLA is designed for detecting, there is no con-

cept to limit the number of historical data. It might be noted

that windowing operation can be performed in indirect way

by generating database-change notification. Although inner-

join can apply parameter operations (= $), outer-join and

grouping for aggregation is not available. Our new combi-

nation language complement valid patterns in from clause

of the TESLA language for the mentioned issues.

In our language , a unit pattern is composed of three parts:

comparison condition, relational limitation policy, selection

policy, and consumption policy (see Table 2). The process

engine that applying this language must handle the informa-

tion flow as streams of events. To simply explain the flow

of processing, comparison policy tells which events should

be memorized, relational limitation policy tells when to dis-

card the memorized events, and, finally, selection policy tells

which memorized events will be fired.

The comparison condition part defines the matching con-

ditions of the base sub-event. It can be separated into two

groups depending on whether it refers to the base sub-event

― 1204 ―

No.0 1–8 (??? 1992)

in the other unit patterns: independent and dependent. For

independent group, the condition can further labeled as re-

lational condition if any attributes of the base sub-event

attached to aggregation function. In addition, grouping op-

eration is allowed to define right after the comparison con-

dition part as shown in Example 1. Notice that it is also

included having operation in where clause.

Example: 1

Define TempOver25

Where room id = T.room id,

avgTemp = T.avgTemp)

From Temperature(avg(val)

as avgTemp > 25) group by room id as T

The relational limitation part defines the limitation policy

of the relational database which keeping the matching base-

sub-event. Similarly to comparison condition, the relational

limitation policy can be also classified into two group by

the relation between unit pattern: dependent, independent.

All sliding windows in CQL are included in the independent

class while event sequences (i.e. between and within) are

classified as dependent class. This part can be omitted for

the unbounded policy.

For the selection policy, in the same way as TESLA defi-

nition, there are three possible selection policies: each, first,

last. Nevertheless, they also imply the relation-to-stream

operations in CQL, Rstream, Dstream, Istream respectively,

when combining with independent bounded limitation pol-

icy. This part can be omitted when representing each policy.

In addition, the projection, distinct, and outer-join (i.e. al-

ternative sub-event), outer, also represented here for only

each policy.

To consume which unit pattern can be defined explic-

itly in consuming clause or implicitly defined. There are

two cases for implicit consumption to avoid the run-out-of-

memory problem in the broker: (1) the unit pattern that

activates the other unit patterns (2) the unit pattern that

has unbounded limitation policy.

To demonstrate, an example for converting CQL to our

combination language is shown in Example 2.

Example: 2

Define HRoverThreshold

Select Rstream(subject id, avg(val) as avgHR)

From HeartRate [Partition by subject id Row 10]

Group by subject id

Having avg(val) > 100

⇓
Define HRoverThreshold

Where subject id = HeartRate.subject id,

avgHR = HeartRate.avgHR)

From HeartRate(avg(val)

as avgHR > 100) group by subject id

Partition by subject id Row 10

5. Implementation

An IFP engine must at least support these following func-

Table 3 Limitation Policy Summary

Policy (1) (2) (3) (4) (5)
now no 1 no no no
within two T no yes no
between two ∞ yes yes no
range one T no no no
rows one N no no no
partition one Ai,N no no no
unbound one ∞ no no yes

tionalities: (1) Subscription Registration, (2) Subscription

Revocation, (3) Information Flow Processing. Our design

IFP engine can achieve all functionalities by cooperating

between Rule Engine module and Subscription module as

explained below:

(1) Subscription Registration As primarily mentioned

in the Section 3, Subscription Manger will initiate an

Subscription Agent to handle all the rest processes. The

agent will parse the subscription in form of event defini-

tion as explained in Section 4 for each parts as following

procedures.

• define: subscription name (equals to event name), at-

tributes (may including types) are extracted and sent

to register as new template to the Rule Engine man-

ager (RE manager).

• where: assignments are considered as selection clauses

in the final steps of processing.

• from: patterns are split into at least one unit patterns

by and conjunction. Then, each unit pattern further

compile each parts. First, it can determine the fol-

lowing issues from limitation policy: (1) how many

relational databases are needed, zero, one, or two? (2)

If (1) yes, how does it limit the database? (3) does

it have to wait for activator? (4) does it have to wait

for finish event? (5) is it forced to be consumed? (see

summary in Table 3). For unit patterns with activator,

the first memory also keep the rowid of the activator

for the checking corresponding at last. Similarly, unit

patterns with finish event are required to keeps the

rowid of the finish event as well. Condition part is

split with and conjunction and then classify into four

groups: constant, relation, dependent, and parameter

as explained in Section 4. The constant condition set

from each unit pattern is submitted to the RE manager

to generate a detecting rule.

• consuming: explicitly-defined consumed unit patterns

are set.

(2) Subscription Revocation This functionality is per-

formed by Subscription Manager who keeping all agents

information. It will clear all relevant temporary

databases before kill the agent (i.e. interrupt while loop

of Thread). Then, it will notify the rule-engine manger

to remove the related rules that has no other agents

subscribing.

(3) Information Flow Processing Fundamentally,

there are three steps to process complex event from

information flows respective to conditions defined in

the subscription as summarized in 1: constant step,

― 1205 ―

No.0 1–8 (??? 1992)

intra-relation step, and inter-relation step. The first

step is execute at the worker of rule engine module

while the rest are done by the subscription agents.

Note that, the first step can be passed through in case

that there is no constant condition. The matching

event will added to each unit pattern according to its

database condition. If it is distinct, the previous one

will be replaced with the new one. The over-limit data

will deleted. In case of first selection policy with inde-

pendent limitation policy, the deleted data is recorded.

Then, second step, agents will test relation conditions

with grouping attributes in the result database. If

pass the second step, unit pattern will be considered

as valid. Note that, the results will become invalid if

there are some corresponding events remains in the

memory of the unit pattern with negation operator.

If all results from unit patterns are valid at the same

time, agents will join those results using sql query

with dependent condition in where clause, parameter

condition in joinon clause, and where assignment in

select clause. Joining is inner as default, but, outer is

used to deprecate outerjoin in this step. Finally, the

tuple results will be converted to out event stream.

6. Preliminary Implementation Test

To confirm our combination design, we implement a sim-

ple engine on Java using Jess as rule engine at the first state

before forwards the matched results to relational unit con-

necting to Sqlite database. Running tests are applied with

three subscriptions (see. Table 4). We define the subscrip-

tions by concerning the advantage points of the data-stream

approach against rule-based approach.

The first example is the superior situation for rule-based

engine where no relational computation among event. In

addition, the temporary copies of event in the engine is

supposed to be small because of negation operator. While

the second one represent the disadvantage point of the rule-

based approach where there is only one relational operation.

For the last case, we balance the advantage between rela-

tional operation and comparison operation to represent the

best appropriate case for our proposed approach.

Input streams include three types of data: Heart Rate,

Movement, and Temperature. We use the real-collected

Heart Rate data and Movement data from three subjects

and three Temperature data from available example sources

on the Internet.

The results in Fig. 3 show time delays to process in

nanoseconds accumulating over the number of events in the

flows. We could observe that our combination approach pro-

cess data relatively faster than using relational database only

in the first case while remaining the same rate for the last

two cases. However, our preliminary tests are conducted on

only in thousands of data in a minute. In the future work,

we are going to implement the complete engine and evaluate

dealing with much bigger amount and more various data by

more complex subscriptions.

Algorithm 1 IFP for Multi-purpose IoT system

1: procedure 3-steps CEP

2: (1) Constant Step

3: Match Engine:

4: if event 7→ constant conditions then

5: Send to subscribing SubsAgents

6: (2) Intra-relation Step

7: Subscription Agent :

8: event main sub eventA:

9: if has relation then

10: if has activator then

11: Add to relation with bid

12: else

13: Add to relation

14: if relation condition then

15: if no finish event then result← relation

16: else

17: if no finish event then

18: result← event

19: else

20: temp← event

21: event as activate sub eventB :

22: if UPB has relation then

23: bid← rowid of event in UPB

24: else

25: bid← 0

26: event as finish sub eventB or sub eventC :

27: if has relation then

28: select← Selection Policy

29: where← relationcondition, event

30: query first relation with select, where

31: if query then

32: Add to second relation with cid

33: result← secondrelation

34: else

35: if correspond to event then

36: result← temp

37: (3) Inter-relation Step

38: if all result then

39: select← assignment in where

40: where← dependent condition

41: from← join all results on parameter condition

42: query with select, where, from

43: if query then

44: return query as event stream

Table 4 Example Subscription for Evaluation

Example 1:
Define HighHRNoMove(subjectId:STRING,hr:INTEGER)
Where subjectId = HeartRate.subjectId,

hr = HeartRate.hr
From HeartRate(subjectId = $id and hr > 110) AND

not Movement(subjectId = $id and val = 1)
within 1 min from HeartRate

Example 2:
Define MonitorAvgHR(subjectId:STRING,avgHR:FLOAT)
Where avgTemp = Temp.avg(val)
From Temp()range2mins

Example 3:
Define AvgTempInMeetingRoom(avgTemp:FLOAT)
Where avgTemp = Temp.avg(val)
From Temp(location ==′ meetingRoom′)range2mins

― 1206 ―

No.0 1–8 (??? 1992)

Fig. 3 Experimental Results

7. Conclusion

In this paper, we concern the co-existing of various kind

of application needs especially in multi-purpose IoT system.

Until now, there are two ways almost separately works cov-

ered as Data-Stream processing and Complex Event process-

ing. The former one operates stream of data in relational

database while the latter operates as an independent event.

Each approach has its own advantage points: relational pro-

cessing, special-event detection, respectively. Now, they still

cannot work together completely. Some operations are not

support for each other. We consider logical reasons behind

them and propose a new definition that allows users to de-

fine their needs more expressive in one language. Also, we

suggest the way to implement the combination of relational

database and rule-based engine for supporting our combina-

tion languages in distributed-deployment architecture. Fi-

nally, we simply implement real engine according to our de-

sign and perform preliminary test on some significant exam-

ples of subscription as well as comparing our combination

approach to relation-stream approach in terms of process-

ing time in each example scenario.

References

[1] Arasu, A., Babu, S. and Widom, J.: The CQL Continuous
Query Language: Semantic Foundations and Query Execu-
tion, The VLDB Journal, Vol. 15, No. 2, pp. 121–142 (2006).

[2] Cugola, G. and Margara, A.: RACED: An Adaptive Middle-
ware for Complex Event Detection, Proceedings of the 8th
International Workshop on Adaptive and Reflective MIddle-
ware, ARM ’09, NY, USA, ACM, pp. 5:1–5:6 (2009).

[3] Cugola, G. and Margara, A.: TESLA: A Formally Defined
Event Specification Language, Proceedings of the Fourth
ACM International Conference on Distributed Event-Based
Systems, DEBS ’10, NY, USA, ACM, pp. 50–61 (2010).

[4] Cugola, G. and Margara, A.: Complex Event Processing with
T-REX, J. Syst. Softw., Vol. 85, No. 8, pp. 1709–1728 (on-
line), DOI: 10.1016/j.jss.2012.03.056 (2012).

[5] Cugola, G. and Margara, A.: Processing Flows of Informa-
tion: From Data Stream to Complex Event Processing, ACM
Comput. Surv., Vol. 44, No. 3, pp. 15:1–15:62 (2012).

[6] Friedman-Hill, E.: Jess, The Rule Engine for the Java Plat-
form, http://herzberg.ca.sandia.gov (2007).

[7] Li, G. and Jacobsen, H.-A.: Composite Subscriptions in
Content-based Publish/Subscribe Systems, Proceedings of
the ACM/IFIP/USENIX 2005 International Conference on
Middleware, Middleware ’05, NY, USA, Springer-Verlag New
York, Inc., pp. 249–269 (2005).

[8] Li, G., Muthusamy, V. and Jacobsen, H.-A.: Middleware
2008: ACM/IFIP/USENIX 9th International Middleware
Conference Leuven, Belgium, December 1-5, 2008 Proceed-
ings, chapter Adaptive Content-Based Routing in General
Overlay Topologies, pp. 1–21, Springer Berlin Heidelberg
(2008).

[9] Liang, C.-J. M., Chen, K., Priyantha, N. B., Liu, J. and

Zhao, F.: RushNet: Practical Traffic Prioritization for Sat-
urated Wireless Sensor Networks, Proceedings of the 12th
ACM Conference on Embedded Network Sensor Systems,
SenSys ’14, New York, NY, USA, ACM, pp. 105–118 (2014).

[10] Madden, S. R., Franklin, M. J., Hellerstein, J. M. and Hong,
W.: TinyDB: An Acquisitional Query Processing System for
Sensor Networks, ACM Trans. Database Syst., Vol. 30, No. 1,
pp. 122–173 (online), DOI: 10.1145/1061318.1061322 (2005).

[11] Pietzuch, P. R., Shand, B. and Bacon, J.: A Framework for
Event Composition in Distributed Systems, Proceedings of
the ACM/IFIP/USENIX 2003 International Conference on
Middleware, Middleware ’03, New York, NY, USA, Springer-
Verlag New York, Inc., pp. 62–82 (2003).

[12] TIBCO: StreamBase, http://www.streambase.com (2003).

― 1207 ―

