
Electronic Preprint for Journal of Information Processing Vol.25

Paper on Consumer Systems

Energy-on-Demand System Based on Combinatorial
Optimization of Appliance Power Consumptions

NaoyukiMorimoto1,a)

Received: June 30, 2016, Accepted: October 31, 2016

Abstract: In this paper, the author proposes an Energy-on-Demand (EoD) system based on combinatorial optimiza-
tion of appliance power consumptions, and describes its implementation and evaluation. EoD is a novel power network
architecture of demand-side power management, whose objective is to intelligently manage power flows among power
generations under the limitation of available power resource. In an EoD system, when total power consumption exceeds
the limit of power resource, a power allocation manager deployed in the system decides the optimal power allocation to
all the appliances based on their importance and power consumptions, and controls the amount of power supplied to the
appliances in a way that causes minimum undesired effect to quality-of-life of users. Therefore, one of the most crucial
factors in an EoD system is the strategy for deciding the optimal power allocation. From a mathematical viewpoint,
the power allocation management in an EoD system can be considered as an optimization problem of appliance oper-
ation modes. In the developed system, power allocation is based on the multiple-choice knapsack problem (MCKP),
a kind of combinatorial optimization problem. The system measures power consumption of appliances, computes the
optimal power allocation based on an algorithm for the MCKP, and realizes computed power allocation by controlling
IR-controllable appliances and mechanical relays. Through experiments, the developed system is confirmed to work
properly as an EoD system by observing system behaviors when the total power consumption exceeds the upper limit
of the available power resource.
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1. Introduction

In recent years, efficient usage of limited amount of electri-
cal energy has been an important issue. For example, in the
so-called “demand-response” system, consumers are requested to
save electricity usage to balance the amount of power demand and
supply for improving power network stability. Consequently, it is
crucial to utilize the limited amount of available power in an effi-
cient manner. Various approaches have been taken to support con-
sumers to do their power-saving activities. Typically, the “energy
usage visualization” system, which collects power consumption
data of appliances in a home and visualizes them to consumers in
some graphical ways, has certain helpful effect for consumers [1].
On the other hand, even if visualized data are presented, actual
power-saving activities still require manual operations by users,
which makes it not always easy to keep the activity in daily life.
Though decision-making on controlling the amount of power to
appliances is crucial to power-saving in user’s daily life [2], [3], it
is not always properly done by ordinary users since their aware-
ness on the amount of power consumption of appliances or their
electricity bills is not necessarily high [4], [5]. If users do not have
sufficient knowledge on the amount of power consumption of ap-
pliances they use, there is no guarantee to achieve their power-
saving goals.

Energy-on-Demand (EoD) [6] is a recently-proposed novel
power network architecture of demand-side power management,
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whose objective is to intelligently manage power flows among
power generations under the limitation of the amount of avail-
able power resource. In an EoD system, the importance of each
appliance is explicitly parameterized, and the amount of power
consumption of appliances is measured by power sensors; then,
if total amount of power consumption exceeds the limitation of
power resource, a power allocation manager deployed in a home
makes a decision on power allocation for appliances based on
the parameters, capacity of the power source and various factors
such as users lifestyles etc., and controls the amount of power
supplied to the appliances in a way that minimizes undesired
effect on quality-of-life (QoL) of users. Therefore, one of the
most crucial factors in an EoD system is the strategy for decid-
ing the optimal power allocation to appliances [7]. For optimiz-
ing power allocation, the power management system optimizes
power allocation (e.g., up to 200 W for a TV, 30 W for a fan)
considering user’s QoL, and when total power consumption ex-
ceeds a threshold value the system automatically controls power
allocation based on control policies suited for users, assuming sit-
uations where total usable power is limited in demand-response
scheme or for reducing peak load. Figure 1 shows the concept of
optimal power allocation.

From a mathematical viewpoint, the power allocation man-
agement in an EoD system can be considered as an optimiza-
tion problem; the problem where the goal is to choose the power
allocation to appliances optimized for users from various possi-
ble combinations of appliance statuses, keeping total consumed
power under the limitation. In real environments, many appli-

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 1 Optimizing power allocation to appliances.

ances have various operational modes in addition to simple on/off
states, and it is not easy to find the most optimized combination of
operation modes from many possible candidates. Moreover, the
problem cannot be easily solved by linear programming methods
since the importance of an appliance for users is not in propor-
tion to the amount of power consumption, and since the amount
of power consumption of many appliances varies in a step-wise
manner with the change of operation modes. Hence the system
should be able to flexibly and properly change operational modes
of appliances for realizing the decided power allocation, since
most appliances do not work properly if the system simply re-
duces the amount of power supplied to them.

In this research work, we propose power allocation man-
agement is considered as combinatorial optimization of appli-
ance power consumptions as an alternative approach than the
priority-based ones, and discuss the design, implementation and
evaluation of an EoD system based on the combinatorial opti-
mization. Power allocation schemes in existing EoD systems
are priority-based, not based on the combinatorial optimization,
where priority parameter is associated with each appliance, and
the power allocation manager reduces the amount of power al-
located to the appliance with lowest priority among the appli-
ances [6], [8], [9], [10]. We formulate the power allocation as the
multiple-choice knapsack problem (MCKP) [11], a kind of com-
binatorial optimization problem. The MCKP is an extended ver-
sion of the simple knapsack problem; in the MCKP, class (an
appliance) is a set of items (operation modes). Each item has pa-
rameters of size (power consumption) and profit (the importance
to user’s life). A knapsack corresponds to a power source, and its
capacity is the limit of available power resource. The objective
of the problem is to find the optimal set of items packed into the
knapsack that maximizes total obtained profit. Here exactly one
item should be chosen from a class and should be packed into the
knapsack in a way that the total size of packed items does not
exceed capacity of the knapsack. The system is implemented uti-
lizing a smart outlet network, where the power consumption of
all the appliances is frequently (every one second) measured by
power sensors. When the total amount of consumed power ex-
ceeds the upper limit, the power allocation manager deployed in
the system computes the new optimal allocation using an algo-
rithm for the MCKP, and sends control messages to appliances.

To control ordinary IR-controllable appliances with various op-
eration modes other than simple on/off states, we have adopted a
programmable IR control unit controllable from the manager via
Wi-Fi, which enables the system to flexibly control the operation
modes of IR-controllable appliances by sending pre-recorded IR
signal patterns. Through experiments, the developed system is
confirmed to work properly as an EoD system by observing sys-
tem behaviors when the total power consumption exceeds the up-
per limit of the available power resource.

This paper is consisted as follows; Section 2 refers related
work. Section 3 presents a basic concept of EoD and formulation
of power allocation as a combinatorial optimization problem. In
Section 4, we discuss our implementation of the developed power
allocation system. Section 5 describes experiments and consid-
erations. Section 6 concludes this paper. This paper is an ex-
tended version of our preliminary work [12]; we have enhanced
it by adding evaluations on the system behavior, descriptions of
problem formulation including the assumed method for setting
parameters, and considerations on important topics such as feasi-
bility of the system in real-life environments.

2. Related Work

As described in the previous section, power allocation schemes
in existing EoD systems are priority-based, not based on the com-
binatorial optimization, where priority parameter is associated
with each appliance, and the power allocation manager reduces
the amount of power allocated to the appliance with lowest prior-
ity among the appliances [6], [8], [9], [10]. The major difference
between the combinatorial optimization based approach and the
priority-based approach lays in their power reduction schemes,
especially when the total amount of power consumption exceeds
an upper limit; a fundamental scheme of the priority-based al-
gorithms is to repeatedly reduce the amount of supplied power
for an appliance with lowest priority until total power consump-
tion becomes less than the limit. The beneficial aspect of the
combinatorial optimization based algorithm is that the power al-
location can be done based on specific measures by setting an
appropriate objective function, and the decision of the optimal
modes of multiple appliances is completed by a single calcula-
tion. On the other hand, in the priority-based approach, config-
uring parameters might be relatively straightforward since only
one appliance is controlled in a single operation. In general
schemes of power management in Automated Demand Response
or Home Energy Management System, priority-based methods
are commonly used [13]. There have been other research work
where optimization problems are considered in diverse formula-
tion, and various simulational and theoretical studies have been
conducted [14]. For example, the research work by Lee et al. [15]
considered combinatorial optimization of power consumption
patterns of appliances to reduce peak load of total power con-
sumption. Adika and Wang investigated a method for au-
tonomous scheduling of electrical appliances in a grid connected
household with photovoltaic energy [16]. Kumaraguruparan et al.
formulated a scheduling problem based on the multiple knapsack
problem, in which daily power-consuming tasks are allocated to
time slots with different electricity bills to minimize total elec-
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tricity bills, and made a simulation-based evaluation [17].
There have been noteworthy studies on optimizing power con-

sumption in homes by quantifying the relationship between the
importance of an appliance and the amount of power consump-
tion. Sianaki et al. formulated the optimal power allocation as
the knapsack problem, proposed a method for parameterizing the
importance of each appliance by applying the analytic hierarchy
process (AHP), and presented results obtained by numerical sim-
ulations [18]. Kempton and Montgomery proposed a “folk quan-
tification” method [19] to quantify the importance of appliance
use in homes.

3. Concept and Formulation

This section describes the EoD concept and problem formula-
tion of power allocation in EoD.

3.1 EoD Concept
In a conventional power network in homes, power consum-

ing devices (appliances) can be supplied with power if only they
are connected to power sockets and are turned on. Therefore, to
achieve power-saving goals, users are required to have sufficient
knowledge on how much power is consumed by each appliance,
and should take careful and manual work to save electricity. In
an EoD system, the importance of each appliance is explicitly
parameterized, which corresponds to the strength of “power de-
mand” from each appliance, and the amount of power consump-
tion of appliances are measured by power sensors; then, if the to-
tal amount of power consumption exceeds the limitation of power
resource, a power allocation manager deployed in the system
makes a decision on power allocation for appliances based on the
parameters, the amount of power consumption, varying capacity
of the power source and various factors such as users lifestyles
etc., and controls the amount of power supplied to the appliances
in a way that causes minimum undesired effect to QoL of users
and total power consumption does not exceed the limit. Figure 2
presents an overview of an EoD concept. In this example, there
are two power-requiring appliances (a cleaner and a light). The
power allocation manager decides the power allocation optimized
to users life, based on parameters (power consumption and im-
portance of appliances, upper limit of available power, etc.), and
controls the amount of power supplied to the appliances (in this
example, the light is supplied with power, while the cleaner is
not).

Fig. 2 Energy-on-Demand concept.

3.2 Formulation as a Combinatorial Optimization Problem
Setting an objective function is a crucial factor in the formula-

tion of an optimization problem, and there are many reasonable
candidates of the objective function in modeling power alloca-
tion in an EoD system. In this research work, we have defined the
objective function as maximization of user’s total benefit gained
by being able to use appliances, based on a similar approach in
former research work by Sianaki et al. [18].

Figure 3 shows an example situation where each appliance has
its operational modes such as “high”, “mid” or “low”, each of
which is associated with parameters of profit (determined with
some quantification methods [18], [19]) and power consumption

measured by power sensors. The task of the power allocation
manager is to decide the optimal combination of the operational
modes of the appliances, which maximizes total profit gained by
selected modes. The most crucial constraint is that total power
consumption of all appliances should not exceed the upper limit.
Considering this constraint in home environments has become re-
alistic, since recently some utility companies (e.g., Arizona Pub-
lic Service [20] and TEPCO Energy Partner, Inc. [21]) has begun
to offer price menus based on power consumption for residential
customers, not only for corporate customers. In addition to that,
there has been a proposal of the method to determine the upper
limit of total power consumption in each time in a day based on
energy-saving goal [6]; with this method, the upper limit of total
power consumption in each time period is determined in a way
that the energy saving goal is consequently achieved even if total
power consumption is not always less than the limit. Therefore,
the objective in the formulation is to determine the power alloca-
tion under the limitation which is properly determined.

In the simple knapsack problem, we are given a knapsack with
capacity and set of items with profit and size, and our objective
is to find a subset of items that maximizes total profit of items
and total size does not exceed the capacity of the knapsack. The
multiple-choice knapsack problem (MCKP) [11] is a natural ex-
tension of the knapsack problem; the items are classified into
class, and the constraint is added that exactly one item must be
packed into the knapsack from each class. The objective is the
same as the simple knapsack problem. Here we define some
mathematical symbols for problem formulation; the number of
classes (appliances) is denoted by m, and a class i(1 ≤ i ≤ m) is a

Fig. 3 Combinatorial optimization of appliance operation modes in an EoD
system.
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set consisted of ni items (operational modes) j(1 ≤ j ≤ ni). For
each item j, profit (importance for its user) pi j and size (power
consumption) wi j are associated. A knapsack (a power source)
has capacity (upper limit of total power usage) c. Exactly one
item must be packed into the knapsack, which means that an ap-
pliance cannot work with multiple modes at the same time (here
operational modes contain the “off” status). A decision variable
xi j ∈ {0, 1} means whether item j is chosen from class i; namely,
if xi j = 1, appliance i works with operational mode j, and xi j = 0
means i works with some other mode than j.

The profit parameters of each operation mode of power con-
suming devices should be decided properly reflecting user’s pref-
erences. The most straightforward method is that user manually
determine them, and it seems reasonable to prepare some preset
patterns of parameters for dealing with some major or typical sit-
uations. On the other hand, it is difficult for users to manually de-
termine the profit parameters in a way that properly reflects their
preference, especially when the number of appliance operation
modes are large and fixing parameter is a complicated task. It is
therefore helpful for users that some scheme is available to deter-
mine the parameters in a systemized manner. One possible can-
didate method for deciding the profit parameters systematically
is analytic hierarchy process (AHP), which is the powerful tech-
nique to quantify importance of each choice in decision-making
process by utilizing questionnaire for users, and has been applied
in the quantification of user’s preferences in power allocation to
appliances [18].

The formulation of the MCKP is presented below (here Ni is a
set of items in class i). The first constraint means that the total size
of packed items should not exceed capacity of the knapsack. The
second and third constraints mean that exactly one item should be
chosen from each class and packed into the knapsack.

max
m∑

i=1

∑

j∈Ni

pi jxi j (1)

subject to
m∑

i=1

∑

j∈Ni

wi j xi j ≤ c, (2)

∑

j∈Ni

xi j = 1, i = 1, . . . ,m, (3)

xi j ∈ {0, 1}, i = 1, . . . ,m, j ∈ Ni. (4)

4. System Design and Implementation

The design of the system is an extension of the former proto-
type system [22], which was based on an algorithm for the sim-
ple knapsack problem and was capable of on/off control utilizing
smart outlets, which are the power strips with functions of power
measurement, communications and power control with mechani-
cal relays. Figure 4 presents the overview of the developed sys-
tem, which we assume is suitable for ordinary homes. The system
architecture is designed in a centralized manner, where the power
allocation manager takes all the crucial decisions. The manager
stores data of possible operational modes of each appliance, val-
ues of parameters (profit and size) of each mode, control meth-
ods available for each appliance (IR-controllable or relay-only).
The manager also collects real-time data of power consumption

Fig. 4 System overview.

Table 1 Data stored and maintained by the manager.

Items Remarks
Appliance IDs Name of appliances

Operational modes Possible operational modes
Available control methods IR-controllable or relay-only

IR control messages For IR-controllable appliances
Relay control messages For relay-only appliances

Parameters of each operation mode Profit and power consumption
Current power consumption Measured by smart outlets
Capacity of the power source Current upper limit
Current modes of appliances For proper control of the system

of each appliance (every one second), and when the total amount
exceeds the upper limit it calculates optimal power allocation uti-
lizing a dynamic-programming algorithm for the MCKP. Finally,
the manager sends control messages to realize calculated power
allocation; if the appliance to be controlled is IR-controllable, the
manager first sends the corresponding control message to the Wi-
Fi capable IR remote control, then the control sends IR signals to
the appliance. Otherwise i.e., the appliance is not IR-controllable
hence no direct mode control method is available, the manager
sends a control message to the smart outlet to which the appli-
ance is connected, and the outlet turns on or off the corresponding
socket. Table 1 shows the list of data stored and maintained by
the manager.

4.1 Design and Implementation of Hardware and Software
4.1.1 Power Allocation Manager

In hardware aspects, the system consists of the power alloca-
tion manager, the smart outlets and the IR remote control, all of
which are deployed in an IEEE802.11n Wi-Fi network. We as-
sumed that, in realistic environments, the power allocation man-
ager is not expected to have rich computational resources com-
pared with personal computers such as laptop/desktop PCs, and
it likely has similar specifications as embedded computers such
as home controllers. Therefore, we adopted Raspberry Pi 2
model B *1, a microcomputer with sufficient specifications and
programmability, as the hardware of the power allocation man-
ager. Table 2 shows its specifications.
4.1.2 Smart Outlet

The smart outlet used on the developed system is the extended
version of the one formerly developed [23]; we have improved
the outlet to be more compact and practically designed, and have
extended computational resources. Figure 5 is an outward ap-

*1 http://www.raspberrypi.org
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Table 2 Specifications of the power allocation manager.

Items Specs
CPU ARM Cortex-A7 900 MHz Quad-Core
RAM 1 GB

Communication media IEEE802.11n Wi-Fi
Interface USB 2.0

OS Raspbian (Debian-based Linux)

Fig. 5 An outward appearance of the smart outlet.

Table 3 Specifications of the smart outlet.

Items Specs
Measurement Instantaneous power,

integrated power,
current and voltage

Sampling frequency 20 kHz
Resolution 12 bit

Error Under 2%
Power control On-off control for each socket

Number of sockets Four
Rated voltage AC 100 V
Rated current 15 A

(in total of all the four sockets)
CPU ARM1176JZF-S 700 MHz
RAM 512 MB

Storage 8 GB
Communication media IEEE802.11n Wi-Fi and Ethernet

Interface USB 2.0
OS Raspbian (Debian-based Linux)

pearance of the smart outlet, and Table 3 shows its specifications.
It has four sockets, and has functions of power sensing (voltage,
current and power) and controlling relays for each socket. We
adopt the Raspberry Pi Model B as the application board, which
is an ARM-based microcomputer with CPU (ARM1176JZF-S
700 MHz) and 512 MB RAM enabling implementation of vari-
ous software and control policies on the outlet. It has a built-in
Ethernet interface and a Wi-Fi interface installed via USB. It
communicates power consumption data and control messages via
Wi-Fi and TCP/IP communications with outer devices such as a
controller, a server or other smart outlets. Rated voltage and cur-
rent is 100 V and 15 A, respectively. A/D conversion of measured
amount of power is done with 20 kHz sampling frequency and
12 bit resolution.

We adopted IRKit *2 to control IR-controllable appliances from
the power allocation manager, which is a Wi-Fi-capable IR re-
mote control. We can record IR signals of ordinary appliances
using a receiver equipped in the IRKit through its HTTP-based
API, and the recorded signal data are able to be stored in the

*2 http://getirkit.com/en/

allocation manager. When the manager takes control of an IR-
controllable appliance as a result of calculation, the manager first
sends a text-based control message to the IRKit via Wi-Fi, then
the IRKit transforms the message into IR signals and sends it to
the appliance, realizing the decision made by the manager.
4.1.3 Software

The software in the system has been developed using the stan-
dard C language. Since there is no straightforward method to
grasp current operation modes and statuses of ordinary appliances
from outer devices, the system has to keep the current operation
modes of appliances by tracking the variation of modes from the
initial state. The manager also stores data of IR control messages
for changing modes of IR-controllable appliances, relay-control
messages for controlling non IR-controllable appliances, and val-
ues of (pre-measured) power consumption and profit parameters
associated to each operation mode of appliances. The commu-
nication in the Wi-Fi network among the manager, smart outlets
and the IR control is done via standard TCP/IP socket protocols.

4.2 Network
The Wi-Fi used in the network is IEEE 802.11n with maxi-

mum bandwidth of 300 Mbps using 2.4 GHz of frequency and is
protected with WPA encryption for easier coordination with ordi-
nary information devices such as PC, tablets or smartphones. As
a transport layer protocol, we have chosen TCP for reliability, de-
pendability and safety, because the system does control electricity
actively, not only gathering data on power consumption.

4.3 Data Formats
Measured power consumption data and relay control messages

are formatted in XML-like manners as follows, considering the
extendibility, versatility and easier handling [23].
• Measured Power Consumption Data:

The below is an example of notice wattmeter, which is
used for sending measured power consumption data (ap-
proximately 540 bytes). This example means that inte-
grated power on socket #2 is 64 Wh, instantaneous voltage is
100.585 V, current is 0.831 A, instantaneous effective power
is 48.8 W, and the relay at the socket has been turned on.

<root><info>

<kind>notice_wattmeter</kind>

<time>20160509213008175</time>

</info><data>

<socket1><wh>0</wh><volt>100.519</volt><

current>0.002</current><watt>0.8</watt><

state>OFF</state></socket1>

<socket2><wh>64</wh><volt>100.585</volt><

current>0.831</current><watt>48.8</watt><

state>ON</state></socket2>

<socket3><wh>4</wh><volt>100.561</volt><

current>0.005</current><watt>2.0</watt><

state>OFF</state></socket3>

<socket4><wh>57</wh><volt>100.568</volt><

current>0.511</current><watt>33.7</watt><

state>ON</state></socket4>

</data></root>

• Relay Control Message: The below is an example of
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command socket, a message for controlling relays (approx-
imately 250 bytes). In this example, relay #1 and #4 should
be turned on and #2 and #3 should be off.

<root><info>

<kind>command_socket</kind>

</info><data>

<socket1><state>ON</state></socket1>

<socket2><state>OFF</state></socket2>

<socket3><state>OFF</state></socket3>

<socket4><state>ON</state></socket4>

</data></root>

4.4 Dynamic-programming Algorithm for MCKP
When all the classes have only one item, the MCKP corre-

sponds to simple knapsack problem. Therefore the MCKP is
NP-hard, since it includes the knapsack problem as a special
case and the knapsack problem is NP-hard [24]. However, it has
been shown that there is a dynamic-programming algorithm for
the MCKP that obtains an optimal solution in pseudo-polynomial
time [25]. Hereafter, we treat the power capacity and the amount
of power consumption as integers (note that the smart outlet is
able to measure the power consumptions to one decimal place
and the algorithm is able to handle real numbers by increasing
the number of digits, though there is trade-off between accuracy
and computational time).

Algorithm 1 Dynamic-programming Algorithm for the Multiple-
Choice Knapsack Problem [25]

for d = 0 to c do

P(0, d) = 0

end for

for d = 1 to c do

for i = 1 to m do

for j = 1 to ni do

if d ≥ wi j then

Pj(i, d) = P(i − 1, d − wi j) + pi j

else

Pj(i, d) = P(i − 1, d)

end if

end for

P(i, d) = max j{Pj(i, d) | j = 1, . . . , ni}
end for

end for

We have implemented the dynamic-programming algorithm in
the system. Algorithm 1 presents its formal description. As
defined before, the number of appliances is denoted by m, and
the number of operation modes of appliance i is denoted by ni.
P(i, d) denotes an optimal solution of the subproblem with classes
of 1, . . . , i (1 ≤ i ≤ m) and a knapsack with capacity of d

(1 ≤ d ≤ c). Generally, a dynamic-programming algorithm is
based on principle of optimality; the algorithm first obtains the
optimal solution of an instance with smaller size, then constructs
the optimal solution for a larger instance in a step-by-step manner.
In the case of the MCKP, the dynamic-programming based algo-
rithm first treats the instance with limited capacity and a subset
of items. Then, by using solutions for smaller instances and the
recursions Pj(i, d) = P(i−1, d−wi j)+ pi j or Pj(i, d) = P(i−1, d),

we can obtain the optimal solution of the instance with classes
1, . . . , i and the knapsack with capacity d, based on the optimal
solutions of the smaller instance with limited classes 1, . . . , i − 1
and the knapsack with capacity smaller than d. Through the algo-
rithm execution, the system records the set of selected appliance
modes that achieves the optimal profit P(i, d) for each subprob-
lem so that it is able to control the modes in a way that realizes
the final optimal solution.

5. Experiments and Considerations

This section descibes observations of the system behavior
when the upper limit of an available power resource is dynam-
ically changed, shows required time for communication/calcula-
tion of power allocation/power control, and presents some con-
siderations.

5.1 Experiments
For presenting the result clearly, here we describe behavior of

the system with a small number of appliances. Figure 6 presents
an example configuration of the developed system, which in-
cludes an IR-controllable fan (with modes of “off”, “low” and
“high”, an IR-controllable light (with modes of “off” and “on”),
a laptop (not IR-controllable) and a battery charger (not IR-
controllable). In this example configuration, the profit parame-
ters of appliances are manually set based on user’s preference.
The power consumption parameters of the appliances are set as
50 W for the laptop, 18 W for the fan with “low mode” and 35 W
for “high” mode, 3 W for the light and 5 W for the battery charger,
based on pre-measured power consumption of each appliance.
The power allocation manager checks whether the total power
consumption exceeds the limit every one second, and when ex-
ceeding the limit it calculates the new power allocation based on
the pre-measured power consumption values. The profit values
of the appliances are set manually as 200 for “on” mode of the
laptop, 50 and 100 for “low” and “high” modes of the fan respec-
tively, 30 for “on” mode of light, and 10 for “on” mode of the
battery charger. Also, “off” mode of each appliance has profit of
0.

We have observed how the developed system controls appli-
ance operation modes by recalculating the optimal power allo-

Fig. 6 Example configuration.
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Fig. 7 Power consumption of each appliance and their summation.

cation, with the upper limit being changed over time. Figure 7
shows the variations of total power consumption and power con-
sumption by each appliance over time, where the X axis repre-
sents time (second), and the Y axis represents power consumption
(W). The experiment was conducted in the following scenario;
( 1 ) From the zeroth second to around 150th seconds, the upper

limit is set to be 100 W; therefore, the fan works with its
“high” mode and the other appliances are turned on with no
limitation. Total profit obtained is 340 (=200+100+30+10).

( 2 ) The first power control taken by the system can be observed
around 150th seconds when the upper limit is set as 80 W.
Since the total power consumption exceeds the limit, the
power allocation manager computes the new optimal power
allocation. As a result, the fan is set to be “low” mode by a
control message sent by the manager, and total power con-
sumption became less than the limit. Hereafter, the upper
limit changes periodically (every 30 seconds). Total profit
obtained is 290 (=200+50+30+10).

( 3 ) The second power control is observed around 180th seconds
when the upper limit is set as 60 W. A the result of the new
optimal power allocation, the fan is turned off, while the al-
location to other appliances are unchanged. (The power con-
sumption of the fan temporarily increased and immediately
dropped at around the 180th seconds, because the manager
must control the fan to be turned off via temporal “high”
mode due to its hardware specification.) Total profit is 240
(=200+30+10); here we can observe that system chooses the
fan to be turned off, since the profit of the laptop is higher
than that of the fan.

( 4 ) Next, we set a new upper limit of 40 W around 210th sec-
onds. The decision by the manager is that the laptop and
the battery charger should be turned off since 40 W of avail-
able power is not sufficient to supply power to them, instead
the fan is controlled to be “high” mode since there is suf-
ficient available power to supply the fan as the laptop and
the battery charger are turned off. Total profit obtained is
130 (=100+30); here we can observe that system chooses
the battery charger to be turned off, since the profit of the
light is higher than that of the charger.

( 5 ) Similarly, when the limit is changed to 20 W at the 240th

seconds and 10 W at the 270th seconds, the new power allo-
cation is recalculated as optimized for each new setting. In
particular, at the 240th seconds, it is observed that the sys-
tem choose the fan to be its “low” mode, since it has profit
of 50 which is higher than the sum of the profit of the battery
charger and the light (40=10+30).

( 6 ) When the limit is recovered to 100 W around 300th seconds,
the power resource is sufficient and all the appliances are
fully allocated with power, i.e. the fan works with “high”
mode and all the other appliances are turned on.

These observations through the experiment indicate that the
system works properly as an EoD system. By deploying the sys-
tem in a real-life environment and changing the upper limit, we
also have confirmed that the system is able to handle other ordi-
nary appliances such as an IR-controllable air conditioner, a TV,
audio systems, a coffee maker or a hair dryer, etc., some of which
consume the larger amount of power than the appliances used in
the example configuration.

We have measured time required to compute the optimal power
allocation by using the algorithm for the MCKP. The calculation
of the optimal allocation is completed less than one second on
the power allocation manager (Raspberry Pi 2) when example in-
stances have 24 appliances with five modes and the upper limit
is set as 3000 W, and less than 100 milliseconds when four ap-
pliances with three modes. Therefore, the time needed for the
calculation is sufficiently short. In the experimental environment,
to control an appliance required at most around six seconds when
multiple IR signals should be sent to an IR-controlable fan. It is
shown that relay control by the smart outlet can be done in aver-
agely 29.3 milliseconds after receiving a relay control message,
using Wi-Fi 802.11n as a communication media and the standard
TCP/IP socket communication [22]. Hence, in a real-world envi-
ronment, the implemented system is also expected to work as a
circuit breaker and is beneficial for avoiding damage caused by
overcurrent, overload or short circuit, though the main purpose of
the system is optimizing power allocation.

5.2 Considerations
Full installation of the proposed system in real-life environ-

ment requires users additional cost, knowledge and effort to con-
struct and maintain the system properly. On the other hand, the
proposed system is able to be installed partially in exchange for
precision and capability of control; for example, if we admit the
system to use approximate power consumption values in the cal-
culation of total power consumption instead of real-time mea-
sured values, power sensors are not necessary though the pre-
cision of power control is inevitably limited as trade-off. Simi-
larly, if a user decides that it is sufficient for the system to con-
trol only IR-controllable appliances, mechanical relays installed
in the smart outlet is also unnecessary.

In the experiments, sending IR-control messages requires
marginal time, since IR-controllable appliances sometimes failed
to receive the control signals if they are sent fast and continuously.
Also, since the calculation of power allocation is done using pre-
measured power consumption of each appliance, sometimes there
appears some unintentional deference between assumed power
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consumption and actual power consumption, which causes in-
efficiency in utilizing available power resources. In addition to
that, as long as the power allocation and control is done in peri-
odically, it is inevitable that sometimes total power consumption
temporally exceeds the upper limit, which is a common issue in
EoD systems [6]. Frequency of data collection and power control
should be optimized for real-life situations, considering various
factors such as the variation of appliances’ power consumption,
trade-off between control precision and computational load, etc.

Some of the limitations of the developed system depend on
functional restrictions of today’s ordinary appliances; there is no
straightforward method to grasp their current operation modes or
internal statuses from outer devices such as the power allocation
manager. The system therefore should properly manage statuses
of all the appliances, which is not always possible in a real-life
environment since the appliance operation modes can be manu-
ally changed by users and it is not easy for the system to precisely
detect or handle manual mode changes. After the system fails to
detect the manual operation, the control by the system does not
work properly since the actual modes differ from the modes as-
sumed in the system.

Though the estimation methods for recognizing operation
modes of appliances from power consumption [26] should be use-
ful, the complete solution for these technical problems can be
achieved only by utilizing so-called smart appliances, which are
capable of communicating the internal statuses with other de-
vices based on communication standards for smart appliances
such as ZigBee Smart Energy Profile *3, Apple HomeKit *4 or
ECHONET Lite *5. Therefore, we are considering to extend the
developed system being capable of handling these protocols, and
conduct real-life experiments. In this context, the noteworthy fea-
ture of USB Power Delivery (USB PD) *6 is its smart power sup-
plying scheme; a USB PD ready power consuming device com-
municates with a power supplying device, negotiates about the
amount of power it is allowed to consume, and is able to adapt its
mode best suited for available power amount. For developing a
more sophisticated and flexible EoD system, it is strongly desired
that the appliances have similar smart functions.

6. Conclusion and Future Work

In this paper, we have considered the power allocation manage-
ment in an EoD system as a combinatorial optimization of appli-
ance power consumptions, and have discussed the design and im-
plementation of an EoD system using the dynamic-programming
algorithm for the multiple-choice knapsack problem. The system
finds the optimal combination of appliance operation modes un-
der the limitation of available amount of power, and controls the
amount of power supplied to appliances using the IR control and
mechanical relays in smart outlets. Time required for calculat-
ing the optimal allocation is sufficiently short when we consider
instances with realistic size (24 appliances with five modes, up-
per limit set as 3000 W). We have confirmed that the developed

*3 http://www.zigbee.org/
*4 http://www.apple.com/ios/homekit/
*5 http://www.echonet.gr.jp/english/index.htm
*6 http://www.usb.org/developers/powerdelivery/

system works properly as an EoD system by observing system
behaviors when the total power consumption exceeds the upper
limit of the available power resource.

In the developed system we focused on keeping restrictions
on instantaneous power, however there are other reasonable fac-
tors to be considered as well; for example, assuming the Time-
of-Use pricing in demand response systems, it is reasonable to
control power consumption to minimize the electricity cost, not
only considering restrictions of instantaneous power. Since the
combinatorial-based approach we have taken can be extended to
other objective functions (the total energy consumption, electric-
ity cost, CO2 emission, etc.), we are planning to additionally im-
plement a scheduling scheme in the developed system, where the
parameter setting is based on real-life power consumption data
and patterns measured over one year [23]. In developing schedul-
ing strategies, it should be of importance and interesting to con-
sider uncertain factors such as price uncertainty [27].

Another future research direction is to make experimental com-
parisons of two power allocation approaches (the combinatorial
optimization based approach and the priority-based approach) in
real-life environments, since they have different characteristics;
the combinatorial optimization based algorithm decides all the
operation modes in a single calculation, while the priority-based
algorithm repeats to select an appliance based on its priority pa-
rameter and reduce the amount of supplied power for it until total
power consumption decreases to be less than the upper limit.

One of the important future work topics for applying the devel-
oped system in real-life situations is to pursue a method to decide
the profit parameters of appliances. The methods for systemati-
cally parameterize the importance of appliances are the common
challenging problem in EoD systems (e.g., Ref. [28]). The profit
parameters of appliance modes should dynamically change over
time, depending on various factors such as temperature value. We
are considering to apply the methods for quantifying user’s pref-
erence such as the AHP [18] or folk quantification [19], based on
patterns of user’s behavior and power consumption data in a real-
life environment, which can be grasped by the smart outlet net-
work for energy-aware services utilizing various sensor informa-
tion (motion, temperature, humidity, etc.) [23]. In conducting the
AHP in real-life environments, decision of criteria and the ques-
tionnaire setting should be crucial factors, and further investiga-
tion is needed to verify whether the criteria and questionnaire set-
tings adopted in former work [18] are applicable to our system in
real-life environments, since they possibly require modifications
or adjustments. This investigation should require large experi-
ments involving people with various power consumption prefer-
ences and lifestyles. Also, as pointed out by Kato et al. [6], it is
crucial to develop user interfaces for updating parameters includ-
ing user preferences and the upper limit, which helps the system
to flexibly react to sudden changes of situations or user’s feeling.

We expect the developed system works as a test-bed for real-
life application of the other optimization methods which have
been studied in theoretical or simulational manners. Also we
are considering to pursue more sophisticated system with a smart
rule-based scheme which realizes EoD by determining the power
requests from policies and the appliances specification [9], since
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the computational resource of the smart outlet and the power allo-
cation manager is sufficient for the rule-based power management
system [23].
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