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Abstract: The integration of FPGAs into computing systems puts more pressure on the fault tolerance of computing systems and 
the question how to improve the dependability becomes crucial. Similar to CPU-based system, checkpoint/restart techniques are 
expected to be developed and applied to FPGA-based computing systems. There are two issues rising in this situation: how to 
checkpoint and restart FPGA, and how to automatically generate checkpointing infrastructure for applications in order to reduce 
programmer effort. In this paper, first we present a checkpoint/restart architecture for FPGA-based computing. Second, we provide 
a Python-based framework to generate checkpointing functionality for applications. Our experimental results show that the 
checkpointing functionality generated by the framework causes less than 9.73% maximum clock frequency degradation, while the 
LUT overhead varies from 5.92 % (Dijkstra) to 147.07 % (Matrix Multiplication). 
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1.! Introduction     

  Field Programmable Gate Arrays (FPGAs) are expected to 
play a more important role in high performance computing system. 
They do not only provide reconfigurability and high performance 
for parallel applications, but also show great advantages of 
exploiting memory bandwidth to increase memory throughput and 
accelerate data-intensive applications. Therefore, the integration 
of FPGAs into high performance computing architectures 
becomes indispensable in the future. However, this trend 
compounds the problem of increasing failure rate because of 
growing size and complexity in the computing system [1, 2]. As a 
consequence, fault tolerance becomes more essential in FPGA 
operation. The most dominant technique used to deal with faults 
in CPU-based systems is checkpoint/restart, and this technique is 
also expected to improve the dependability of FPGA-based 
computing systems. There are two types of checkpointing on 
FPGA: user-level checkpointing and system-level checkpointing. 
While user-level checkpointing requires more effort from 
programmers to write additional code along with applications, 
system-level checkpointing is performed automatically by 
provided checkpointing infrastructure. Conversely, system-level 
checkpointing is predicted to be more complicated and consumes 
more hardware resource than user-level one. However, in this 
paper we choose to go forward system-level checkpointing to 
remove effort from programmers. 

In system-level checkpointing, there are several approaches to 
exploit properties of automatic checkpointing, depending on 
where checkpointing infrastructure is inserted in the hardware 
design flow. First, checkpointing infrastructure can be written and 
inserted in high-level languages, such as C/C++, Java, or Python. 
There are many high-level synthesis tools, such as Vivado HLS 
and OpenCL, that can support to do so. Second, checkpointing 
infrastructure can be written and inserted in hardware description 
language (HDL), called HDL-based checkpointing in this paper. 

                                                                    
 †1 Nara Institute of Science and Technology 
 †2 Hokkaido University 

Third, checkpointing technique can be integrated in the hardware 
design flows at the netlist level as in [3]. Fourth, checkpointing 
technique can also be employed by using configuration tools to 
read back and then filter the configuration bitstream to get the 
values of flip-flops and RAMs used in the hardware [4, 5]. While 
the first approach shows an advantage of exploiting hardware 
abstract in high-level language, it requires knowledge in specific 
high level languages and specific tools as well. The third and the 
fourth approaches also depend much on tools and technology. For 
the most global and popular use, we choose HDL-based 
checkpointing to investigate.  

However, to satisfy the properties of system-level 
checkpointing, the HDL-based checkpointing technique must 
cover all situations of hardware behavior, transparent to 
applications and technology, and portable across computing 
platforms. There are two issues rising in this situation. First, a 
common checkpointing mechanism is required. Second, a 
software tool to convert HDL source code from original source 
code to the source code with checkpoint/restart functionality also 
need to be developed. Our main contributions in this work are as 
follows: 

1)! We present a tree-based architecture for hardware 
checkpointing along with a checkpointing mechanism that are 
transparent to hardware structure.  

2)! We provide a Python-based framework to analyze the 
original Verilog HDL source code and insert checkpointing 
functionality. 

  The rest of the paper is organized as follows: Section II 
describes a tree-based checkpointing architecture for FPGAs. 
Section III presents the Python-based framework for 
checkpointing insertion. Section IV shows the evaluation. Section 
V discusses related works. Conclusion is summarized in section 
VI. 
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2. Tree-based Checkpointing Architecture 

2.1 Checkpointing Architecture 
  It is noted that a structure of nested modules can be considered 
as a model of tree, in which the top module is the foot of the tree 
while sub-modules are branches of the tree. Therefore, a 
checkpointing architecture based on the model of tree is an 
approach to deal with complicated structures of nested modules. 
Each hardware module on FPGA has its own corresponding 
checkpoint/restart infrastructure, called CPR node, and the CPR 
nodes of all modules form a checkpointing tree as Fig. 1. In the 
figure, node 1 of the top module is called the next CPR level of 
node 2 and node 3, while node 4 and node 5 are called the 
previous CPR level of node 2, and node 6 and node 7 are the 
previous CPR level of node 3. In tree model, both capturing and 
restoring processes are performed sequentially through branches 
of the tree. This tree model is expected to reduce the data 
movement and energy consumption when capturing and restoring. 
The structure of CPR node is the same among modules in the user 
hardware and composed of parts: a CPR gate to the next CPR 
level, CPR interfaces with CPR nodes of the previous CPR level, 
context capturing/restoring circuits, and two CPR finite state 
machines (FSMs) – a capturing FSM and a restoring FSM. In 
another point of view, checkpointing hardware is divided into 2 
parts: static CPR hardware that is the CPR gate of the top module, 
and the rest of the checkpointing tree, called user-logic-based 
CPR hardware, as showed in Fig. 2. The static part is fixed and 
independent from the user hardware, thus transparent to 
applications. Meanwhile, the user-logic-based part depends on 
the user hardware. To find out the rules to insert this part to user 
logic is one of our research purposes. 

2.1.1 CPR Gate: CPR gate of all CPR nodes except the CPR 
node of the top module is defined in Verilog HDL as in Fig. 3. 
The gate consists of a logic throttling signal – DRIVE as in [7], 
control signals, synchronous signals, and data signals for 
capturing and restoring. 
  It is noted that while the CPR gate described above is quite 
simple, structure of the CPR gate of the CPR node in the top 
module is much more complicated. This CPR gate is the static 
CPR hardware part as mentioned above. This part of 
checkpointing hardware is portable across platforms since it is 
fixed and does not depend on any parameter of the user hardware. 
This part includes: 1) SW DMA - a direct memory access (DMA) 
engine for AXI4-Lite protocol to communicate with the software 
in the host CPU via slave bus (S-Bus). 2) Capture FIFO – a FIFO 
to store checkpointing data captured from the user hardware. 3) 
Restore FIFO - a FIFO to store checkpointing data read from off-
chip memory before restoring to the state-holding elements. 4) 
MEM DMA - a DMA engine for AXI4 protocol to write FPGA 
context from Capture FIFO to off-chip memory and read the 
context from off-chip memory to Restore FIFO via master bus 
(M-Bus). 5) CPR Manager - a checkpoint/restart (CPR) manager 
with functions as follows: a) Reading control code/writing status 
code and address of checkpoints stored in off-chip memory 
from/to SW DMA. b) Controlling MEM DMA to write and read 
checkpoints to/from off-chip memory. c) Throttling user logic to  

 
Fig. 1. Checkpointing tree 

 

Fig. 2. Tree-based checkpointing architecture on FPGA 

      

          Fig. 3. CPR gate                  Fig. 4. CPR interface 

pause the application when checkpoint/restart. d) Controlling 
checkpoint/restart procedures. As in [8], using hardware core to 
manage CPR procedures provides considerable performance 
advantage over software-only methods, our CPR manager is also 
expected to improve the CPR performance over the direct control 
from the host. 

 Capture FIFO and Restore FIFO can be considered as on-chip 
storage for checkpoints on FPGA. Checkpointing process in a 
computing node now including 3 levels, called multi-level 
checkpointing: First, checkpoints are captured and written to the 
on-chip storage. Second, checkpoints in the on-chip storage are 
written to main memory. Third, checkpoints are copied from main 
memory to the non-volatile storage of the node. 
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input [2:0]  CPR_request,
input                      DRIVE,
output reg [2:0]  CPR_state,
input                      cpr_out_almost_full,
input                      capture_flag,
output reg [31:0]   D_cp,
output reg D_cp_valid,
input [31:0]           Q_r,
input                      Q_r_valid

wire [2:0]      a_CPR_state;
reg a_capture_flag;
reg [31:0]      a_D_r;
reg a_D_r_valid;
wire [31:0]    a_Q_cp;
wire               a_Q_cp_valid;
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Fig. 5. MUX-based capturing/restoring circuit for registers 

 

Fig. 6. Shift-Reg-based capturing/restoring circuit for registers 

 

     (a) Original           (b) Capturing/restoring circuit 

Fig. 7. Adding capturing/restoring circuit to RAM 

Since a combination between multi-level and non-blocking 
checkpointing can benefit the performance of checkpointing [9], 
in our checkpointing architecture, FPGA does not wait until its all 
checkpoints are written to the non-volatile storage of the node, but 
resumes the normal operations immediately after the all 
checkpoints are written to Capture FIFO. 

2.1.2 CPR Interface with the Previous CPR Level: As simple 
as the CPR gate in a module, a CPR interface consists of wires 
and registers to communicate with a CPR node of the previous 
CPR level. Fig. 4. shows the definition of CPR signals for a sub-
module named “a”, for example. This group of signals is mapped 
to corresponding signals of the CPR gate of the sub-module and 
does not include handshaking signals. Therefore, the 
checkpointing data movement is not interrupted by handshaking 
procedures. 

2.1.3 Context Capturing/Restoring Circuit: As mentioned in 
the definition of the reduced set of state-holding elements, the 

context finally consists of registers and RAMs. In this paper, we 
propose methods to capture/restore registers and RAMs. 
     2.1.3.1 Register capturing/restoring circuit: It is assumed 
that there are n registers with arbitrary bit length: Reg_0, Reg_1, 
…, Reg_n-1. To align the data in these registers with the 32-bit 
data width of checkpointing, these registers are concatenated and 
scaled again to form 32-bit registers: Reg_0, Reg_1, …, Reg_k-
1. It should be noted that the bit length of Reg_k-1 may be less 
than 32 if the bit-length sum of the registers is not a multiple of 
32. We have two alternative approaches to capture/restore 
registers.  
      MUX-based capturing/restoring circuit: The values of 
these registers are assigned to D_cp (a buffer register of CPR 
gate) in consecutive states of the capturing FSM, and the values 
of Q_r (data wire from the next CPR level for restoring) are 
consecutively assigned to the registers in states of the restoring 
FSM. This, when synthesized, will generate a capturing circuit 
and a restoring circuit as in Fig. 5. In this case, the capturing 
circuit creates k 32-bit inputs more for the 32-bit multiplexer in 
front of D_cp. In addition, the restoring circuit creates one 32-bit 
input more for the 32-bit multiplexer in front of each register. 
Totally, 2k 32-bit inputs are added to 32-bit multiplexers. 
      Shift-Reg-based capturing/restoring circuit: If the bit 
length of Reg_k-1 is less than 32, a padding register is inserted to 
guarantee the 32-bit data width of Reg_k-1. In the capturing 
circuit, the data in the k 32-bit registers is step by step shifted to 
the 32-bit multiplexer in front of D_cp as in Fig. 6. To satisfy the 
requirement that the values of registers are kept unchanged after 
capturing, the value of Reg_0 is looped back to the Reg_k-1 via 
its input multiplexer. For the restoring circuit, context is 
consecutively shifted from Q_r to the all registers via 32-bit 
multiplexers. It is realized that the capturing circuit and the 
restoring circuit can share the register shifting circuit, thus saving 
hardware resource consumption, and we consider this as an 
advantage of this approach in this paper. In this case, one 32-bit 
input more is added to the 32-bit multiplexer in front of registers: 
D_cp, Reg_0, Reg_1, …, Reg_k-2, while two 32-bit inputs more 
are added to the 32-bit multiplexer in front of Reg_k-1. Totally, 
k+2 32-bit inputs are added to 32-bit multiplexers. 
 When k equal to 1, there is no shifting structure in the shifting 
circuit, thus these two circuits are the same. When k equal to 2, the 
MUX-based circuit may be better than the Shift-Reg-based circuit 
in terms of resource consumption if a padding register is required. 
When k more than 2, 2k is more than k+2. Therefore, the Shift-
Reg-based capturing/restoring circuit is expected to be better than 
the MUX-based circuit. 

     2.1.3.2 RAM capturing/restoring circuit: Fig. 7 shows how 
to add capturing/restoring circuit to the original RAM to make it 
checkpoint-able. Since the size of RAM can be determined in the 
HDL source code, the context of RAM can be captured and 
restored by iterating reading and writing through the whole its 
address space. Therefore, one port of RAM must be selected to 
read and write when capturing and restoring. However, the inputs 
of this port are expected unchanged after capturing to guarantee 
ability of resuming hardware, and sometimes this inputs are 
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controlled from outside, not inside the module containing such 
RAM. For these reasons, instead of using a port of RAM directly 
to read and write, three registers: we_0, addr_0, and wdata_0 are 
added along with the three signals: write enable (we), address 
(addr), and write data (wdata), to control the port via multiplexers. 
   2.1.4 CPR FSMs: The two CPR finite state machines (CPR 
FSMs) include one for capturing and the other for restoring. Both 
of the two FSMs are controlled by signals from the CPR manager 
and the next CPR level. There are several rules to design these 
two FSMs: 
     2.1.4.1 FSM for capturing: The FSM for capturing has two 
tasks. The first is to control the context capturing circuits of the 
current CPR node to assign the values of state-holding elements 
to the register D_cp of the CPR gate, and set the value of 
D_cp_valid to ‘1’. The second is to connect the previous CPR 
level to the next CPR level by copying the checkpointing data 
from the previous CPR level to the register D_cp, and set the 
value of D_cp_valid to ‘1’. The difference between the two tasks 
is about the condition to capture. While the first task requires 
Capture FIFO to have some rooms available, the second task 
ignores this condition to force the current CPR node to serve 
checkpointing data from the previous CPR level. In this case, to 
ensure Capture FIFO not overflowed when MEM DMA gets 
stuck, the guard gap of the signal almost_full from Capture FIFO 
should be more than the number of CPR levels in the user 
hardware.  
     2.1.4.2 FSM for restoring: This FSM also has two tasks but 
contrast to the FSM for capturing. The first is to control the 
context restoring circuits to get checkpoints from the next CPR 
level then restore to the state-holding elements. The second is to 
connect the next CPR level to the previous CPR level by copying 
checkpoints from Q_r to the CPR interfaces with the CPR nodes 
of the previous CPR level. 

2.2 Consistent Snapshot with FPGA 
  This section answers the question mentioned in section I: 

How does the CPR model on FPGA work with the CPR model of 
the whole computing system? The answer is that the snapshot of 
FPGA must be consistent with the snapshot of the rest of the 
computing system to form a consistent global state. A global state 
of a distributed system is a set of component process and 
communication channel states [10, 11]. In order to get a global 
state, the states of all components and channels between them 
must be captured. Unfortunately, we cannot capture/restore the 
physical state of communication channels. Therefore, the 
simplest way to make a consistent global state is to capture the 
states of all components when all communication channels are 
idle. In this case, the states of channels are all empty, and the 
global state now consists of only states of distributed components. 
However, this case rarely occurs because at the time a channel is 
idle, others may be active. In this paper, we propose a new 
concept named virtual consistent global state, in which all 
channels are idle. This global state is created by throttling channel 
requests and waiting until all channels become idle. It is noted 
that this throttling changes the flow of execution but does not 
change the execution result, thus this global state still satisfies  

 

Fig. 8. Channel finite state machine 

 

Fig. 9. Prevent issuing requests on the mater side 

 

Fig. 10. Prevent receiving requests on the slave side 

two properties of a consistent global state mentioned in section II. 
To know the state of a channel to be idle or active, two finite state 
machines are required, called channel finite state machines 
(FSMs) in this paper. To throttle new requests, a unit is required 
to prevent issuing new requests on the master side, and prevent 
receiving new requests on the slave side of the channel, called 
request throttling unit in this paper. Since the most popular 
protocol used on FPGA to communicate with others is AXI4, it is 
chosen to illustrate operation of these two hardware classes. 

2.2.1 Channel Finite State Machine: Fig. 8 shows a channel 
FSM for read transaction, the channel FSM for write transaction 
is similar. In this FSM, we use two pairs of signals: arvalid & 
arready and rvalid & rlast. In addition, we also use a register to 
count the number of read requests in the channel. The FSM is 
composed of two states: Idle and Active. The state will switch 
from Idle to Active if the condition arvalid = arready = 1 is 
satisfied. In this case, the number of requests increase from ‘0’ to 
‘1’. Conversely, if both rvalid and rlast are equal to ‘1’, arvalid or 
arready are equal to ‘0’, and the number of requests is equal to 
‘1’, the state will transit from Active to Idle and the number of 
requests will decrease from ‘1’ to ‘0’. 

2.2.2 Request Throttling Unit: For AXI4 protocol, we 
propose a method to prevent issuing new requests on the master 
side and prevent receiving requests on the slave side. In this 
method, the arvalid, arready, awvalid, and awready signals are 
fastened to ‘0’. The simplest way to do that is to use 2-to-1 
multiplexers as showed in Fig. 9 and Fig. 10. 

3. Framework for FPGA Checkpointing 

3.1 Proposed design flow 
  Since we chose HDL-based checkpointing to investigate, the  
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Fig. 11. Modification in design flow 

 
Fig. 12. Structure of the framework 

framework must be inserted before synthesis in the proposed 
design flow as in Fig.11. The input of the framework is Verilog 
source code. Due to the location of the framework in the design 
flow, our checkpointing methodology is portable across hardware 
platforms and not dependent on technology. 

3.2 Structure of the framework 
  The structure of the framework includes four blocks. The first 
is Parameter Resolver. This block analyzes the input Verilog 
source code, then produces the abstract syntax tree of the source 
code. Parameters from the source code are also abstracted and 
resolved. The second is CPR Port Inserter. This block inserts a 
CPR gate as ports in each module to connect CPR levels. The 
third is CPR Unit Generator. This block is to modify always 
blocks and insert CPR finite state machines in each module. The 
fourth block is IP Packager. This block packages the Verilog 
source code with checkpointing functionality to create an IP core, 
called CPR IP cores. For checkpointing purpose, this section 
presents the two blocks: CPR Port Inserter and CPR Unit 
Generator. 
3.2.1 CPR Port Inserter 
  The output source code is as in Fig.3. The input CPR_request 
is to request checkpointing mode. There are four modes: prepare, 
capture, restore, and signal virtualization. The input DRIVE is to 
throttle user logic, and inserted in always blocks. CPR_state 
inform the CPR manager about the progress of checkpointing 
procedures. capture_flag is to enable the capturing procedure in 
a module. 
3.2.2 CPR Unit Generator 
  CPR Unit Generator includes three tasks. The first is to modify  

 
Fig. 13. Modifying always block 

 

Fig. 14. Inserting CPR finite state machines 

always blocks to insert register capturing/restoring circuits and 
throttling signals as in Fig.13. The second is to realize modules 
that will be synthesized as dedicated blocks, such as distributed 
RAM and block RAM. These modules should not be inserted 
CPR ports or modified always blocks. In case of RAMs, all 
parameters including data width, address width, and signal 
groups for ports are abstracted from the definition of the module. 
The third is to insert two CPR finite state machines, including one 
for capturing and the other for restoring. Fig.14 shows the CPR 
finite state machine for capturing, including both register 
capturing (blue) and BRAM capturing (red). 
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always @(posedge CLK) begin
if(RST) begin

cyclecount <= 0;
end else if DRIVE begin

if(state == 2) begin
cyclecount <= 0;

end else begin
cyclecount <= cyclecount + 1;

end
end else if shift_enable begin

cyclecount <= { computation_size[31:0] };
end 

end

if(CPR_request == 2) begin
case(cp_state)

0: begin
if(capture_flag && !mem_cpr_out_almost_full) begin

D_cp_valid <= 1;
D_cp <= {ram_addr_0, ROOM_DEQ};
restore_cnt <= restore_cnt + 1;
if(restore_cnt== reg_cnt - 1) begin

restore_cnt <= 0;
cp_state <= 1;

end
end

end
1: begin

if(capture_flag && !mem_cpr_out_almost_full) begin
ram_addr_cpr_1 <= ram_addr_cpr_1 + 1;
ram_deq <= 1;

end 
if(ram_deq) begin

D_cp_valid <= 1;
D_cp <= ram_Q_cpr;
if(ram_addr_cpr_1 == 0) begin

CPR_state <= 1;
cp_state <= 2;

end
end

end
2: begin
end

endcase
end 
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TABLE I.  Experimental Setup 

EDA Tool Vivado 2014.4, ISE 147 

FPGA Xilinx Zynq-7000  XC7z020clg484-1 

Clock frequency 100 MHz 

TABLE II.  LUT Utilization and Max Clock Frequency 

Apps Additional 

LUTs 

(handwriting) 

Additional 

LUTs 

(framework) 

Max Clock 

frequency 

(handwriting) 

Max Clock 

frequency 

(framework) 

Mat-

Mul 

160.67 % 147.07 % 103.875 MHz 103.875 MHz 

Dijkstra 17.98 % 5.92 % 161.589 MHz 161.589 MHz 

 

4.! Evaluation 

  In Table II, our evaluation on two realistic applications: matrix 
multiplication (Mat-mul) and Dijkstra graph processing 
(Dijkstra) shows that checkpointing functionality generated by 
our framework consume less hardware resources than that from 
handwriting. In addition, the max clock frequency degradation is 
the same between by handwriting and by framework. 

5.! Conclusion 

  This paper has presented a new checkpointing architecture 
along with a checkpointing mechanism on FPGAs that is 
transparent to applications and portable across hardware 
platforms. We also provided a framework for a tree-based 
checkpointing architecture on FPGAs. Our experimental results 
show that the checkpointing functionality generated by the framework 
causes less than 9.73% maximum clock frequency degradation, while the 

LUT overhead varies from 5.92 % (Dijkstra) to 147.07 % (Matrix 
Multiplication). 
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