
IPSJ SIG Technical Report

1

A Framework for Tree-based Checkpointing Architecture on FPGAs

HOANG GIA VU†1 SHINYA TAKAMAEDA-YAMAZAKI†2
TAKASHI NAKADA†1 YASUHIKO NAKASHIMA†1

Abstract: The integration of FPGAs into computing systems puts more pressure on the fault tolerance of computing systems and
the question how to improve the dependability becomes crucial. Similar to CPU-based system, checkpoint/restart techniques are
expected to be developed and applied to FPGA-based computing systems. There are two issues rising in this situation: how to
checkpoint and restart FPGA, and how to automatically generate checkpointing infrastructure for applications in order to reduce
programmer effort. In this paper, first we present a checkpoint/restart architecture for FPGA-based computing. Second, we provide
a Python-based framework to generate checkpointing functionality for applications. Our experimental results show that the
checkpointing functionality generated by the framework causes less than 9.73% maximum clock frequency degradation, while the
LUT overhead varies from 5.92 % (Dijkstra) to 147.07 % (Matrix Multiplication).

Keywords: FPGA, Framework, Tree-based Checkpointing

1.! Introduction

 Field Programmable Gate Arrays (FPGAs) are expected to
play a more important role in high performance computing system.
They do not only provide reconfigurability and high performance
for parallel applications, but also show great advantages of
exploiting memory bandwidth to increase memory throughput and
accelerate data-intensive applications. Therefore, the integration
of FPGAs into high performance computing architectures
becomes indispensable in the future. However, this trend
compounds the problem of increasing failure rate because of
growing size and complexity in the computing system [1, 2]. As a
consequence, fault tolerance becomes more essential in FPGA
operation. The most dominant technique used to deal with faults
in CPU-based systems is checkpoint/restart, and this technique is
also expected to improve the dependability of FPGA-based
computing systems. There are two types of checkpointing on
FPGA: user-level checkpointing and system-level checkpointing.
While user-level checkpointing requires more effort from
programmers to write additional code along with applications,
system-level checkpointing is performed automatically by
provided checkpointing infrastructure. Conversely, system-level
checkpointing is predicted to be more complicated and consumes
more hardware resource than user-level one. However, in this
paper we choose to go forward system-level checkpointing to
remove effort from programmers.

In system-level checkpointing, there are several approaches to
exploit properties of automatic checkpointing, depending on
where checkpointing infrastructure is inserted in the hardware
design flow. First, checkpointing infrastructure can be written and
inserted in high-level languages, such as C/C++, Java, or Python.
There are many high-level synthesis tools, such as Vivado HLS
and OpenCL, that can support to do so. Second, checkpointing
infrastructure can be written and inserted in hardware description
language (HDL), called HDL-based checkpointing in this paper.

 †1 Nara Institute of Science and Technology
 †2 Hokkaido University

Third, checkpointing technique can be integrated in the hardware
design flows at the netlist level as in [3]. Fourth, checkpointing
technique can also be employed by using configuration tools to
read back and then filter the configuration bitstream to get the
values of flip-flops and RAMs used in the hardware [4, 5]. While
the first approach shows an advantage of exploiting hardware
abstract in high-level language, it requires knowledge in specific
high level languages and specific tools as well. The third and the
fourth approaches also depend much on tools and technology. For
the most global and popular use, we choose HDL-based
checkpointing to investigate.

However, to satisfy the properties of system-level
checkpointing, the HDL-based checkpointing technique must
cover all situations of hardware behavior, transparent to
applications and technology, and portable across computing
platforms. There are two issues rising in this situation. First, a
common checkpointing mechanism is required. Second, a
software tool to convert HDL source code from original source
code to the source code with checkpoint/restart functionality also
need to be developed. Our main contributions in this work are as
follows:

1)! We present a tree-based architecture for hardware
checkpointing along with a checkpointing mechanism that are
transparent to hardware structure.

2)! We provide a Python-based framework to analyze the
original Verilog HDL source code and insert checkpointing
functionality.

 The rest of the paper is organized as follows: Section II
describes a tree-based checkpointing architecture for FPGAs.
Section III presents the Python-based framework for
checkpointing insertion. Section IV shows the evaluation. Section
V discusses related works. Conclusion is summarized in section
VI.

ⓒ 2017 Information Processing Society of Japan

Vol.2017-ARC-224 No.14
Vol.2017-SLDM-178 No.14

2017/1/24

IPSJ SIG Technical Report

2

2. Tree-based Checkpointing Architecture

2.1 Checkpointing Architecture
 It is noted that a structure of nested modules can be considered
as a model of tree, in which the top module is the foot of the tree
while sub-modules are branches of the tree. Therefore, a
checkpointing architecture based on the model of tree is an
approach to deal with complicated structures of nested modules.
Each hardware module on FPGA has its own corresponding
checkpoint/restart infrastructure, called CPR node, and the CPR
nodes of all modules form a checkpointing tree as Fig. 1. In the
figure, node 1 of the top module is called the next CPR level of
node 2 and node 3, while node 4 and node 5 are called the
previous CPR level of node 2, and node 6 and node 7 are the
previous CPR level of node 3. In tree model, both capturing and
restoring processes are performed sequentially through branches
of the tree. This tree model is expected to reduce the data
movement and energy consumption when capturing and restoring.
The structure of CPR node is the same among modules in the user
hardware and composed of parts: a CPR gate to the next CPR
level, CPR interfaces with CPR nodes of the previous CPR level,
context capturing/restoring circuits, and two CPR finite state
machines (FSMs) – a capturing FSM and a restoring FSM. In
another point of view, checkpointing hardware is divided into 2
parts: static CPR hardware that is the CPR gate of the top module,
and the rest of the checkpointing tree, called user-logic-based
CPR hardware, as showed in Fig. 2. The static part is fixed and
independent from the user hardware, thus transparent to
applications. Meanwhile, the user-logic-based part depends on
the user hardware. To find out the rules to insert this part to user
logic is one of our research purposes.

2.1.1 CPR Gate: CPR gate of all CPR nodes except the CPR
node of the top module is defined in Verilog HDL as in Fig. 3.
The gate consists of a logic throttling signal – DRIVE as in [7],
control signals, synchronous signals, and data signals for
capturing and restoring.
 It is noted that while the CPR gate described above is quite
simple, structure of the CPR gate of the CPR node in the top
module is much more complicated. This CPR gate is the static
CPR hardware part as mentioned above. This part of
checkpointing hardware is portable across platforms since it is
fixed and does not depend on any parameter of the user hardware.
This part includes: 1) SW DMA - a direct memory access (DMA)
engine for AXI4-Lite protocol to communicate with the software
in the host CPU via slave bus (S-Bus). 2) Capture FIFO – a FIFO
to store checkpointing data captured from the user hardware. 3)
Restore FIFO - a FIFO to store checkpointing data read from off-
chip memory before restoring to the state-holding elements. 4)
MEM DMA - a DMA engine for AXI4 protocol to write FPGA
context from Capture FIFO to off-chip memory and read the
context from off-chip memory to Restore FIFO via master bus
(M-Bus). 5) CPR Manager - a checkpoint/restart (CPR) manager
with functions as follows: a) Reading control code/writing status
code and address of checkpoints stored in off-chip memory
from/to SW DMA. b) Controlling MEM DMA to write and read
checkpoints to/from off-chip memory. c) Throttling user logic to

Fig. 1. Checkpointing tree

Fig. 2. Tree-based checkpointing architecture on FPGA

 Fig. 3. CPR gate Fig. 4. CPR interface

pause the application when checkpoint/restart. d) Controlling
checkpoint/restart procedures. As in [8], using hardware core to
manage CPR procedures provides considerable performance
advantage over software-only methods, our CPR manager is also
expected to improve the CPR performance over the direct control
from the host.

 Capture FIFO and Restore FIFO can be considered as on-chip
storage for checkpoints on FPGA. Checkpointing process in a
computing node now including 3 levels, called multi-level
checkpointing: First, checkpoints are captured and written to the
on-chip storage. Second, checkpoints in the on-chip storage are
written to main memory. Third, checkpoints are copied from main
memory to the non-volatile storage of the node.

CPR node in
top module

CPR nodes in sub
modules of top module 1

2 3

4 5 6 7

8 9 10 11 12 13

Top Module

CPR
Manager

SW

D
M

A

Restore
FIFO

Static CPR Hardware

S-
B

us

M
EM

D

M
A

Capture
FIFO

M
-B

us

Logic

Reg

M
U

X

Module

Logic

Reg Reg

RAM RAM

Logic
Module

CPR
FSMs

RAM RAM

Reg Reg

M
U

X

CPR
FSMs

Capture

Restore

Logic throttling

CPR control

Logic throttling

CPR control

Logic throttling

CPR control

Restore

Restore

Capture

Capture

M
-B

us
S-

B
us

Logic throttling

CPR control

Logic throttling
CPR control

input [2:0] CPR_request,
input DRIVE,
output reg [2:0] CPR_state,
input cpr_out_almost_full,
input capture_flag,
output reg [31:0] D_cp,
output reg D_cp_valid,
input [31:0] Q_r,
input Q_r_valid

wire [2:0] a_CPR_state;
reg a_capture_flag;
reg [31:0] a_D_r;
reg a_D_r_valid;
wire [31:0] a_Q_cp;
wire a_Q_cp_valid;

ⓒ 2017 Information Processing Society of Japan

Vol.2017-ARC-224 No.14
Vol.2017-SLDM-178 No.14

2017/1/24

IPSJ SIG Technical Report

3

Fig. 5. MUX-based capturing/restoring circuit for registers

Fig. 6. Shift-Reg-based capturing/restoring circuit for registers

 (a) Original (b) Capturing/restoring circuit

Fig. 7. Adding capturing/restoring circuit to RAM

Since a combination between multi-level and non-blocking
checkpointing can benefit the performance of checkpointing [9],
in our checkpointing architecture, FPGA does not wait until its all
checkpoints are written to the non-volatile storage of the node, but
resumes the normal operations immediately after the all
checkpoints are written to Capture FIFO.

2.1.2 CPR Interface with the Previous CPR Level: As simple
as the CPR gate in a module, a CPR interface consists of wires
and registers to communicate with a CPR node of the previous
CPR level. Fig. 4. shows the definition of CPR signals for a sub-
module named “a”, for example. This group of signals is mapped
to corresponding signals of the CPR gate of the sub-module and
does not include handshaking signals. Therefore, the
checkpointing data movement is not interrupted by handshaking
procedures.

2.1.3 Context Capturing/Restoring Circuit: As mentioned in
the definition of the reduced set of state-holding elements, the

context finally consists of registers and RAMs. In this paper, we
propose methods to capture/restore registers and RAMs.
 2.1.3.1 Register capturing/restoring circuit: It is assumed
that there are n registers with arbitrary bit length: Reg_0, Reg_1,
…, Reg_n-1. To align the data in these registers with the 32-bit
data width of checkpointing, these registers are concatenated and
scaled again to form 32-bit registers: Reg_0, Reg_1, …, Reg_k-
1. It should be noted that the bit length of Reg_k-1 may be less
than 32 if the bit-length sum of the registers is not a multiple of
32. We have two alternative approaches to capture/restore
registers.
 MUX-based capturing/restoring circuit: The values of
these registers are assigned to D_cp (a buffer register of CPR
gate) in consecutive states of the capturing FSM, and the values
of Q_r (data wire from the next CPR level for restoring) are
consecutively assigned to the registers in states of the restoring
FSM. This, when synthesized, will generate a capturing circuit
and a restoring circuit as in Fig. 5. In this case, the capturing
circuit creates k 32-bit inputs more for the 32-bit multiplexer in
front of D_cp. In addition, the restoring circuit creates one 32-bit
input more for the 32-bit multiplexer in front of each register.
Totally, 2k 32-bit inputs are added to 32-bit multiplexers.
 Shift-Reg-based capturing/restoring circuit: If the bit
length of Reg_k-1 is less than 32, a padding register is inserted to
guarantee the 32-bit data width of Reg_k-1. In the capturing
circuit, the data in the k 32-bit registers is step by step shifted to
the 32-bit multiplexer in front of D_cp as in Fig. 6. To satisfy the
requirement that the values of registers are kept unchanged after
capturing, the value of Reg_0 is looped back to the Reg_k-1 via
its input multiplexer. For the restoring circuit, context is
consecutively shifted from Q_r to the all registers via 32-bit
multiplexers. It is realized that the capturing circuit and the
restoring circuit can share the register shifting circuit, thus saving
hardware resource consumption, and we consider this as an
advantage of this approach in this paper. In this case, one 32-bit
input more is added to the 32-bit multiplexer in front of registers:
D_cp, Reg_0, Reg_1, …, Reg_k-2, while two 32-bit inputs more
are added to the 32-bit multiplexer in front of Reg_k-1. Totally,
k+2 32-bit inputs are added to 32-bit multiplexers.
 When k equal to 1, there is no shifting structure in the shifting
circuit, thus these two circuits are the same. When k equal to 2, the
MUX-based circuit may be better than the Shift-Reg-based circuit
in terms of resource consumption if a padding register is required.
When k more than 2, 2k is more than k+2. Therefore, the Shift-
Reg-based capturing/restoring circuit is expected to be better than
the MUX-based circuit.

 2.1.3.2 RAM capturing/restoring circuit: Fig. 7 shows how
to add capturing/restoring circuit to the original RAM to make it
checkpoint-able. Since the size of RAM can be determined in the
HDL source code, the context of RAM can be captured and
restored by iterating reading and writing through the whole its
address space. Therefore, one port of RAM must be selected to
read and write when capturing and restoring. However, the inputs
of this port are expected unchanged after capturing to guarantee
ability of resuming hardware, and sometimes this inputs are

Reg_0

Reg_1

Reg_k-1

M
U

X

D
_c

p

Q
_r

Fr
om

 n
ex

t C
PR

 le
ve

l

To
 n

ex
t C

PR
 le

ve
l

CPR FSM

CPR FSMRestoring circuit

Capturing circuit
From user logic

From user logic

From user logic
R

eg
_0

R
eg

_0

R
eg

_k
-1

M
U

X

D
_c

p

To
 n

ex
t C

PR
 le

ve
l

CPR FSM

Capturing circuit
M

U
X

Q
_r

Fr
om

 n
ex

t C
PR

 le
ve

l

CPR FSM

Restoring circuit

us
er

 l
og

ic

…

us
er

 l
og

ic

us
er

 l
og

ic

RAM

inputs

we

rdata

outputs

M
U

X

addr

M
U

X

wdata

M
U

X

w
e_

0
ad

dr
_0

w
da

ta
_0

Capturing/Restoring circuit

D
_c

p

To
 n

ex
t C

PR
 le

ve
l

Q
_r

Fr
om

 n
ex

t C
PR

 le
ve

lRAM

inputs

we

addr

wdata

rdata

outputs

ⓒ 2017 Information Processing Society of Japan

Vol.2017-ARC-224 No.14
Vol.2017-SLDM-178 No.14

2017/1/24

IPSJ SIG Technical Report

4

controlled from outside, not inside the module containing such
RAM. For these reasons, instead of using a port of RAM directly
to read and write, three registers: we_0, addr_0, and wdata_0 are
added along with the three signals: write enable (we), address
(addr), and write data (wdata), to control the port via multiplexers.
 2.1.4 CPR FSMs: The two CPR finite state machines (CPR
FSMs) include one for capturing and the other for restoring. Both
of the two FSMs are controlled by signals from the CPR manager
and the next CPR level. There are several rules to design these
two FSMs:
 2.1.4.1 FSM for capturing: The FSM for capturing has two
tasks. The first is to control the context capturing circuits of the
current CPR node to assign the values of state-holding elements
to the register D_cp of the CPR gate, and set the value of
D_cp_valid to ‘1’. The second is to connect the previous CPR
level to the next CPR level by copying the checkpointing data
from the previous CPR level to the register D_cp, and set the
value of D_cp_valid to ‘1’. The difference between the two tasks
is about the condition to capture. While the first task requires
Capture FIFO to have some rooms available, the second task
ignores this condition to force the current CPR node to serve
checkpointing data from the previous CPR level. In this case, to
ensure Capture FIFO not overflowed when MEM DMA gets
stuck, the guard gap of the signal almost_full from Capture FIFO
should be more than the number of CPR levels in the user
hardware.
 2.1.4.2 FSM for restoring: This FSM also has two tasks but
contrast to the FSM for capturing. The first is to control the
context restoring circuits to get checkpoints from the next CPR
level then restore to the state-holding elements. The second is to
connect the next CPR level to the previous CPR level by copying
checkpoints from Q_r to the CPR interfaces with the CPR nodes
of the previous CPR level.

2.2 Consistent Snapshot with FPGA
 This section answers the question mentioned in section I:

How does the CPR model on FPGA work with the CPR model of
the whole computing system? The answer is that the snapshot of
FPGA must be consistent with the snapshot of the rest of the
computing system to form a consistent global state. A global state
of a distributed system is a set of component process and
communication channel states [10, 11]. In order to get a global
state, the states of all components and channels between them
must be captured. Unfortunately, we cannot capture/restore the
physical state of communication channels. Therefore, the
simplest way to make a consistent global state is to capture the
states of all components when all communication channels are
idle. In this case, the states of channels are all empty, and the
global state now consists of only states of distributed components.
However, this case rarely occurs because at the time a channel is
idle, others may be active. In this paper, we propose a new
concept named virtual consistent global state, in which all
channels are idle. This global state is created by throttling channel
requests and waiting until all channels become idle. It is noted
that this throttling changes the flow of execution but does not
change the execution result, thus this global state still satisfies

Fig. 8. Channel finite state machine

Fig. 9. Prevent issuing requests on the mater side

Fig. 10. Prevent receiving requests on the slave side

two properties of a consistent global state mentioned in section II.
To know the state of a channel to be idle or active, two finite state
machines are required, called channel finite state machines
(FSMs) in this paper. To throttle new requests, a unit is required
to prevent issuing new requests on the master side, and prevent
receiving new requests on the slave side of the channel, called
request throttling unit in this paper. Since the most popular
protocol used on FPGA to communicate with others is AXI4, it is
chosen to illustrate operation of these two hardware classes.

2.2.1 Channel Finite State Machine: Fig. 8 shows a channel
FSM for read transaction, the channel FSM for write transaction
is similar. In this FSM, we use two pairs of signals: arvalid &
arready and rvalid & rlast. In addition, we also use a register to
count the number of read requests in the channel. The FSM is
composed of two states: Idle and Active. The state will switch
from Idle to Active if the condition arvalid = arready = 1 is
satisfied. In this case, the number of requests increase from ‘0’ to
‘1’. Conversely, if both rvalid and rlast are equal to ‘1’, arvalid or
arready are equal to ‘0’, and the number of requests is equal to
‘1’, the state will transit from Active to Idle and the number of
requests will decrease from ‘1’ to ‘0’.

2.2.2 Request Throttling Unit: For AXI4 protocol, we
propose a method to prevent issuing new requests on the master
side and prevent receiving requests on the slave side. In this
method, the arvalid, arready, awvalid, and awready signals are
fastened to ‘0’. The simplest way to do that is to use 2-to-1
multiplexers as showed in Fig. 9 and Fig. 10.

3. Framework for FPGA Checkpointing

3.1 Proposed design flow
 Since we chose HDL-based checkpointing to investigate, the

Idle Active

arvalid && arready = 1

arvalid && arready = 0 and No of requests = 1

rvalid && rlast = 1

M
U

X

arvalid

0
ARVALID M

U
X

ARREADY

0
arready

(a) Prevent issuing arvalid signal (b) Prevent receiving ARREADY signal

M
U

X

ARVALID

0
arvalid M

U
X

arready

0
ARREADY

(a) Prevent receiving ARVALID signal (b) Prevent issuing arready signal

ⓒ 2017 Information Processing Society of Japan

Vol.2017-ARC-224 No.14
Vol.2017-SLDM-178 No.14

2017/1/24

IPSJ SIG Technical Report

5

Fig. 11. Modification in design flow

Fig. 12. Structure of the framework

framework must be inserted before synthesis in the proposed
design flow as in Fig.11. The input of the framework is Verilog
source code. Due to the location of the framework in the design
flow, our checkpointing methodology is portable across hardware
platforms and not dependent on technology.

3.2 Structure of the framework
 The structure of the framework includes four blocks. The first
is Parameter Resolver. This block analyzes the input Verilog
source code, then produces the abstract syntax tree of the source
code. Parameters from the source code are also abstracted and
resolved. The second is CPR Port Inserter. This block inserts a
CPR gate as ports in each module to connect CPR levels. The
third is CPR Unit Generator. This block is to modify always
blocks and insert CPR finite state machines in each module. The
fourth block is IP Packager. This block packages the Verilog
source code with checkpointing functionality to create an IP core,
called CPR IP cores. For checkpointing purpose, this section
presents the two blocks: CPR Port Inserter and CPR Unit
Generator.
3.2.1 CPR Port Inserter
 The output source code is as in Fig.3. The input CPR_request
is to request checkpointing mode. There are four modes: prepare,
capture, restore, and signal virtualization. The input DRIVE is to
throttle user logic, and inserted in always blocks. CPR_state
inform the CPR manager about the progress of checkpointing
procedures. capture_flag is to enable the capturing procedure in
a module.
3.2.2 CPR Unit Generator
 CPR Unit Generator includes three tasks. The first is to modify

Fig. 13. Modifying always block

Fig. 14. Inserting CPR finite state machines

always blocks to insert register capturing/restoring circuits and
throttling signals as in Fig.13. The second is to realize modules
that will be synthesized as dedicated blocks, such as distributed
RAM and block RAM. These modules should not be inserted
CPR ports or modified always blocks. In case of RAMs, all
parameters including data width, address width, and signal
groups for ports are abstracted from the definition of the module.
The third is to insert two CPR finite state machines, including one
for capturing and the other for restoring. Fig.14 shows the CPR
finite state machine for capturing, including both register
capturing (blue) and BRAM capturing (red).

HDL
source

Synthesis

Place &
Route

Program

FPGA

HDL
source

Synthesis

Place &
Route

Program

FPGA

Framework

Typical Design Flow

Proposed Design Flow

Verilog
Source Code

Parameter
Resolver

CPR Port
Inserter

CPR Unit
Generator

IP
Packager

Checkpointable
IP-Core

always @(posedge CLK) begin
if(RST) begin

cyclecount <= 0;
end else if DRIVE begin

if(state == 2) begin
cyclecount <= 0;

end else begin
cyclecount <= cyclecount + 1;

end
end else if shift_enable begin

cyclecount <= { computation_size[31:0] };
end

end

if(CPR_request == 2) begin
case(cp_state)

0: begin
if(capture_flag && !mem_cpr_out_almost_full) begin

D_cp_valid <= 1;
D_cp <= {ram_addr_0, ROOM_DEQ};
restore_cnt <= restore_cnt + 1;
if(restore_cnt== reg_cnt - 1) begin

restore_cnt <= 0;
cp_state <= 1;

end
end

end
1: begin

if(capture_flag && !mem_cpr_out_almost_full) begin
ram_addr_cpr_1 <= ram_addr_cpr_1 + 1;
ram_deq <= 1;

end
if(ram_deq) begin

D_cp_valid <= 1;
D_cp <= ram_Q_cpr;
if(ram_addr_cpr_1 == 0) begin

CPR_state <= 1;
cp_state <= 2;

end
end

end
2: begin
end

endcase
end

ⓒ 2017 Information Processing Society of Japan

Vol.2017-ARC-224 No.14
Vol.2017-SLDM-178 No.14

2017/1/24

IPSJ SIG Technical Report

6

TABLE I. Experimental Setup

EDA Tool Vivado 2014.4, ISE 147

FPGA Xilinx Zynq-7000 XC7z020clg484-1

Clock frequency 100 MHz

TABLE II. LUT Utilization and Max Clock Frequency

Apps Additional

LUTs

(handwriting)

Additional

LUTs

(framework)

Max Clock

frequency

(handwriting)

Max Clock

frequency

(framework)

Mat-

Mul

160.67 % 147.07 % 103.875 MHz 103.875 MHz

Dijkstra 17.98 % 5.92 % 161.589 MHz 161.589 MHz

4.! Evaluation

 In Table II, our evaluation on two realistic applications: matrix
multiplication (Mat-mul) and Dijkstra graph processing
(Dijkstra) shows that checkpointing functionality generated by
our framework consume less hardware resources than that from
handwriting. In addition, the max clock frequency degradation is
the same between by handwriting and by framework.

5.! Conclusion

 This paper has presented a new checkpointing architecture
along with a checkpointing mechanism on FPGAs that is
transparent to applications and portable across hardware
platforms. We also provided a framework for a tree-based
checkpointing architecture on FPGAs. Our experimental results
show that the checkpointing functionality generated by the framework
causes less than 9.73% maximum clock frequency degradation, while the

LUT overhead varies from 5.92 % (Dijkstra) to 147.07 % (Matrix
Multiplication).

References!

[1]! Bianca Schroeder and Garth A. Gibson, “A Large-Scale Study of
Failures in High-Performance Computing Systems,“ IEEE
transactions on Dependable and Secure Computing, VOL. 7, NO. 4,
Oct-Dec 2010.

[2]! F. Cappello, Al Geist, W. Gropp, S. Kale, B. Kramer, M. Snir,
“Toward Exascale Resillience – 2014 Update,” Journal of
Supercomputing Frontiers and Innovations, Vol. 1, No. 1, 2014.

[3]! Dirk Koch, Christian Haubelt and J¨urgen Teich, “Efficient
Hardware Checkpointing - Concepts, Overhead Analysis, and
Implementation,” FPGA’07, pp.188-196, February 18–20, 2007,
Monterey, California, USA.

[4]! H. Kalte and M. Porrmann, “Context Saving and Restoring for
Multitasking in Reconfigurable Systems,” International Conference
on Field Programmable Logic and Applications, pp. 223-228, 2005.

[5]! I!H. Simmler, L. Levinson, and R. Manner, “Multitasking on FPGA
Coprocessors,” In Proceedings of the 10rd International Conference
on Field Programmable Logic! and Application (FPL’00), pages
121–130, 2000.

[6]! Arash Rezaei, Giuseppe Coviello, Cheng-Hong Li, Srimat
Chakradhar, and Frank Mueller, “Snapify: Capturing Snapshots of
Offload Applications on Xeon Phi Manycore Processors,”
HPDC’14, June 23–27, Vancouver, BC, Canada.

[7]! Shinya Takamaeda-Yamazaki and Kenji Kise, “A Framework for
Efficient Rapid Prototyping by Virtually Enlarging FPGA

Resources,” 2014 International Conference on ReConFigurable
Computing and FPGAs (ReConFig 2014), December 2014.

[8]! Ashwin A. Mendon, Ron Sass, Zachary K. Baker, and Justin L.
Tripp, “Design and Implementation of a Hardware
Checkpoint/Restart Core,” 2012 IEEE/IFIP 42nd International
Conference on Dependable Systems and Networks Workshops
(DSN-W).

[9]! Kento Sato, Naoya Maruyama, Kathryn Mohror, Adam Moody,
Todd Gamblin, Bronis R. de Supinski, and Satoshi Matsuoka,
“Design and Modeling of a Non-blocking Checkpointing System,”
SC12, November 10-16, 2012.

[10]! K. Mani Chandy and Leslie Lamport, “Distributed snapshots:
Determining global states of distributed systems,” ACM
Transactions on Computer Systems, Volume 3 Issue 1: 63-75, Feb.
1985.

[11]! R. Koo and S. Toueg, “Checkpointing and rollback-recovery for
distributed systems,” IEEE trans. on Software Engineering, SE-
13(1): 23-31, Jan. 1987.

 Acknowledgments This work is supported in part by Mazda
foundation and JSPS KAKENHI Grant Number JP16K16026.

ⓒ 2017 Information Processing Society of Japan

Vol.2017-ARC-224 No.14
Vol.2017-SLDM-178 No.14

2017/1/24

