WEKO3
アイテム
Vertical Error Correction Using Classification of Transitions between Sequential Reading Segments
https://ipsj.ixsq.nii.ac.jp/records/176935
https://ipsj.ixsq.nii.ac.jp/records/17693588a66d61-ab5d-4a58-8013-b3cfe7687301
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2017 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Journal(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2017-01-15 | |||||||||||
タイトル | ||||||||||||
タイトル | Vertical Error Correction Using Classification of Transitions between Sequential Reading Segments | |||||||||||
タイトル | ||||||||||||
言語 | en | |||||||||||
タイトル | Vertical Error Correction Using Classification of Transitions between Sequential Reading Segments | |||||||||||
言語 | ||||||||||||
言語 | eng | |||||||||||
キーワード | ||||||||||||
主題Scheme | Other | |||||||||||
主題 | [一般論文(テクニカルノート)] eye-tracking, reading, error correction, fixation-to-word mapping | |||||||||||
資源タイプ | ||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||
資源タイプ | journal article | |||||||||||
著者所属 | ||||||||||||
The University of Tokyo | ||||||||||||
著者所属 | ||||||||||||
National Institute of Informatics | ||||||||||||
著者所属 | ||||||||||||
National Institute of Informatics/The University of Tokyo | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
The University of Tokyo | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
National Institute of Informatics | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
National Institute of Informatics / The University of Tokyo | ||||||||||||
著者名 |
Akito, Yamaya
× Akito, Yamaya
× Goran, Topić
× Akiko, Aizawa
|
|||||||||||
著者名(英) |
Akito, Yamaya
× Akito, Yamaya
× Goran, Topić
× Akiko, Aizawa
|
|||||||||||
論文抄録 | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | In eye-tracking-based reading behavior research, gaze sampling errors often negatively affect gaze-to-word mapping. In this paper, we propose a method for more accurate mapping by first taking adjacent horizontally progressive fixations as segments, and then classifying the segments into six classes using a random forest classifier. The segments are then reconstructed based on the classification, and are associated with a document line using a dynamic programming algorithm. The combination of segment-to-line mapping and transition classification achieved 87% mapping accuracy. We also witnessed a reduction of manual annotation time when the mapping was used as an annotation guiding tool. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.25(2017) (online) DOI http://dx.doi.org/10.2197/ipsjjip.25.100 ------------------------------ |
|||||||||||
論文抄録(英) | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | In eye-tracking-based reading behavior research, gaze sampling errors often negatively affect gaze-to-word mapping. In this paper, we propose a method for more accurate mapping by first taking adjacent horizontally progressive fixations as segments, and then classifying the segments into six classes using a random forest classifier. The segments are then reconstructed based on the classification, and are associated with a document line using a dynamic programming algorithm. The combination of segment-to-line mapping and transition classification achieved 87% mapping accuracy. We also witnessed a reduction of manual annotation time when the mapping was used as an annotation guiding tool. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.25(2017) (online) DOI http://dx.doi.org/10.2197/ipsjjip.25.100 ------------------------------ |
|||||||||||
書誌レコードID | ||||||||||||
収録物識別子タイプ | NCID | |||||||||||
収録物識別子 | AN00116647 | |||||||||||
書誌情報 |
情報処理学会論文誌 巻 58, 号 1, 発行日 2017-01-15 |
|||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | ISSN | |||||||||||
収録物識別子 | 1882-7764 |