
Electronic Preprint for Journal of Information Processing Vol.25

Regular Paper

Coordinated Area Partitioning Method by Autonomous
Agents for Continuous Cooperative Tasks

Vourchteang Sea1,a) Chihiro Kato1,b) Toshiharu Sugawara1,c)

Received: April 30, 2016, Accepted: October 4, 2016

Abstract: We describe a method for decentralized task/area partitioning for coordination in cleaning/sweeping do-
mains with learning to identify the easy-to-dirty areas. Ongoing advances in computer science and robotics have led
to applications for covering large areas that require coordinated tasks by multiple control programs including robots.
Our study aims at coordination and cooperation by multiple agents, and we discuss it using an example of the cleaning
tasks to be performed by multiple agents with potentially different performances and capabilities. We then developed
a method for partitioning the target area on the basis of their performances in order to improve the overall efficiency
through their balanced collective efforts. Agents, i.e., software for controlling devices and robots, autonomously decide
in a cooperative manner how the task/area is partitioned by taking into account the characteristics of the environment
and the differences in agents’ software capability and hardware performance. During this partitioning process, agents
also learn the locations of obstacles and the probabilities of dirt accumulation that express what areas are easy to be
dirty. Experimental evaluation showed that even if the agents use different algorithms or have the batteries with differ-
ent capacities resulting in different performances, and even if the environment is not uniform such as different locations
of easy-to-dirty areas and obstacles, the proposed method can adaptively partition the task/area among the agents with
the learning of the probabilities of dirt accumulations. Thus, agents with the proposed method can keep the area clean
effectively and evenly.

Keywords: coordination, area partitioning, cooperation, multi-agent systems, autonomous task division, division of
labor, continuous sweeping, security surveillance

1. Introduction

Continuing advances in computers, devices and robotic tech-
nologies have led to applications combining computers, sensors
and robots that perform tasks normally done by people. These
tasks will cover a wide range; for example, (1) computer systems
will monitor patient conditions in hospitals and resident activities
in nursing homes, and (2) robots operating in public spaces, in
nuclear plants or on planets will explore, maintain security/safety
or clean the environment. Since these applications involve the
monitoring of a huge amount of data in realtime and/or operating
in wide areas, a single robot/computer cannot handle the entire
space/data. There is thus a strong requirement for coordination
and cooperation using multiple agents each of which is software
for controlling a system/robot. We focused on their application
for cleaning and patrolling tasks in a given environment.

The real-world environments where agents operate are diverse,
so it is almost impossible to design a system by completely an-
ticipating the environmental characteristics in the design stage.
For example, in the cleaning task, there are a number of locations
where dirt may tend to accumulate, and these locations depend
on many factors such as the shape of the environment and the

1 Department of Computer Science and Communications Engineering,
Waseda University, Shinjuku, Tokyo 169–8555, Japan

a) sea.vourchteang@isl.cs.waseda.ac.jp
b) c.kato@isl.cs.waseda.ac.jp
c) sugawara@waseda.jp

locations of furniture and fixtures. Similarly, in security appli-
cations, the locations near entrances, near windows and around
safes should be kept more secure than other locations. This means
that agents for cleaning or security must visit the locations in
the given area with different frequencies in accordance with the
characteristics of the environment. Furthermore, the agents may
be most-advanced or old models and may have been developed
by different makers; this means that they have different hard-
ware/software and thus exhibit different levels of performance.
The agents must therefore work cooperatively by taking into ac-
count these differences in order to efficiently perform the tasks in
a more balanced manner.

There are two conventional approaches to implementing co-
ordinated and cooperative patrolling activities for cleaning and
security tasks. The first approach is for agents to share the
working area and clean it in a coordinated manner. For ex-
ample, agents could patrol the area by using different cleaning
algorithms or different visitation cycles to uniformly cover the
entire area [5], [13], [21]. Another strategy for this approach
is for the agents to move around the area in formation (e.g.,
Refs. [1], [7], [15]). However, in these approaches, an agent’s
strategy affects the other’s, and this interaction makes coopera-
tion complex. The second approach is to divide the area into a
number of subareas and make each agent responsible for a dif-
ferent subarea [2], [9]. However, performing fair division is not
trivial in the latter approach; if the characteristics of the area are
not uniform and the agents have different capabilities, equal-size

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

subareas are inappropriate.
We thus propose a new approach in which the agents au-

tonomously decide their responsible subareas so as to divide the
task fairly on the basis of their capabilities and the characteristics
of each subarea in this paper *1. If new agents are added, agents
autonomously reconfigure their subareas through coordinated in-
teraction over time. The key idea is that each agent monitors the
locations it recently visited and calculates its expansion power,
which is based on the degree of task completion, such as the the
expected amount of dirt remaining in its subarea in cleaning tasks
and the number of important locations to keep them secure. It
then negotiates with adjacent agents to determine which agents
should expand their current subarea so as to balance the clean-
liness levels of the area. However, it is difficult to identify in
advance which agents that have different hardware/software capa-
bilities perform better in the environment and what areas are easy
to be dirty. Thus, our study aims, using a cleaning task applica-
tion, at the proposal of coordination method for area partitioning
without this kind of knowledge.

We already proposed the method, called performance-based

partitioning (PBP) along this line in Ref. [12], but it did not ex-
amine whether their method could reflect the differences between
agents’ algorithms into the area partitioning. Furthermore, it as-
sumed that knowledge about what areas are easy to be dirty was
given to all agents. However, providing this knowledge in ad-
vance is difficult because it depends on many factors such as lo-
cations of objects, intake/exhaust vents, doors and windows in the
environments. Furthermore, environments may have a number of
obstacles for robots. Because the locations and shapes of obsta-
cles differ in individual environments and may change, it is not
easy to accurately specify their information in advance. Thus, we
excluded this assumption and extended the previous method by
adding (1) the learning capability to agents for identifying easy-
to-dirty areas and (2) the function to find and maintain the lo-
cations of obstacles through their operations. We also show the
detailed results with extensive experiments.

The structure of this paper is as follows. We describe re-
lated work in the next section and our models for agent, area and
dirt accumulation in Section 3. Section 4 explains the proposed
method with which agents autonomously determine the area they
should clean by taking into account the environmental character-
istics and the differences in their exploration algorithms, without
knowledge about what areas are easy to accumulate dirt. Sec-
tion 5 presents experimental results indicating that agents with
the proposed method achieves more efficient and more balanced
area partitioning than the conventional method in a variety of en-
vironments. We also demonstrate that they can learn what areas
are easy-to-dirty while identify the locations and shapes of obsta-
cles. We then discuss our results in Section 6 and finally state our
conclusion.

2. Related Work

There have been a number of studies applying agents, which
are software programs for autonomously generating robot activi-

*1 This paper is an extended version of our conference papers [12] and [19].

ties, to cleaning and patrolling problems using single or multiple
robots. For example, Ahmadi and Stone [2] proposed a method
in which an agent moves around in search of events that occur
with different probability. However, that study did not address
collaborative movement with multiple agents. Kurabayashi et
al. [13] proposed a centralized off-line method in which a sin-
gle server generates the entire route for a sweeping task. The
route is then divided into fragments and allocated to individual
agents to minimize the working time. Yoneda et al. [21] proposed
a distributed method in which agents autonomously decide their
search/exploration strategies in a multi-robot sweeping problem
using reinforcement learning. Sampaio et al. [17] proposed the
gravity-based model in which the locals that were not visited for
a long time have the stronger gravity, and thus, agents tend to
visit such locations for uniform patrolling. Unlike our method,
these methods are based on the assumption that agents traverse
a shared area along different routes or with different exploration
algorithms.

We can formalize the patrolling problem from more theoreti-
cal perspective. For example, Chevaleyre et al. [5] formalized the
patrolling problem as a traveling salesman problem with multiple
agents and then compared the number of cyclic routes and route
division methods from the viewpoint of minimal route length.
Elmaliach et al. [8] proposed an algorithm that finds the short-
est Hamiltoniam cycle in grids that are used to patrol in the areas
and to spread the agents there evenly. These methods also assume
that robots move in the shared areas. Furthermore, most of these
studies did not consider the case of agents visiting the locations
at different frequencies.

Another approach is to partition the area into subareas so that
agents can divide the labor. Ahmadi and Stone [3] extended their
previous work [2] to cases with multiple patrolling agents. Their
extended method segments the region of responsibility for indi-
vidual agents, which exchange boundary information, and agents
visiting a boundary region more frequently tend to take charge of
the region. Volonoi-based techniques are also another methods
that do not require graph descriptions of the environments, such
as Refs. [4], [6], [18]. However, these require computational costs
that limit their applicability.

Bio-inspired computation models are also used to cover the
areas. Ranjbar-Sahraei et al. [16] introduced the indirect com-
munication using pheromone-based stigmatic communications to
identify the regions that should be covered. McCaffery [14] pro-
posed the graph partitioning algorithm using the foraging behav-
iors. The resulting subgraphs are allocated to agents so that they
cover the whole environment. Elor [9] proposed a segmentation
method for covering a region by integrating the ant pheromone
and balloon models: a region is segmented into subregions that
are individually assigned to different agents. Each subregion is
considered to be a balloon, the pressure of which represents the
size of the subregion. The pressure values are then indirectly ex-
changed using the pheromone communication model. However,
the differences in agent performance and the environmental char-
acteristics are not considered in these methods, thus the region is
likely to be divided into equal-size subregions. Furthermore, the
implementation of pheromone communications in decentralized

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

multiple-robot applications is not trivial. Kato and Sugawara [12]
proposed the method performance-based partitioning (PBP), for
partitioning a given area so that agents keep the environment
evenly clean by performing the cleaning task in a balanced man-
ner by taking into account these differences although it is not
a bio-inspired approach. However, unlike our method, it as-
sumes that agents have knowledge about what areas are easy to
be dirty in the environment, but providing this knowledge in ad-
vance is difficult because it depends on many factors. Sea and
Sugawara [19] proposed the PBP with the learning of dirty places
and indicated that it exhibited the good performance in the en-
vironments with obstacles. However, these did not sufficiently
evaluate whether their methods could reflect the differences in
agents’ hardware/software into the area partitioning [12], [19].

3. Model and Problem Definition

3.1 Models of Agent and Environment
An agent here is a control program installed on a portable

cleaner robot capable of autonomously deciding its actions and
sending/receiving messages. We assume that it has a map (graph)
of the area. Such information may often be unknown. How-
ever, many algorithms for creating a map, identifying agent lo-
cations, and avoiding collisions have been proposed (Refs. [10],
[11], [20]). Because we focus on autonomous learning for area
partitioning for balanced work division, we use this assumption
here.

Let A = {1, . . . , n} be a set of agents. The area in which the
agents move around is described by a connected graph with ob-
stacles, G = (V+, E,O), where V+ and E are sets of nodes and
edges, and O (⊂ V+) is the set of obstacles. A node in O is called
the obstacle node. In general, we assume that a number of obsta-
cles, {Oi |Oi ⊂ V+ for 1 ≤ i ≤ k, and O is the connected set} exist
in the environment and we define O = O1 ∪ . . . ∪ Ok. The edge
that connects nodes vi, v j ∈ V+ is expressed by ei, j. We introduce
a discrete time with a unit called a tick. An agent moves between
nodes in V = V+ \ O and cleans each node it visits. Without the
loss of generality, we can assume that the length of an edge in E

is one (by adding dummy nodes if necessary), so any agent can
move from a node to another along an edge and then clean the
visited node in one tick. However, it cannot move to any node in
O. We assume that V \O is connected, i.e., for ∀v, w ∈ V , at least
one path from v to w consisting of only non obstacle nodes exists.

3.2 Battery Consumption and Charge
Let positive integers Bi

max and bi(t) be the maximal capacity
and the remaining power of the battery in agent i at time t. Agent
i consumes a constant amount of power per tick, Bi

drain when it
moves around. Thus, bi(t) is updated using

bi(t + 1)← bi(t) − Bi
drain (1)

every tick. Agent i can thus continuously operate at most
	Bi

max/B
i
drain
 ticks, which is called the maximum running time

and is denoted by Mi. Agent i charges its battery at its charging
base, vibase ∈ V . The required time for a full charge starting from
time t, T i

charge(t), is proportional to the battery power consumed:

T i
charge(t) = ki

charge(Bi
max − bi(t)), (2)

where ki
charge (> 0) is the proportionality factor indicating the

speed of charge. Agents with a full battery start to move around
and perform cleaning; they return to their bases and recharge their
batteries. Agents iterate this cleaning cycle to keep their assigned
area clean.

For any node v ∈ Vi
t , i calculates the potential, which is the

minimal capacity of battery required to return to i’s charging base
vibase. The potential of v for i is denoted by P(v)i and calculated
using

P(v)i = d(v, vibase) · Bi
drain, (3)

where d(v, v′) is the shortest path length. Because agents know G,
they can identify the shortest path using Dijkstra’s algorithm or
the A* algorithm. We say that it is safe for i to move to neighbor
node v at time t if

bi(t) ≥ P(v)i + Bi
drain, (4)

where vit is the node where i is currently located. Agent i moves
to only safe nodes; if the next node is not, i returns to vibase along
the shortest path and then recharges.

3.3 Model of Dirt Accumulation
We represent the degree to which dirt is easy to be accumulated

per tick at node v ∈ V . The amount of accumulated dirt at v at
time t, Lt(v), is initially defined as L0(v) = 0 for ∀v ∈ V and is
updated by

Lt(v)←
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Lt−1(v) + 1 with probability pv (a piece of
dirt is accumulated at t)

Lt−1(v) otherwise,
(5)

where event probability pv (0 ≤ pv ≤ 1) is called the dirt accumu-

lation probability (DAP) for v. However, if an agent has visited v
at t, v is cleaned so Lt(v) = 0. Note that agent i cannot know the
actual value of Lt(v) except the current position, vit.

Each agent has a responsible area (RA) that it tries to keep
clean. The RA of agent i at time t is the connected subgraph
Gi

t = (Vi
t , E

i
t), where Vi

t ⊆ V and Ei
t = {ei, j ∈ E | vi, v j ∈ Vi

t }. We
assume that vibase ∈ Vi

t and Vi
t , and V j

t are disjoint for i, j (∈ A and
i � j). An agent may change the size of its RA, which is |Vi

t |, to
keep the area evenly clean through balanced cooperative work.

3.4 Performance of Cleaning Tasks
The purpose of cleaning tasks is to minimize the amount of

pieces of dirt in the environment without neglecting them. Hence,
we use the sum of the amount of remaining dirt for the whole
area at certain intervals of time as the performance measure of
the agents’ collective tasks. This is defined as

Dts ,te =

∑
v∈V
∑te

t=ts
Lt(v)

te − ts
, (6)

where positive integers ts and te are the start and end times of the
interval. A smaller performance value is better, so agents try to
minimize the values of Dts ,te .

Although Dts ,te is an important measure, we also consider the
balanced task allocation for cooperative cleaning in which agents
that can handle more work take part of the RAs of other agents

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

that are busy and/or that have less efficient exploration algo-
rithms. Thus, we also pay attention to the sizes of the RAs, Vi

t , to
investigate whether or not an efficient agent could do more work
in a larger RA, and calculate the amount of remaining dirt in i’s
RA, which is denoted by Di

ts ,te . Dts ,te and Di
ts ,te are often denoted

by D and Di if there is no confusion. Note that balanced task
allocation does not necessarily mean equal size of Vi

t .
The proposed probabilistic model of dirt accumulation can also

be modified for other patrolling domains such as surveillance. For
example, the important locations that require high-level security,
such as around safes and entrances/exits correspond to the dirty
areas, thus they have higher probabilities, pv. Furthermore, we
can change these probabilities in accordance with time of day.
So, for example, agents can visit the important locations more
frequently during nighttime hours.

4. Proposed Method

We describe the proposed extended performance-based parti-

tioning (ePBP) method, which fairly partitions the given area by
taking into account the performances of the individual agents and
the characteristics of the area. In our proposed method, we as-
sume that agents have information of V+ and E but do not know
(1) the set of the DAP of nodes, {pv|v ∈ V} nor (2) the set of ob-
stacles, O (initially agents assume that O = ∅). Therefore, agents
with ePBP concurrently learn the DAPs of their RAs to see which
locations in the RAs are easy to become dirty, and the set of obsta-
cles while they decides and negotiates the responsible area with
other agents.

4.1 Expansion Power
Although agents do not know the values of pv for ∀v ∈ V , if

agents estimate the values of pv for ∀v ∈ V , i can estimate Lt(v)
using the expected amount of accumulated dirt on v, which is cal-
culated by

E(Lt(v)) = pi
v · (t − ti

v),

where pi
v is the estimated value of pv by learning of the dirt ac-

cumulation in i, and ti
v is the most recent time when i visited

and cleaned node v ∈ Vi
t ; if i never visited v, ti

v is the time
when v was included in its RA, Gi

t. How i calculates pi
v is ex-

plained in Section 4.6. We also define Lt(V0) =
∑
v∈V0

Lt(v) and
E(Lt(V0)) =

∑
v∈V0

E(Lt(v)) for set of nodes V0 (⊂ V).
Agent i calculates its expansion power for the current RA when

it returns to the charging base at time t. Intuitively, it expresses
how efficiently i could have covered the current RA during the
latest cleaning cycle. First, i calculates the expected amount of
accumulated dirt in the RA at time t

E(L(Gi
t)) =

∑

v∈Vi
t

E(Lt(v)) =
∑

v∈Vi
t

pi
v · (t − ti

v). (7)

Then, the expansion power ξ(i, t) of i at time t is defined as the
inverse of the expected value:

ξ(i, t) = E(L(Gi
t))
−1. (8)

If E(L(Gi
t)) = 0, ξ(i, t) is set to a sufficiently large number. Agents

retain their calculated expansion power until the next calculation
time.

4.2 Expansion of Responsible Area
The cleaning cycle of each agent starts when it leaves its base

node with a fully charged battery to clean its RA using its own
exploration algorithm. If it determines that it has mostly cleaned
the RA, it may decide to expand its RA. For this decision, agent
i calculates the expected amount of accumulated dirt in its RA at
a certain future time, E(Lt0+γ(G

i
t0)), when i leaves from vibase at

time t0, where γ (≤ Mi) is a positive integer. Agent i also stores
the number of visited nodes, Nvis(t), and the amount of vacuumed
dirt, Nd(t), at t (> t0) during the current cleaning cycle, which
started from t0. It then tries to expand its current RA, Vi

t , if the
following conditions are fulfilled.

Nvis(t) ≥ R1 · |Vi
t | (9)

Nd(t) ≥ R2 · E(Lt0+γ(G
i
t0)), (10)

where 0 ≤ R1,R2 ≤ 1, and 0 ≤ γ ≤ Mi are the parameters used
by agents to determine if they have cleaned most of the current
RA. Note that we introduce parameter γ, which specifies the ex-
pected amount of dirt in the RA at a certain future time, because
dirt will continue to accumulate while the agents move around.
Of course, agents may compute E(Lt(Gi

t)) every time and can
use it in Condition (10) instead of E(Lt0+γ(G

i
t0)). However, we

use E(Lt0+γ(G
i
t0)) in the following experiments to avoid the fre-

quent calculations of the expected value. These conditions indi-
rectly reflect both the capabilities of the agent’s hardware and the
quality/performance of the exploration algorithms. Agents with
a simple algorithm cannot effectively move around the area (for
example, the agents may visit the same nodes many times and/or
may skip some nodes). Agents that can move more quickly have a
sophisticated exploration algorithm, or have a large-capacity bat-
tery can more easily satisfy two conditions and thus are likely to
expand their RAs.

Note that a larger R1 and R2 make agents more conservative
about expanding their RAs. There is a trade-off between conser-
vativeness and eagerness: eager agents with a small R1 and R2 try
to expand their RAs even if their RAs are not clean enough while
conservative agents will avoid expanding their RAs even if they
are able to do so, and the adjacent agents have smaller expansion
powers. We will discuss this in Section 6.

4.3 Area Expansion Trial
When Conditions (9) and (10) are satisfied, agents believe that

they can clean a larger area. Hence, they start an area expansion

trial (AET), which is the process of trying to expand an RA to
cover other nodes that are not covered by other agents or are in
the RAs of busier agents. In the AET, we took into account two
factors. The first one is the distances from their bases because vis-
iting only far nodes may reduce the agents’ and thus the system’s
overall performances. Second, we also try to avoid frequent fail-
ures of expansion in a certain direction in which unbusy agents
operate.

When agent i finds that Conditions (9) and (10) are satisfied at
time t during its cleaning cycle, i initiates an AET, which consists
of two parts. First, i identifies the nodes Ii that should be in-
cluded in its RA using the expansion strategy. It then negotiates
with neighbor agents to decide which agent should take charge of

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 1 Expansion strategy (nearest boundary expansion). Squares with bold
lines represent the current RA, and yellow and green squares repre-
sent boundary of subarea. Blue node represents the base node.

the identified nodes, assuming that part of Ii is in the RAs of the
neighbor agents.

The expansion strategy tries to include the boundary nodes
closer to the charging base. First, agent i identifies the bound-
ary of its current RA, which is denoted by B(Vi

t) ⊂ V . For ex-
ample, in Fig. 1, where the environment G is a grid, Vi

t is the set
of nodes (squares) with bold lines, and the boundary, B(Vi

t), is
the set of the yellow and green colored nodes. Agent i selects
Ii
inc (⊂ B(Vi

t)), which is the set of kinc nodes that are not in Ii
avoid

(this will be defined below) and are the nearest from the base,
vibase, for positive integer kinc. It then defines Ii as the nodes in
Ii
inc and their adjacent (north, south, east, and west) nodes that are

not in Vi
t and not in Ii

avoid. For example, in Fig. 1, the green and
orange nodes express Ii when kinc = 1 and Ii

avoid = ∅. If Ii = ∅,
the AET ends, and no nodes are added to i’s RA.

If one of the adjacent agents can afford to clean a larger RA,
an attempt to take nodes from its RA may fail. To avoid frequent
failures of the AET, i stores into Ii

avoid the nodes that it failed to
take and does not select them as elements of Ii in the next kavoid

times of AET, where kavoid is a positive integer. Note that Ii
avoid is

initially set to ∅.

4.4 Negotiation for Expanding Responsible Areas
After i identifies Ii, it starts negotiation to determine which

agent nodes in Ii should be included in its RA. This process is as
follows:
(0) Revise the responsible area:

Vi
t is set to Vi

t−1 ∪ Ii.
(1) Send request message for area expansion:

Agent i broadcasts Ii with its current expansion power ξ =
ξ(i, t).

(2) Accept/Reject area expansion request:
Suppose that agent j has received a request message for area
expansion from i at time t. If V j

t ∩ Ii = ∅, j does nothing.
Otherwise, j compares j’s expansion power, ξ(j, t), with ξ.

(2.1) If ξ(j, t) ≥ ξ, j sends a rejection message with V j
t ∩ Ii and

ξ(j, t) to i.
(2.2) If ξ(j, t) < ξ, j sends an acceptance message with V j

t ∩ Ii

and ξ(j, t) to i. Then j revises its RA to V j
t = V j

t \ Ii.
(3) Expand responsible area:

If i has received a rejection message from j, it excludes the
nodes from Vi

t and stores the information about the excluded
nodes with j’s expansion power. These nodes are stored into
Ii
avoid and are not be included in Ii in the next kavoid times of

AET to avoid frequent failures.
Note that during these message exchanges, i continues to clean
the current RA. We assume that AET is invoked only once per

cleaning cycle even if i has enough battery to continue in order to
avoid excess expansion but, of course, we can omit this restric-
tion.

4.5 Identifying Locations of Obstacles
We assume that agent i can detect obstacles using sensors (e.g.,

touch/sonar/infrared sensor, proximity sensor and camera) and in
this paper, i can detect a node of obstacle by hitting it using touch
sensor which is the simplest way. Agent i starts moving from its
charging base vibase along the path generated by an exploration al-
gorithm. It then memorizes the nodes that it cannot move which
is defined as block node Oi, whose initial value is the empty set.
Then, when i hits a node of an obstacle during the cleaning pro-
cess, it adds them into Oi. Furthermore, if the elements in Oi

surround other nodes, these are the part of the obstacles. Thus,
they are added into Oi. This enables i to recognize which nodes
are the parts of obstacle. After their RAs changed or Oi was re-
visited, agents recalculated the shortest distance between nodes
in the RAs when they arrive at their charging bases.

4.6 Learning of Dirt Accumulation Probabilities
To identify which nodes are easy to become dirty in the RAs,

agent i learns pi
v for ∀v ∈ Vi

t , which are the estimated values of
the DAPs of Vi

t . First, when node v is added in Vi
tv at time tv, i

initializes as pi
v = 0 and the last time when i visited v, ti

LV (v), is
set to tv.

Right after i has vacuumed up dirt at node v at time t, i cal-
culates the interval, Ii

t (v), between the current and the last time
visited v:

Ii
t (v) = t − ti

LV (v). (11)

Then, the DAP of v is estimated by Lt(v)/Ii
t (v). However, the

reliability of such an estimated value depends on the length of in-
terval, Ii

t (v). Thus, we introduce the variable learning rate, α(x),
which weighs the obtained probability according to the length of
the interval, and pi

v is updated as:

pi
v = (1 − α(Ii

t (v)))pi
v + α(Ii

t (v))
Lt(v)

Ii
t (v)
. (12)

Then ti
LV (v), is set to t. The learning rate function 0 < α(x) < 1 in

Eq. (12) is monotonically increasing and is defined as the linear
function with the upper bound:

α(x) = max(δx, αmax) (13)

in the experiments below, where 0 < δ � 1 is the gradient of the
learning rate, and 0 < αmax is the upper bound.

5. Experimental Evaluation

5.1 Environments
We evaluated the ePBP method using two simulated environ-

ments, as shown in Fig. 2, to clarify the performance and features
of the ePBP method in a variety of situations. Cleaning area G is
defined as a 51 × 51 grid. Node v is expressed by (x, y), where
−25 ≤ x, y ≤ 25. Four agents A = {a1, a2, a3, a4} move around G

starting from their charging bases vibase (i = 1, 2, 3, 4). The set of
obstacles, O, is empty if nothing is stated.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 2 Experimental environments.

The DAPs for all nodes are shown in the figure, where param-
eters pl, pm, and ph are defined as

pl = 2 · 10−6, pm = 2 · 10−5, ph = 2 · 10−4. (14)

Whereas dirt accumulates uniformly in the first environment
(Env. 1), there are rectangular regions that more easily accumu-
late dirt in the second environment (Env. 2), where the red region
is specified by (−20,−20) and (−10,−10) and the blue region by
(5,−5) and (15, 5), so the sizes of these regions are 121. The
encircled integers indicate the locations of the charging bases;
for example, the charging base of a1 is at (−25, 0). The subarea
whose DAP is ph in Env. 2 referred to here as the easy-to-dirty

subarea. Note that since the DAP in Env. 1 is pm, so Env. 1 is
dirtier than Env. 2.

We assume that all agents have the same batteries and we set
that Bmax = Bi

max = 900, kcharge = ki
charge = 3, and Bdrain =

Bi
drain = 1 in our experiments if nothing is stated. This means that

agents can continuously operate up to 900 ticks (Mi = 900) and
that a complete recharge takes 2,700 ticks if the battery is empty,
making the maximum length of a cleaning cycle 3,600 ticks. We
defined these values in accordance with the specifications of an
actual robot cleaner *2. The parameters for selecting AET were
defined as R1 = 0.7, R2 = 0.7, and γ = 300 (= Mi/3). The con-
trol parameters kinc and kavoid used in the AET were set to 15 and
7, respectively. The parameters used in the learning of DAPs were
set as δ = 0.0001 and αmax = 0.5. We then stored, every 3,600
ticks (which is the maximal cleaning cycle) up to 1,000,000 ticks,
the sum of the amount of remaining dirt, D, the expansion pow-
ers ξ(ai, t) calculated when the agents returned to their base, and
the sizes of the RAs, |Vi

t |. The experimental results given below
are the average values for 100 trials. We compare these results
with those of a conventional distributed partitioning method [9],
in which agents try to divide the area into equal-size subareas by
comparing the current sizes of their RAs. We call it the balloon

method [9] hereafter.
We conducted four experiments. In the first experiment

(Exp. 1), we compared cleaning performance and examined how
the environments were divided in accordance with the environ-
mental characteristics. The second experiment (Exp. 2) investi-
gated how the ePBP could reflect the difference in algorithms of
exploration. In the third experiment (Exp. 3), we introduced the
agents with the enhanced battery to know how hardware differ-

*2 One tick is approximately 4 seconds, the velocity is 0.25 m/s, the maxi-
mum operation time is 1 hour, and the maximum battery charging time
is 3 hours in our experiments.

ences affected the RA partitioning. Finally, we added a number
of obstacles into the environments to investigate how the ePBP
method decided the RAs by reflecting the obstacles, especially a
intricately-shaped obstacle, in the fourth experiment (Exp. 4).

5.2 Algorithms for Exploration in Experiments
Agents move around the RAs by using certain exploration al-

gorithms and to verify that the proposed PBP method can deter-
mine the RAs by taking into account the differences in algorithm
performance, and we assume that the agents use one of three ex-
ploration algorithms described below. Because the focus in the
experiments is on area partitioning for division of labor, these
algorithms are quite simple and non-intelligent; improvement of
exploration algorithm out of scope, but agents can use more ef-
fective algorithms in our framework.

With the random exploration (RE) algorithm, agent i randomly
selects target node v from Vi

t and then moves to v along the short-
est path from the current node. After reaching the node, i ran-
domly selects another node, i.e., it iterates this select-and-move
action.

With the directed depth-first exploration (DDFE) algorithm,
which is a simple depth-first search, i selects the first target node,
v ∈ Vi

t , whose expected amount of accumulated dirt E(Lt(v)) is
the largest when it leaves vibase, moves to it along the shortest
path, and pushes the node on top of its stack. It then randomly
selects one of the adjacent nodes except for a previously visited
one, moves to it, and pushes the node on top of its stack. This
process is iterated as long as i can select an unvisited node. Then,
if i cannot select it, i pops the top node from its stack and back-
tracks one step; that is, i moves back to the previous node. It
then tries to select another unvisited node. If i returns to the first
target node after repeating this movement, it returns to its base
node, vibase. Although Ref. [12] used the (random) depth-first ex-

ploration (DFE) algorithm that is also a depth-first search simpler
than DDFE, we did not use it here. DDFE relies on the learned
DAPs, so it is better to see the effect of the DAP learning on the
performance.

The DDFE algorithm is better than the RE one since an agent
using RE may visit the same nodes many times but one using
DFE does not visit the same node in a cleaning cycle except when
backtracking. Note that agents using these algorithms move to
only safe nodes, as we mentioned in Section 3.1. If they find that
the next node is not safe, they directly return to their base nodes
via shortest paths.

5.3 Performance of Cleaning and Sizes of RAs
For the purpose of Exp. 1, we compare the sum of the amount

of remaining dirt, D, in two environments. We assumed that all
agents used the DDFE exploring algorithm. We also examined
the PBP method in Exp. 1 to investigate the differences in perfor-
mance between the PBP (the DAPs were given) and the ePBP (the
DAPs were learned) methods. The results are plotted in Fig. 3.
The average values of D = Dts ,te observed between ts = 800,000
and te = 1,000,000 in Env. 1 and Env. 2 and the improvement
ratios of the ePBP method to the conventional method are also
listed in Table 1. For Env. 1, it is reasonable that the area di-

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Table 1 Average values of remaining dirt between 800,000 and 1,000,000 ticks.

Exp. 1 Exp. 2 Exp. 3 Exp. 4
Dts ,te Dts ,te Dts ,te Dts ,te Dts ,te Dts ,te Dts ,te Dts ,te

in Env. 1 in Env. 2 in Env. 1 in Env. 2 in Env. 1 in Env. 2 in Env. 3 in Env. 4
Conventional method 127.9 81.6 171.0 106.4 92.8 58.2 131.4 85.6
ePBP method 130.2 67.4 165.7 81.1 85.6 44.0 134.5 68.3
Improvement ratio (%) −1.80 17.40 3.10 23.78 7.76 24.40 −2.35 20.12

Fig. 3 Amount of Remaining Dirt, D, using PBP and ePBP in Exp. 1.

visions are equal in size because the DAPs {pv}v∈V are constant.
Hence, the differences between the PBP, ePBP, and conventional
methods were small although ePBP exhibited slightly lower per-
formances (the improvement ratio was −1.80% in Table 1). In
Env. 2, the ePBP and PBP methods resulted in a much smaller
D, and the improvement ratio was 17.40% (Table 1), because
it partitioned the area in accordance with the characteristics of
the environment. We can also observe that the ePBP and PBP
exhibited the almost identical performance in both environments
(Fig. 3) although agents with the ePBP were not given the values
of DAPs.

We investigated how the RAs expanded and were partitioned
depending on the PBP and ePBP methods over time in Env. 2; the
results are plotted in Fig. 4. Note that the results for Env. 1 are
omitted because Env. 1 is uniform, so they partitioned the equal-
size RAs. However, Env. 2 has two easy-to-dirty subareas, so the
equal-size partitioning is inappropriate. First, Fig. 4 (a) and (b)
indicates that the sizes of RAs of ai, |Vi

t |, were almost indifferent
between the PBP and ePBP methods in Env. 2. With both meth-
ods, agents a1 and a4 had bases near the easy-to-dirty subarea, so
their RAs were smaller than those of the others (note that ph is 10
times larger than pm). The RA of a3 was the largest because the
area near its charging base rarely got dirty.

Figures 3 and 4 indicate that the convergences were slightly
faster when agents adopted the ePBP method. Because they ini-
tially believed that the environment was uniform and had no easy-
to-dirty subareas, they tried to extend their RAs to proactively
clean the wider areas.

Figure 5 plotted the amount of remaining dirt, Di, in Env. 2

Fig. 4 Sizes of RAs, |Vi
t |, in Exp. 1.

Fig. 5 Remaining Dirt in |Vi
t | in Exp. 1.

when agents adopted the conventional or ePBP method. It shows
that the differences in Di were quite smaller in the ePBP method
than those in the conventional method; this is the result of bet-
ter partitioning of RAs for balanced work by taking into account
the characteristics of Env. 2. Note that Fig. 5 (b) indicates that
the values of Di did not become identical. The main reason is

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

that when they charged (maximally, 2,700 ticks), the amount of
dirt increased, especially, in the nodes whose DAP were high.
Actually, in Env. 1, Di converged to an identical value in all ex-
periments below. As an example, we will show this fact in Exp. 2
because its experimental setting was more diverse than that of
Exp. 1.

5.4 Effect of Different Exploration Algorithms
In Exp. 2, we gave agents two different exploration algorithms,

RE and DDFE, described in Section 5.2; agents a1 and a2 used RE
and a3 and a4 used DDFE. The subarea near the charging bases
for a1 and a4 would be the dirtiest although RE is less effective
than DDFE. In realistic situations, the agents using a better algo-
rithm should be allocated to the dirtier areas. We did not do this
because we wanted to clarify the effect of the differences in algo-
rithms and environments on performance and RA partitioning.

Figure 6 is the set of graphs showing the amount of remain-
ing dirt, D, in Envs. 1 and 2 over time. We also listed the average
value of D between 800,000 and 1,000,000 ticks in Table 1. These
data indicate that the ePBP method could clean more effectively,
especially in Env. 2 like Exp. 1, than the conventional method.

We also plotted the sizes of RAs of ai with the ePBP method in
Envs. 1 and 2 in Fig. 7. In Env. 1, agents with the ePBP method
autonomously divided their RAs in accordance with their used
exploration algorithms. In Env. 2, by adding the easy-to-dirty
subareas, the tendency was more notable; for example, a3 and a4

used the DDFE, but a3 had no dirty subareas near its charging
base, so the size of its RA became 1,000 nodes approximately. In
contrast, a4 had the small RA that was smaller than a2’s RA. The
graphs in Fig. 8 show the amount of remaining dirt in RAs, Di

(for i = 1, 2, 3, 4), when agents adopted the conventional method
(Fig. 8 (a) and (c)) and the ePBP method (Fig. 8 (d) and (d)). We
can find that the proposed ePBP method could clean the RAs
more evenly in both environments. Note that in Env. 2 (Fig. 8 (d)),
the values of D1 and D4 were relatively larger although agents

Fig. 6 Amount of Remaining Dirt, D, in Exp. 2.

tried to divide the RAs for balanced work. This reason is identi-
cal to the case in Exp. 1; the amount of dirt increased in the nodes
whose DAP were high when they charged. Note again that ph is
10 times larger than pm.

5.5 Effect of Hardware Difference
We conducted Exp. 3 to see the effect of hardware difference,

more specifically different capacities of batteries, on the sizes of
RAs and on the performance of cleaning. We assumed that a1

and a2 had the same battery in the previous experiments, but
a3 and a4 had a better (long-life) battery that is specified as
B3

max = B4
max = 1,800 (and other battery specifications k3

charge,
k4

charge, B3
drain, and B4

drain are identical to other’s batteries). Other
experimental setting was identical to that of Exp. 1.

Figure 9 (a) and (b) shows the amount of dirt remaining in
the environments over time. The average value of D between
800,000 and 1,000,000 ticks is also listed in Table 1. They in-
dicate that the ePBP method could outperform the conventional
method due to better allocations of RAs as shown in Fig. 10 (a)
and (b), which shows the sizes of RAs allocated to agents, ai in
Envs. 1 and 2. Figure 10 (a) indicates that a3 and a4 had larger
sizes of RAs than those of a1 and a2 in accordance with their
battery capacity specifications. In Env. 2, Figure 10 (b) exhibits
more interesting curves: until 5,000 ticks, the sizes of RAs were
similar to those in Env. 1. After that, because the agents began to
include the dirtier subareas in their RAs and to learn the DAPs,
agents changed the sizes of their RAs by reflecting the environ-
ment and the battery capacities shortly. Thus, the RA of a4, for
example, became smaller although it has better battery, and con-
versely, the size of a2’s RA became larger. Note again that ph is
10 times larger than pm.

Figure 11 (a) and (b) shows the amount of remaining dirt in
RAs. We omitted the graphs in Env. 1 but found that the ePBP
method could keep clean uniformly in Env. 1 due to the balanced

Fig. 7 Sizes of RAs, |Vi
t |, in Exp. 2.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 8 Remaining Dirt in |Vi
t | in Exp. 2.

Fig. 9 Amount of Remaining Dirt, D, using Conventional Method and
ePBP in Exp. 3.

work allocations. It also made the difference in remaining dirt be-
tween RAs smaller in Env. 2 (Fig. 11 (a) and (b)); the difference
was caused by the increase of dirt in the easy-to-dirty subarea
during battery charge.

5.6 Balanced RA allocations with Obstacles
In Exp. 4, we investigated how existence of obstacles and their

shapes affected their sizes of RAs. For this purpose, we put
three obstacles into Envs. 1 and 2 with different shapes, includ-
ing square, rectangular and E-shape, as shown in Fig. 12. These
environments are referred to as Env. 3 and Env. 4, respectively.
The square obstacle is specified by (−18,−3) and (−13, 2), while

Fig. 10 Sizes of RAs, |Vi
t |, in Exp. 3.

the rectangular is specified by (13,−6) and (18, 3). The size and
location of the E-shape obstacle is shown in Fig. 12. Note that the
rectangular obstacle partly overlapped the dirtier subarea whose
DAP is pm.

When a number of obstacles exist in the environment, we could
observe the slightly different phenomenon. Figure 13 presents
how remaining dirt, D, varied overtime (until 1,000,000 ticks) in
Envs. 3 and 4. We also listed the improvement ratios of D be-
tween 800,000 and 1,000,000 ticks in Table 1. Figure 13 and
Table 1 indicate that the ePBP method left slightly more dirt in
Env. 3 than the conventional method as in Exp. 1, although the
ePBP outperformed the conventional method in Env. 4. Because

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 11 Remaining Dirt in |Vi
t | in Exp. 3.

Fig. 12 Experimental environments.

Env. 3 is uniform except the three obstacles which hindered for
the learning of the DAPs, the ePBP could not learn the DAP val-
ues efficiently. Figure 13 also shows that the values of D almost
converged around 5,000 ticks. However, if we look at Fig. 13 (a)
and (b) more carefully, the values of D decreased very slowly
after that.

Figure 14 represents the size of RAs of agent ai in both Envs. 3
and 4 using our proposed method. Note that the sizes of RAs ex-
cluded the nodes occupied by obstacles. Figure 14 (a) indicates
that agents autonomously divided the areas on the basis of only
the existence and the shapes of the obstacles since Env. 3 is uni-
form. For example, a4 had the E-shaped obstacle that is more
complex than others, and it took more ticks to reach the areas in-
side the E-shared obstacle. This results in the smaller a4’s RA
than others. The RA of a2 was also smaller because it had the
rectangular obstacle which took slightly longer time to reach the
nodes in the opposite side of the rectangle from the a2’s base,
v2base. This situation is also similar for a1 but the obstacle near

Fig. 13 Amount of Remaining Dirt, D, in Exp. 4.

Fig. 14 Sizes of RAs, |Vi
t |, in Exp. 4.

v1base was smaller, so the RA of a1 was relatively larger.
On the other hand, because Env. 4 has a number of easy-to-

dirty subareas, the area partition reflected both the obstacles and
the characteristics of the environment. Figure 14 (b) indicates that
because a4 had both the E-shape obstacle and the easy-to-dirty
subarea near the charging base, its RA was the smallest (about
400). In addition, the RA of a3 was the largest (about 860) be-
cause it was neither easy-to-dirty subarea nor obstacles near its
charging base. Of course, agents with the conventional method
have equal-size RAs, thus the RA including the complex-shaped
obstacle and easy-to-dirty region tended to have more remaining
pieces of dirt.

Figure 15 (a) and (b) represents the amount of dirt left in the
RAs in Env. 4 using the conventional and the proposed methods,
respectively. Figure 15 (a) indicates that the differences in the
amount of remaining dirt in RAs, Di (i = 1, 2, 3, 4), were large

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 15 Remaining Dirt in |Vi
t | in Exp. 4.

but by using the proposed method, we can see from Fig. 15 (b)
that agents could keep the values of Di closer. This result shows
that our proposed method could vacuum dirt in a more balanced
manner.

We can observe two phenomena different from other experi-
ments. First, if we compare the results of a1 and a4 in Figs. 14 (b)
and 15 (b), we can see that the size of a4’s RA was smaller but the
a1’s RA was dirtier. This indicates that because a4 had E-shaped
obstacle, a1 cleaned the dirty subarea between v1base and v4base more
than a4.

Second, Fig. 14 obviously indicates that it took longer time to
converge the sizes of RAs. We can consider two reasons for this
(see also Fig. 4). First, agents required more time to reach and
thereby learn the DAPs of the regions in the opposite side of ob-
stacles, especially another side of the E-shaped obstacle. In ad-
dition, the exploring algorithm used in this experiment was too
simple to clean effectively such a complex region. Second, the
existence of obstacles let the speed of expansion of RAs slower
because agents first try to expand them to the nearest nodes. This
discussion suggests the limitation of the proposed method; i.e.,
we have to improve the learning speed, and we will address this
issue next time.

How environment is partitioned is shown in Fig. 16. Note that
we selected this result of partitioning randomly from 100 experi-
mental trials we conducted, and we could see that other partition-
ing looked similar. We can see in Fig. 16 that a4 had the smallest
RA because an E-shape obstacle is next to its charging base, and
the dirty area whose probability is ph is also in its RA. Partic-
ularly, this obstacle made the cleaning difficult, and a4 needed
to spend longer time. Thus, a4 decreased its RA. However, the
RA of a3 was the biggest because there is no obstacle nearby its
charging base nor the dirty areas.

6. Discussion

From the results of our experiments, we can say that the pro-

Fig. 16 Shape of RA in Env. 4.

posed ePBP method can effectively partition the area in accor-
dance with the differences in the environment and the perfor-
mances of the agents in a cooperative cleaning task. The agents
that: (a) use more efficient algorithms, (2) have high-capacity
batteries, and/or (3) are deployed in regions that are relatively
simpler and cleaner can handle larger areas, and thus, they try to
expand their RAs by acquiring nodes from busier agents. Further-
more, although the ePBP method does not assume the informa-
tion of dirty areas, i.e., the values of DAPs, it exhibits the perfor-
mance comparable to the PBP [12]. However, a few things need
to be considered.

The first thing to consider is the effect of the parameters used.
Parameters R1, R2, and γ, which are used in Conditions (9) and
(10) specify the situations in which agents start an AET. If these
parameters are large, agents tend to expand their RAs only after
they have sufficiently cleaned their current RAs. That is, they
are conservative about expanding their RAs even if the adjacent
agents lack the performance needed to clean their areas. If these
parameters are small, the agents tend to start an AET even before
their current RAs have been sufficiently cleaned, so AETs are
started more frequently. This can result in frequent meaningless
AETs. Parameter kinc controls the number of nodes acquired in a
single AET, and parameter kavoid controls the number of fruitless
AETs in which agents try to extend their RA towards the expense
of agents with high expansion powers. The trade-off mentioned
here is similar to the explore-or-exploit dilemma that occurs with
learning algorithms. We think that the learning is needed to de-
cide the values of these parameters: This is left to our future work.

Finally, as shown in Exp. 4, the convergence became slower
when the environment had a number of obstacles. When its shape
was complex, like the E-shaped obstacle, in particular, agents
could rarely reach recessed areas inside the complex obstacle due
to a number of reasons, and this resulted in the inefficient learn-
ing. First, the exploring algorithm used in our experiments was
so simple to explore such recessed areas. Second, more impor-
tantly, agents had no information about the DAP and initially as-
sumed that such recessed areas were not so dirty, so there was no
motives to move there. For example, if the recessed areas were
easy-to-dirty, agents gradually learned it and visited there more
often. However, in our experiment, the recessed areas were not

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

easy to be dirty. This is also another issue that we should address
in the future.

By using area expansion trial (AET), agents can adaptively ex-
pand their RAs. If the room is large, agents can expand their
RA rapidly by adjusting the parameters used in the AET strategy.
However, we cannot decide the maximum size of the cleaning
area because it depends on the specifications and the number of
agents. Note that most of the computational cost in our proposed
method occurs in the calculation of the expansion power, and is
O(m), where m is the size of RA.

Our proposed method could partition the area/environment
fairly and effectively by taking into account the characteristics of
the environment and the capability of each agent. However, some
additional issues such as map generation, path planning, identify-
ing agents’ locations, collision/obstacle avoidance, compensation
for imperfect communication and how to identify the appropri-
ate number of agents for efficient cleaning exist for the real ap-
plications of cleaning/sweeping domains. In particular, although
the appropriate number of agents depends on the agent’s spec-
ifications, it is important to introduce some mechanism, which
contribute both efficiency in the cleaning and energy saving, to
decide the appropriate number of the cleaning robots. For exam-
ple, if the room is very dirty, then the number of agents should
be increased. Yet, if some agents are redundant, the number of
agents should be reduced by improving their specifications. This
issue should be solved and is our next future work.

In addition, our work is not restricted to only the cleaning ap-
plication. We can apply it to other real-world applications such
as the security patrolling. Agents in this problem domain must
visit/monitor locations in environment at different frequencies.
For instance, continuous cleaning and security patrolling agents
have to control robots so that they frequently visit regions that
easy to accumulate dirt and those at high security levels. Thus,
the cleaning task is just an example for our experiments described
in Section 5.

7. Conclusion

We have presented a decentralized area-partitioning method
for cleaning and patrolling tasks. It tries to uniformly keep
clean/secure the given environment by allocating areas of respon-
sibility in accordance with the characteristics of the environment
and the performance of the exploration algorithms. We first mod-
eled the environment, the agents, and the problem addressed here.
Then, we described the proposed method in which agents try to
expand their responsible areas and negotiate with adjacent agents
to determine which agents should clean the identified boundary
nodes while they learn what areas are easy to be dirty. Exper-
imental results demonstrated that the proposed method can ef-
fectively divide an area into subareas (responsible areas) fairly
and appropriately in accordance with the efficiency and capabil-
ity of agents and the characteristics of the environments. As a
result, unbalanced tasks are resolved, and the task is completed
in a more balanced and efficient manner.

Our work mainly focused on the cleanliness of floor whose pur-
pose is to minimize the amount of remaining dirt left in the whole
environment after each cleaning. We think that energy consump-

tion of the cleaning robot is important, but it has not been consid-
ered yet and must be related with the appropriate control of the
number of agents and their operating time.

We can consider a number of future works to make our method
practical as discussed in Section 6. Although applying our
method to a new room relies on other methods to create the map
of environment as discussed in Section 3.1, we believe that com-
bining our method and a map creation seems better for actual
application. Additionally, we plan to find a way to appropriately
control the parameter values to enable more autonomous and in-
telligent activities and to speed up the convergence.

Acknowledgments This work was in part supported by JSPS
KAKENHI grant number 25280087. The authors would like to
thank anonymous reviewers for their valuable comments to im-
prove this paper. We are also grateful to Mr. Keisuke Yoneda and
Mr. Ayumi Sugiyama for their constructive comments and sug-
gestions.

References

[1] Agmon, N. and Peleg, D.: Fault-tolerant gathering algorithms for au-
tonomous mobile robots, Proc. 15th Annual ACM-SIAM Symposium
on Discrete algorithms (SODA ’04), pp.1070–1078, Philadelphia, PA,
USA, Society for Industrial and Applied Mathematics (2004).

[2] Ahmadi, M. and Stone, P.: Continuous Area Sweeping: A Task Def-
inition and Initial Approach, Proc. 12th International Conference on
Advanced Robotics, pp.316–323 (2005).

[3] Ahmadi, M. and Stone, P.: A Multi-Robot System for Continuous
Area Sweeping Tasks, Proc. 2006 IEEE International Conference on
Robotics and Automation, pp.1724–1729 (2006).

[4] Breitenmoser, A., Schwager, M., Metzger, J.-C., Siegwart, R. and Rus,
D.: Voronoi coverage of non-convex environments with a group of net-
worked robots, 2010 IEEE International Conference on Robotics and
Automation (ICRA), pp.4982–4989 (2010).

[5] Chevaleyre, Y.: Theoretical Analysis of the Multi-agent Patrolling
Problem, Proc. Intelligent Agent Technology, pp.302–308 (2005).

[6] Cortes, J., Martinez, S. and Bullo, F.: Spatially-Distributed Coverage
Optimization and Control with Limited-Range Interactions, ESAIM:
Control, Optimisation and Calculus of Variations, pp.691–719 (2004).

[7] Dutta, A., Dasgupta, P., Baca, J. and Nelson, C.: A Bottom-Up Search
Algorithm for Dynamic Reformation of Agent Coalitions under Coali-
tion Size Constraints, 2013 IEEE/WIC/ACM International Joint Con-
ferences on Web Intelligence (WI) and Intelligent Agent Technologies
(IAT), Vol.2, pp.329–336 (2013).

[8] Elmaliach, Y., Agmon, N. and Kaminka, G.A.: Multi-robot Area Pa-
trol Under Frequency Constraints, Annals of Mathematics and Artifi-
cial Intelligence, Vol.57, No.3-4, pp.293–320 (2009).

[9] Elor, Y. and Bruckstein, A.M.: Multi-a(ge)nt Graph Patrolling and
Partitioning, Proc. 2009 IEEE/WIC/ACM International Joint Confer-
ence on Web Intelligence and Intelligent Agent Technologies, pp.52–
57 (2009).

[10] Hahnel, D., Burgard, W., Fox, D. and Thrun, S.: An Efficient Fast-
SLAM Algorithm for Generating Maps of Large-Scale Cyclic En-
vironments from Raw Laser Range Measurements, Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2003), Vol.1, pp.206–211 (2003).

[11] Hennes, D., Claes, D., Meeussen, W. and Tuyls, K.: Multi-Robot
Collision Avoidance with Localization Uncertainty, Proc. 11th Inter-
national Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2012) – Volume 1, IFAAMAS, pp.147–154 (2012).

[12] Kato, C. and Sugawara, T.: Decentralized Area Partitioning for a
Cooperative Cleaning Task, PRIMA 2013: Principles and Practice
of Multi-Agent Systems, Boella, G., Elkind, E., Savarimuthu, B.,
Dignum, F. and Purvis, M. (Eds.), Lecture Notes in Computer Sci-
ence, Vol.8291, pp.470–477, Springer Berlin Heidelberg (2013).

[13] Kurabayashi, D., Ota, J., Arai, T. and Yoshida, E.: Cooperative
Sweeping by Multiple Mobile Robots, Proc. 1996 IEEE International
Conference on Robotics and Automation (ICRA 96), pp.1744–1749
(1996).

[14] McCaffrey, J.: Graph partitioning using a Simulated Bee Colony algo-
rithm, 2011 IEEE International Conference on Information Reuse and
Integration (IRI), pp.400–405 (2011).

[15] Mead, R., Weinberg, J.B. and Croxell, J.R.: An implementation of

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

robot formations using local interactions, Proc. 22nd National Con-
ference on Artificial Intelligence - Volume 2, AAAI ’07, pp.1989–1990.
AAAI Press (2007).

[16] Ranjbar-Sahraei, B., Weiss, G. and Nakisaee, A.: A Multi-robot Cov-
erage Approach Based on Stigmergic Communication, Multiagent
System Technologies, Timm, I. and Guttmann, C. (Eds.), Lecture
Notes in Computer Science, Vol.7598, pp.126–138, Springer Berlin
Heidelberg (2012).

[17] Sampaio, P.A., Ramalho, G. and Tedesco, P.: The Gravitational
Strategy for the Timed Patrolling, Proc. 2010 22nd IEEE Interna-
tional Conference on Tools with Artificial Intelligence - Volume 01,
ICTAI ’10, pp.113–120, Washington, DC, USA, IEEE Computer So-
ciety (2010).

[18] Schwager, M., Rus, D. and Slotine, J.-J.: Unifying Geometric, Prob-
abilistic, and Potential Field Approaches to Multi-robot Deployment,
Int. J. Rob. Res., Vol.30, No.3, pp.371–383 (2011).

[19] Sea, V. and Sugawara, T.: Area Partitioning Method with Learning of
Dirty Areas and Obstacles in Environments for Cooperative Sweeping
Robots, Proc. 4th IIAI International Congress on Advanced Applied
Informatics (IIAI AAI 2015), pp.523–529 (2015).

[20] Wolf, D.F. and Sukhatme, G.S.: Mobile Robot Simultaneous Local-
ization and Mapping in Dynamic Environments, Autonomous Robots,
Vol.19, No.1, pp.53–65 (2005).

[21] Yoneda, K., Sugiyama, A., Kato, C. and Sugawara, T.: Learning
and relearning of target decision strategies in continuous coordinated
cleaning tasks with shallow coordination, Web Intelligence, Vol.13,
No.4, pp.279–294 (online), DOI: http://dx.doi.org/10.3233/
WEB-150326 (2015).

Vourchteang Sea is a graduated student
of Department of Computer Science and
Engineering, Waseda University, Japan,
since September, 2013. She received her
B.E. degree in Computer Science from
Royal University of Phnom Penh and
M.S. of Engineering from Waseda Univer-
sity in 2012 and 2015, respectively. Cur-

rently, she is a Ph.D. student at Waseda University. Her research
interests are related to artificial intelligence including multi-agent
systems, machine learning and distributed systems.

Chihiro Kato is a graduated student of
Department of Computer Science and En-
gineering, Graduate School of Fundamen-
tal Science and Engineering, Waseda Uni-
versity, Japan, since April, 2013. He re-
ceived B.E. and M.S. degrees, in 2013 and
2015, respectively. His research interests
are in coordination, multi-agent systems

and machine learning.

Toshiharu Sugawara is a professor of
Department of Computer Science and
Communications Engineering, Waseda
University, Japan, since April, 2007. He
received his B.S. and M.S. degrees in
Mathematics, 1980 and 1982, respec-
tively, and a Ph.D., 1992, from Waseda
University. In 1982, he joined Basic Re-

search Laboratories, Nippon Telegraph and Telephone Corpora-
tion. From 1992 to 1993, he was a visiting researcher in De-
partment of Computer Science, University of Massachusetts at
Amherst, USA. His research interests include multi-agent sys-
tems, machine learning, and distributed network management.
He is a member of IEEE, ACM, AAAI, IPSJ, JSSST, and JSAI.

c© 2017 Information Processing Society of Japan

