
Electronic Preprint for Journal of Information Processing Vol.25

Technical Note

Optimum Application Deployment Technology for
Heterogeneous IaaS Cloud

Yoji Yamato1,a)

Received: July 27, 2016, Accepted: October 4, 2016

Abstract: Recently, cloud systems composed of heterogeneous hardware have been increased to utilize progressed
hardware power. However, to program applications for heterogeneous hardware to achieve high performance needs
much technical skill and is difficult for users. Therefore, to achieve high performance easily, this paper proposes
a PaaS which analyzes application logics and offloads computations to GPU and FPGA automatically when users
deploy applications to clouds.

Keywords: cloud computing, IaaS, FPGA, GPU, baremetal, OpenStack, heterogeneous cloud, compiler, PaaS

1. Introduction

Recently, Infrastructure as a Service (IaaS) clouds have been
progressed [1], [2], [3], and users can use computer resources or
service components on demand (For example, Refs. [4], [5], [6],
[7], [8]). Early cloud systems are composed of many low price
PC-like servers. Hypervisors, such as Xen or kernel-based virtual
machines (KVMs) [9], virtualize these servers to achieve high
computational performance using distributed processing technol-
ogy, such as MapReduce [10].

However, recent cloud systems have changed to make the best
use of recent advances in hardware power. For example, to use a
large amount of core CPU power, some providers have started
to provide baremetal servers which do not virtualize physical
servers. Moreover, some cloud providers use special servers with
strong graphic processing units (GPUs) to process graphic ap-
plications or special servers with field programmable gate arrays
(FPGAs) to accelerate specific computation logics. For example,
Microsoft’s search engine Bing uses FPGAs to optimize search
processing [11].

To utilize the recent advances in hardware power, users can
benefit from high performance of their applications. However,
to achieve high performance, users need to program appropriate
applications for heterogeneous hardware and have much techni-
cal skill. Therefore, our objective is to enable users to achieve
high performances easily. For this objective, cloud PaaS analyzes
application logics and offloads computations to GPU and FPGA
automatically when users deploy applications. The author previ-
ously proposed a Platform as a Service (PaaS) to select appropri-
ate provisioning type of baremetal, container or virtual machine
based on user requests [12]. In this paper, we investigate an ele-
ment technology to offload part logics of applications to GPU and

1 NTT Software Innovation Center, NTT Corporation, Musashino, Tokyo
180–8585, Japan

a) yamato.yoji@lab.ntt.co.jp

FPGA.

2. Problems of Existing Technologies

Recently, GPU programming, such as the compute unified de-
vice architecture (CUDA) [13], that involves GPU computational
power not only for graphics processing has become popular. Fur-
thermore, to program without walls between the CPU and GPU,
the heterogeneous system architecture (HSA) [14], which allows
shared memory access from the CPU and GPU and reduces
communication latency between them, has been extensively dis-
cussed.

For heterogeneous programming, it is general to add and spec-
ify a code line to direct specified hardware processing. PGI Ac-
celerator Compilers with OpenACC Directives [15] can compile
C/C++/Fortran codes with OpenACC directives and deploy ex-
ecution binary to run on GPU and CPU. OpenACC directives
indicate parallel processing sections, then PGI compiler creates
execution binary for GPU and CPU. Aparapi (A PARallel API)
of Java [16] is API to call GPGPU (General Purpose GPU) from
Java. Specifying this API, Java byte code is compiled to OpenCL
and run when it is executed.

To control FPGA, development tools of OpenCL for FPGA are
provided by Altera and Xilinx. For example, Altera SDK for
OpenCL is composed of OpenCL C Compiler and OpenCL Run-
time Library. OpenCL C Compiler compiles OpenCL C codes
to FPGA bit stream and configures FPGA logic, OpenCL Run-
time Library controls FPGA from applications on CPU using li-
braries of OpenCL API. Programmers can describe FPGA logic
and control by OpenCL, then configured logic can be offloaded
to specified FPGA.

However, these technologies have two problems. A) General
language codes of C, C++ or Java need directives such as Open-
ACC or language extension such as OpenCL C. If we would like
to achieve high performance, a timing to specify directives is very
important and much technical knowledge of parallel processing is

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

needed. B) There is no PaaS to utilize CPU/GPU/FPGA appropri-
ately in clouds and users need to design how much GPU instances
are needed.

The author previously proposed a PaaS to provide services
based on user requests [12], [17], [18], [19]. The work of
Ref. [12] can provision baremetal, container or virtual machine
appropriately, thus enhancing the idea [12], we can provide PaaS
to select CPU/GPU/FPGA and can partly solve B). This paper’s
target is to solve A) by an element technology by utilizing GPU
and FPGA from general language applications, and this technol-
ogy is an improved point from Ref. [12]. Complex applications
such as synchronous execution of FPGA and GPU are out of the
scope of this paper. The work of Ref. [19] is our previous work in
a conference paper and this paper improves it.

3. Proposal of Optimum Application Deploy-
ment Technology for Heterogeneous IaaS

In this section, we propose PaaS of cloud provider with op-
timum application deployment technology. Our proposed tech-
nology involves a PaaS, an IaaS controller, such as Open-
Stack [20], heterogeneous cloud hardware with GPU, CPU,
FPGA, HDD/SSD storage, and a code patterns database (DB).
Our PaaS is one of aPaaS (application PaaS). In general aPaaS
provides an application environment. Our PaaS has characteris-
tics for application deployment to offload part logics of applica-
tions to GPU and FPGA. And the figure describes OpenStack
as an IaaS controller, but OpenStack is not a precondition of the
proposed technology and other controllers such as CloudStack
can be adopted.

3.1 Processing Steps
Figure 1 shows system architecture and application deploy-

ment steps. There are 7 steps to deploy applications.
1. Users specify their applications to deploy on clouds to PaaS

system. Users need to upload source codes of applications to
PaaS.

2. PaaS analyzes application source codes, compares codes
to code patterns DB and detects similar code patterns. Here,
code patterns DB retains codes which are offloadable to GPU
and FPGA and corresponding OpenCL patterns. To detect sim-

Fig. 1 Proposed optimum application deployment steps for heterogeneous
IaaS cloud.

ilar codes, we use similar code detection tools such as CCFind-
erX [21]. Similar code detection tools can detect specified code
patterns of FFT (Fast Fourier Transformation), encryption and
decryption processing, graphic processing and so on from users’
application codes. In these examples, FFT, encryption and de-
cryption processing can be offloaded to FPGA with accelerated
configurations of these processing, and graphic processing can be
offloaded to GPU.

3. PaaS extracts OpenCL language codes for offloadable pro-
cessing to GPU and FPGA detected in step 2. OpenCL language
is the major language for heterogeneous programming and de-
scribes processing which runs on FPGA/GPU. Therefore, in this
step, PaaS adds specified OpenCL line for offload sections based
on code patterns DB.

4. PaaS sends a provisioning request of creating run envi-
ronment for applications to OpenStack. For example, when
we need GPU resources, containers are provisioned on GPU
servers because VMs cannot sufficiently control GPUs. And
when we need FPGA, servers with FPGA board are provisioned
by baremetal provisioning such as Ironic. Basically PaaS se-
lects pre-configured FPGA server for specified logics such as FFT
from multiple FPGA servers. However, there is no desired con-
figuration of FPGA, PaaS may provision a non-configured FPGA
server and customized configuration may be done before actual
applications run.

5. OpenStack creates new computer resources for specified
applications. Note that if applications need to create not only
one compute server but several resources, such as virtual routers
and storage, PaaS sends templates that describe the environment
structures by JavaScript Object Notation (JSON) and provisions
them at once by OpenStack Heat or other orchestration technol-
ogy.

6. PaaS deploys application execution binary to provisioned
servers. When PaaS deploys execution binary, existing tools of
each vendor such as Altera SDK for OpenCL can be used to de-
ploy.

7. PaaS returns application deployment results information of
which servers are deployed to process and how much the cost of
server usage is and so on. If users agree the deployment results,
users start to use applications and usage fees are also started for
which users will be charged. If users disagree the results, PaaS
deletes resources by OpenStack Heat stack-delete API. After re-
sources deletion, users may re-deploy. And if users would like to
reconfigure FPGA, users specify FPGA configuration in this step
7 timing.

By these processing steps, users can deploy applications which
are written by general language to heterogeneous cloud. The
main contributions of our proposal are comparing source codes
with code pattern DB to find offloadable logics and extracting
OpenCL codes automatically. There is a merit for users to achieve
high performance without programming knowledge of GPU and
FPGA.

4. Conclusion

This paper proposed a PaaS to offload application logics to
GPU and FPGA automatically when users deploy applications

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

to clouds. Proposed PaaS analyzed source codes of applica-
tions, detected offloadable logics to GPU and FPGA using similar
code detection technology and predefined code patterns, created
OpenCL codes and deployed them. This can enable high perfor-
mance applications easily for users. In the future, we will ver-
ify the proposed technology performance and validity for general
application codes. We also need to study how to deploy complex
applications.

Acknowledgments The author would like to thank Hideki
Hayashi and Shinichi Nakagawa who were managers of this re-
search.

References

[1] Yamato, Y., Nishizawa, Y., Muroi, M. and Tanaka, K.: Develop-
ment of Resource Management Server for Production IaaS Services
Based on OpenStack, Journal of Information Processing, Vol.23,
No.1, pp.58–66 (Jan. 2015).

[2] Yamato, Y., Nishizawa, Y., Nagao, S. and Sato, K.: Fast and Reliable
Restoration Method of Virtual Resources on OpenStack, IEEE Trans.
Cloud Computing, DOI: 10.1109/TCC.2015.2481392 (Sep. 2015).

[3] Yamato, Y., Shigematsu, N. and Miura, N.: Evaluation of Agile Soft-
ware Development Method for Carrier Cloud Service Platform De-
velopment, IEICE Trans. Information & Systems, Vol.E97-D, No.11,
pp.2959–2962 (Nov. 2014).

[4] Yokohata, Y., Yamato, Y., Takemoto, M., Tanaka, E. and Nishiki, K.:
Context-Aware Content-Provision Service for Shopping Malls Based
on Ubiquitous Service-Oriented Network Framework and Authentica-
tion and Access Control Agent Framework, IEEE Consumer Commu-
nications and Networking Conference (CCNC 2006), pp.1330–1331
(Jan. 2006).

[5] Yamato, Y., Ohnishi, H. and Sunaga, H.: Development of Service
Control Server for Web-Telecom Coordination Service, IEEE Inter-
national Conference on Web Services (ICWS 2008), pp.600–607 (Sep.
2008).

[6] Nakano, Y., Yamato, Y., Takemoto, M. and Sunaga, H.: Method of cre-
ating web services from web applications, IEEE International Confer-
ence on Service-Oriented Computing and Applications (SOCA 2007),
pp.65–71 (June 2007).

[7] Sunaga, H., Takemoto, M., Yamato, Y., Yokohata, Y., Nakano, Y.
and Hamada, M.: Ubiquitous Life Creation through Service Compo-
sition Technologies, Proc. World Telecommunications Congress 2006
(WTC2006) (May 2006).

[8] Yamato, Y., Tanaka, Y. and Sunaga, H.: Context-aware Ubiquitous
Service Composition Technology, The IFIP International Conference
on Research and Practical Issues of Enterprise Information Systems
(CONFENIS 2006), pp.51–61 (Apr. 2006).

[9] Kivity, A., Kamay, Y., Laor, D., Lublin, U. and Liguori, A.: KVM:
The Linux virtual machine monitor, The 2007 Ottawa Linux Sympo-
sium, pp.225–230 (July 2007).

[10] Dean, J. and Ghemawat, S.: MapReduce: Simplified data processing
on large clusters, Proc. 6th Symposium on Opearting Systems Design
and Implementation (OSDI ’04), pp.137–150 (Dec. 2004).

[11] Putnam, A., Caulfield, A.M., Chung, E.S., Chiou, D., Constantinides,
K., Demme, J., Esmaeilzadeh, H., Fowers, J., Gopal, G.P., Gray, J.,
Haselman, M., Hauck, S., Heil, S., Hormati, A., Kim, J.-Y., Lanka,
S., Larus, J., Peterson, E., Pope, S., Smith, A., Thong, J., Xiao, P.Y.
and Burger, D.: A reconfigurable fabric for accelerating large-scale
datacenter services, Proc. 41th Annual International Symposium on
Computer Architecture (ISCA ’14), pp.13–24 (June 2014).

[12] Yamato, Y.: Server Structure Proposal and Automatic Verification
Technology on IaaS Cloud of Plural Type Servers, International Con-
ference on Internet Studies (NETs 2015), Tokyo (July 2015).

[13] Sanders, J. and Kandrot, E.: CUDA by example: An introduc-
tion to general-purpose GPU programming, Addison-Wesley, ISBN-
0131387685 (2011).

[14] Kyriazis, G.: Heterogeneous System Architecture: A Technical Re-
view, White paper, HSA Foundation (Aug. 2012). available from
〈http://developer.amd.com/wordpress/media/2012/10/hsa10.pdf〉.

[15] PGI compiler web site, available from 〈https://www.pgroup.com/
resources/accel.htm〉.

[16] Aparapi web site, available from 〈http://developer.amd.com/
tools-and-sdks/opencl-zone/aparapi/〉.

[17] Yamato, Y., Ohnishi, H. and Sunaga, H.: Study of Service Process-
ing Agent for Context-Aware Service Coordination, IEEE Interna-
tional Conference on Service Computing (SCC 2008), pp.275–282

(July 2008).
[18] Yamato, Y., Nakano, Y. and Sunaga, H.: Study and Evaluation of

Context-Aware Service Composition and Change-Over Using BPEL
Engine and Semantic Web Techniques, IEEE Consumer Communi-
cations and Networking Conference (CCNC 2008), pp.863–867 (Jan.
2008).

[19] Yamato, Y.: Proposal of Optimum Application Deployment Tech-
nology for Heterogeneous IaaS Cloud, 2016 6th International Work-
shop on Computer Science and Engineering (WCSE 2016), pp.34–37,
Tokyo (June 2016).

[20] OpenStack web site, available from 〈http://www.openstack.org/〉.
[21] CCFinder web site, available from 〈http://www.ccfinder.net/〉.

Yoji Yamato received his B.S., M.S. de-
grees in physics and Ph.D. degree in gen-
eral systems studies from University of
Tokyo, Japan in 2000, 2002 and 2009, re-
spectively. He joined NTT Corporation,
Japan in 2002. There, he has been en-
gaged in developmental research of Cloud
computing platform, Peer-to-Peer com-

puting and Service Delivery Platform. Currently he is a senior
research engineer of NTT Software Innovation Center. Dr. Yam-
ato is a member of IEEE and IEICE.

c© 2017 Information Processing Society of Japan


