
Electronic Preprint for Journal of Information Processing Vol.25

Regular Paper

Concurrent Program Logic
for Relaxed Memory Consistency Models
with Dependencies across Loop Iterations

Tatsuya Abe1,a) ToshiyukiMaeda1,2,b)

Received: May 10, 2016, Accepted: August 4, 2016

Abstract: Relaxed memory consistency models specify effects of executions of statements among threads, which may
or may not be reordered. Such reorderings may cross loop iterations. To the best of our knowledge, however, there
exists no concurrent program logic which explicitly handles the reorderings across loop iterations. This paper provides
concurrent program logic for relaxed memory consistency models that can represent, for example, total store ordering,
partial store ordering, relaxed memory ordering, and acquire and release consistency. There are two novel aspects
to our approach. First, we translate a concurrent program into a family of directed acyclic graphs with finite nodes
and transitive edges called program graphs according to a memory consistency model that we adopt. These represent
dependencies among statements which represent reorderings of not only statements but also visibility of their effects.
Second, we introduce auxiliary variables that temporarily buffer the effects of write operations on shared memory,
and explicitly describe the reflections of the buffered effects to shared memory. Specifically, we define a small-step
operational semantics for the program graphs with the introduced auxiliary variables, then define sound and relatively
complete logic to the semantics.

Keywords: memory consistency model, shared memory, concurrent program verification, dependencies across loop
iterations, graph representation, partial correctness, relative completeness

1. Introduction

A memory consistency model is a formal definition of the be-
havior of shared memory that is simultaneously accessed by mul-
tiple threads. Relaxed memory consistency models [6] allow the
shared memory to behave differently than that for one sequential
thread. Today, relaxed memory consistency models are widely
adopted by programming languages (e.g., Refs. [13], [22], [23],
[24], [29], [34]) and CPU architectures (e.g., Refs. [20], [21],
[38], [39]). This is because recent CPUs tend to have a number
of cores, and large computing systems consist of a large number
of computing nodes. Thus, it is difficult to adhere to non-relaxed
memory consistency models without severe performance degra-
dation.

One big problem with relaxed memory consistency models is
that programming is very error prone because, from the program-
mer’s point of view, the shared memory behaves unexpectedly.
For example, in a certain relaxed model, the effects of memory
operations performed by one thread can be observed by another
thread in a different order. To address this problem, program veri-
fication can be used to detect bugs caused by unexpected behavior
in the relaxed memory consistency models. Recently, program
verification for relaxed memory consistency models has been ex-

1 STAIR Lab., Chiba Institute of Technology, Narashino, Chiba 275–0016,
Japan

2 RIKEN AICS, Kobe, Hyogo 650–0047, Japan
a) abet@stair.center
b) tosh@stair.center

Fig. 1 A concurrent program with dependencies across loop iterations.

tensively studied [1], [2], [3], [5], [7], [8], [9], [11], [14], [25],
[35], [40], [49].

One approach of program verification for ensuring safety of
programs is program logic. Program logic is based on proofs,
which ensure that a given property holds on any execution of pro-
grams. Recently, concurrent program logics with relaxed mem-
ory consistency models are seen [17], [33], [44], [45].

However, it is not easy to construct concurrent program logic
that can handle programs with loops under relaxed memory con-
sistency models since dependencies among statements which rep-
resent reorderings of not only statements but also visibility of
their effects may cross loop iterations.

For example, let us consider the concurrent program in Fig. 1
consisting of two threads. The left-side thread writes the same
value to x and y on a shared memory. The values are incremented
at each iteration. The right-side thread reads values from x and y.

Under relaxed memory consistency models, effects of stores
to a shared memory may be reordered. For example, r2==2 &&

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

r3==0may occur under Partial Store Ordering (PSO) [6] since an
effect of a write operation to y can be overtaken by those of write
operations to x at the later iterations. To the best of our knowl-
edge, there exists no concurrent program logic that is sound and
relatively complete to such semantics.

On the other hand, under Total Store Ordering (TSO) [6],
r2==2 && r3==0 never occurs since TSO prohibits effects of
write operations to x to overtake that of a write operation to y.
Thus, dependencies/independencies between effects across loop
iterations depend on memory consistency models that we adopt.
Since memory consistency models refer to effects that occur in
low-level, we cannot handle effects across loop iterations through
descriptions of loops in high-level. The authors learned its signif-
icance by an experience of detecting a similar bug in a numeric
computing program of climate simulation [36], and started to con-
struct verification theories that are parameterized by memory con-
sistency models in consideration of dependency/independency
between effects across loop iterations [4]. To the best of our
knowledge, there exists no concurrent program logic which ex-
plicitly describes dependencies across loop iterations under re-
laxed memory consistency models.

This paper provides concurrent program logic for standard re-
laxed memory consistency models that can represent, for exam-
ple, TSO, PSO, Relaxed Memory Ordering (RMO) [6], and Ac-
quire and Release consistency (AR) [20]. There are two novel
aspects to our approach. First, we translate a concurrent program
into a family of directed acyclic graphs with finite nodes and
transitive edges called program graphs according to a memory
consistency model that we adopt. These represent the dependen-
cies among statements, which may or may not be reordered even
across loop iterations. Second, we introduce auxiliary variables
that temporarily buffer the effects of write operations on shared
memory, and explicitly handle the reflections of the buffered ef-
fects to shared memory. Specifically, we define a small-step op-
erational semantics for the program graphs with the introduced
auxiliary variables, then define a sound and relatively complete
logic to the semantics.

The rest of this paper is organized as follows. Section 2 in-
troduces program graphs, and memory consistency models. Sec-
tion 3 defines the operational semantics for the program graphs,
and Section 4 explains our concurrent program logic, and its re-
lation to the operational semantics. Section 5 slightly extends
the operational semantics and the concurrent program logic, then
shows proofs of soundness and relative-completeness of the ex-
tended proof (and soundness of the original one). Section 6 shows
example derivations on the concurrent program in Fig. 1 and its
variants. Section 7 discusses related work, and Section 8 con-
cludes the paper and discusses ideas for future work.

2. Representations of Programs and Memory
Consistency Models

In this section, we formally define our target concurrent pro-
grams, representations of programs with reordering structures,
representations of memory consistency models, and present some
related definitions.

2.1 Programs
Similar to the conventional Hoare logic (e.g., [19]), sequential

programs are defined as sequences of statements. Parentheses are
often omitted, and operators are assumed to be left associative.
Let r denote thread-local variables (which cannot be accessed
by other threads), x, y, . . . denote shared variables, and e denotes
thread-local expressions (thread-local variables, constant values
val, arithmetic operations, and so on). A sequential program can
then be defined as:

Si � SKi | MVi r e | LDi r x | STi x e | FNi | IFi ϕ?Si:Si | WLi ϕ?Si

| Si; Si

ϕ� e = e | e ≤ e | ¬ϕ | ϕ ⊃ ϕ | ∀ r. ϕ .

In the above definition, the superscript i represents (an identifier
of) the thread on which the associated statement will be executed.
In the rest of this paper, this superscript is often omitted when the
context renders it obvious. The SK statement denotes an ordinary
no-effect statement (SKip). As in conventional Hoare logic, MV re

denotes an ordinary variable substitution (MoVe). The load and
store statements denote read and write operations, respectively,
for shared variables (LoaD and STore). The effect of the store
statement issued by one thread may not be observed by the other
threads until the FN statement is issued. The FN statement ensures
that other threads can observe the effect of store statements
(FeNce). The IF and WL statements denote ordinary conditional
branches and iterations, respectively, where we adopt ternary con-
ditional operators (IF-then-else-end and WhiLe-do-end). Finally,
S; S denotes a sequential composition of statements.

We write ϕ ∨ ψ and ϕ ∧ ψ, as (¬ϕ) ⊃ ψ and ¬ ((¬ϕ) ∨ (¬ψ)),
respectively. In the following, we assume that ¬, ∧, ∨, and ⊃ are
stronger with respect to their connective powers. In addition to
the above definition, � is defined as a tautology ∀ r. r = r.

A concurrent program with N threads is defined as the compo-
sition of sequential programs by parallel connectives ‖ as follows:

P� S0 ‖ S1 ‖ . . . ‖ SN−1 .

In this paper, we assume that the number of threads N is fixed
during program execution.

2.2 Program Graphs
As mentioned in Section 1, instead of directly handling the

concurrent programs defined above, we translate them to a fam-
ily of program graphs according to a memory consistency model.
These are directed acyclic graphs with finite nodes and transitive
edges that represent dependencies among statements. Specifi-
cally, the program graph G consists of nodes (called commands)
and edges, where the nodes are defined as follows:

Ci � MVi r e | LDi r x | STi x e | RFi x | FNi | ϕi .

As shown in the definition, we introduce RFi x, which explicitly
denotes the effect of STi x e on a shared variable x (ReFlect). That
is, the effect is not observed until RFi x is executed. Also, note that
IF and WL statements do not exist, and guards ϕi are introduced.
IF and WL statements are finitely unfolded. That is, a program
is represented by a (possibly infinite) family of program graphs.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Proving correctness of a program via its program graphs is dis-
cussed in Section 4. Nodes that share a common command are
assumed to be identified by appropriate tags although this paper
does not explicitly handle them.

In the generated program graphs, edges connect one node to
another if the command represented by the latter node depends
on that of the former node under a given memory consistency
model. Let us consider the following three examples under TSO.
The sequential composition ST0 x r0; LD0 r1 x is translated to the
program graph (ST0 xr0 → LD0 r1 x)�RF0 x, which has an edge be-
tween nodes denoting the commands, because the two commands
access the same shared variable x (and the effect of store is ex-
plicitly handled by reflect). Although the sequential composi-
tion LD0 r2 x; ST0 x r3 does not appear to have such a dependency,
this is translated to the program graph LD0r2 x→ ST0 xr3 → RF0 x,
which has an edge between nodes denoting the commands, be-
cause reordering of the commands makes a dependency that does
not originally exist if no edge exist between the nodes. In con-
trast, the sequential composition LD0 r2 x; ST0 y r3 is translated
to the program graph LD0 r2 x � (ST0 y r3 → RF0 y) (that is, no
edges between LD and ST), because there is no dependency where
G0 �G1 denotes the disjoint union of G0 and G1 in graph theory.

We denote the nodes, edges, root nodes, and leaf nodes of a
program graph G as N(G), E(G), R(G), and L(G), respectively.
The root nodes are defined as those that do not appear as the
destination of any edge, and the leaf nodes are defined as nodes
that do not appear as the source of any edge. G0 → G1 is de-
fined by N(G0 → G1) = N(G0) ∪ N(G1) and E(G0 → G1) =
E(G0) ∪ E(G1) ∪ (L(G0) × N(G1)). In the rest of this paper, we
often treat a program graph like a set of nodes when its edges
are obvious from the context. For example, G \ {C} denotes a full
sub-graph of G that does not have a node C. Moreover, we denote
a graph that holds only one node {C} as C. Edges derived from
transitivity are often omitted for readability.

2.3 Memory Consistency Models: Translations
We represent a memory consistency model as a translation

from programs into families of program graphs. In this sec-
tion, we give four example translations that represent TSO, PSO,
RMO [6], and AR [20].

We first decompose a parallel composition into a set of sequen-
tial programs. Next, we translate each sequential program into a
program graph. Finally, we create a program graph by taking a
disjoint union of the program graphs.

The translation of sequential programs consists of two steps.
The first step translation defined in Fig. 2 is to regard sequential
compositions of statements as a sequence of commands, unfold
IF and WL statements finitely, and transform the program to se-
quences (of the finite length) of commands. Unfolding IFϕ?S0:S1

Fig. 3 Graph creations with memory consistency models.

that has no nested IF and WL statement generates two sequences
of commands according to S0 and S1. Similarly, for example, un-
folding WL ϕ?S0 generates infinite sequences (of the finite length)
of commands. Each sequence corresponds to the number of exe-
cutions of iterations of the loop (as discussed in Section 4).

The second step translation g shown in Fig. 3 is to create nodes
from the sequences of commands generated by the first step and
edges between the nodes that have dependencies where

−→
C means

a sequence of commands. The dependency relation Ci � Ci
0 be-

tween Ci and Ci
0 is defined in Tables 1, 2, 3 and 4.

Table 1 represents a dependency relation of TSO where fv(e)
means variables that occur in e. Formulas in cells in Table 1 mean
assumptions that make Ci � Ci

0 true. For example, in Table 1, �
for LD r′ x′ � ST x e means that LD r′ x′ unconditionally depends
on ST x e. On the other hand, RF x′ never depends on LD r x

(blank cells mean contradiction). Although we do not explain
each cell in detail, Table 1 represents key characteristics of TSO,
that is, two loads follow the program order, two stores also fol-
low the program order, no store overtakes any load, and a load

Fig. 2 A transformation from the program to sequences of commands.

Table 1 A dependency relation C �Ci
0 that represents TSO.

Ci
0

MV r e LD r x ST x e RF x FN ϕ

MV r′ e′ � � � � � �
LD r′ x′ r′ ∈ fv(e) � � � � �

or r′ = r
Ci ST x′ e′ r ∈ fv(e′) r ∈ fv(e′) � � � �

or x′ = x
RF x′ � �
FN � � � � � �
ϕ′ � � � � � �

Table 2 The PSO dependency relation C �Ci
0.

Ci
0

MV r e LD r x ST x e RF x FN ϕ

MV r′ e′ � � � � � �
LD r′ x′ r′ ∈ fv(e) � � � � �

or r′ = r
Ci ST x′ e′ r ∈ fv(e′) r ∈ fv(e′) � � � �

or x′ = x

RF x′ x′ = x �
FN � � � � � �
ϕ′ � � � � � �

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Table 3 The RMO dependency relation C �Ci
0.

Ci
0

MV r e LD r x ST x e RF x FN ϕ

MV r′ e′ � � � � � �
LD r′ x′ r′ ∈ fv(e)

or r′ = r
r′ = r r′ ∈ fv(e)

or x′ = x
� � �

Ci ST x′ e′ r ∈ fv(e′) r ∈ fv(e′) � � � �
or x′ = x

RF x′ x′ = x �
FN � � � � � �
ϕ′ � � � � � �

Table 4 A dependency relation C �Ci
0 that represents AR.

Ci
0〈LD r x, A〉 〈ST x e, A〉, 〈ST x e, A〉,

rel � A rel ∈ A
〈LD r′ x′, A′〉, r′ = r � �
acq � A′

Ci 〈LD r′ x′, A′〉, � � �
acq ∈ A′
〈ST x′ e′, A′〉 r ∈ fv(e′) x′ = x �

or x′ = x

may overtake stores. Please note that neither ST x′ e′ � LD r x nor
RF x′ � LD r x is � in Table 1. Under the so-called Sequential
Consistency (SC) [28], it should be �.

Table 2 represents a dependency relation of PSO. The unique
difference between PSO and TSO is that PSO does not preserve
orders of stores and reflects. This is achieved by relaxing the as-
sumption of RF x′ � RF x from � to x′ = x (emphasized by the
rectangle in Table 2).

Table 3 represents a dependency relation of RMO. The differ-
ences between RMO and PSO are that RMO does not preserve
an order of loads, and load and store. These are achieved by
strengthening the assumption of LD r′ x′ � LD r x from � to r′ = r,
and LD r′ x′ � ST x e from � to r′ ∈ fv(e) or x′ = x (emphasized
by the rectangles in Table 3), respectively.

Finally, let us give a translation to represent AR, which is
adopted by C11/C++11 [22], [24]. Under AR, no LD statement
can overtake a LD statement with attribute acquire (acq), and no
ST can delay a ST with attribute release (rel).

We modify the definition of statements as follows:

Si � . . . | 〈LDi r x, A〉 | 〈STi x e, A〉
where A is a set of attributes, acq, rel, etc. Statement 〈LDi r x, A〉
where acq ∈ A means LDi r x that no load and store statement
overtake. Statement 〈STi x e, A〉 where rel ∈ A means STi x e that
cannot overtake any load and store.

A dependency relation is defined in Table 4 where we omit
cells except those for loads and stores. Attributes are used only
to construct program graphs, and not used on semantics of pro-
gram graphs as described in Section 3 and its logic as described
in Section 4.

3. Operational Semantics

In this section, we define a small-step operational semantics
for the program graphs defined in Section 2.2. Specifically, the
semantics is defined as a standard state transition system, where a
state (written as st) is represented as a pair of substitutions 〈σ, Σ〉.
The first element of the pair σ gives the value of thread-local

Fig. 4 Our operational semantics.

Fig. 5 Satisfiabilities of formulas.

variables and shared variables. The second element Σ represents
buffers that temporarily buffer the effects of store operations to
shared variables. We assume that the set of value contains a spe-
cial constant value udf to represent uninitialized or invalidated
buffers. We define the following three operations for substitution
functions:

f [v′ � val]v =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

val if v = v′

f v o.w.
σ[Σ i]x =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Σ i x if Σ i x � udf

σx o.w.

Σ[i′ � g]i =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

g if i = i′

Σ i o.w.

where we write Σi as Σ i, f ranges over both σ and Σ i, and
g is a function from shared variables to values. Specifically,
f [v′ � val] and σ[Σ i] represent updated values via substitutions,
and Σ[i′ � g] represents updated substitutions.

Figure 4 shows the rules of the operational semantics where
〈|e|〉σ denotes the valuation of an expression e as follows:

〈|val|〉σ = val 〈|r|〉σ = σr 〈|x|〉σ = σx

〈|e1 + e2|〉σ = 〈|e1|〉σ + 〈|e2|〉σ . . .

and σ � ϕ means satisfiability of ϕ on σ in the standard manner
as defined in Fig. 5.

A pair of a program graph and a state is called a configuration.
Each rule is represented by one-step reduction between config-
urations 〈G, st〉 c−→ 〈G′, st′〉, which indicates that a command
makes 〈G, st〉 to transit to 〈G′, st′〉.

Specifically, O-MV evaluates e and updates σ. Rule O-LD
evaluates x on Σ i, if Σ i x is defined, and on σ otherwise, and up-
dates σ. O-ST evaluates e and updates Σ i (not σ); i.e., the rule
indicates that the effect of the store operation is buffered in Σ i.
Rule O-RF denotes the reflection from a store buffer to shared
memory. Rule O-FN does not change the state. The command
FN is only used to represent ordering constraints among the other
statements. Rule O-GD handles guard nodes ϕ by simply assert-
ing that ϕ is satisfied under state σ. If σ is not satisfied, we say

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 6 Our concurrent program logic.

that G gets stuck.
The operational semantics is nondeterministic because all rules

have an assumption C ∈ R(G), and R(G) may consist of more
than one element. This nondeterminacy in the choice of one of
the root nodes enables the operational semantics to simulate var-
ious relaxed memory consistency models by choosing different
translation approaches.

4. Concurrent Program Logic

In this section, we define our concurrent program logic. Our
assertion language is defined as follows:

Φ� E = E | E ≤ E | df(xi) | df(xi) | ¬Φ | Φ ⊃ Φ | ∀ v. Φ
v� r | x | xi | r | x | xi

where E represents a pseudo-expression denoting thread-local
variables r, shared variables x, buffered variables xi, next thread-
local variables r, next shared variables x, next buffered variables
xi, constant values val, arithmetic operations, and so on. The
buffered variable xi represents the value written to the shared vari-
able x by the ST on a thread with identifier i, but not yet reflected.
In addition, df(xi) indicates that xi is defined; i.e., there is a pend-
ing ST for x on thread i. We define [e/xi]df(xi) as �. The next
variable v represents the value of v on a state to which the current
state transits under the operational semantics. We call v a current

variable.
Figure 6 shows the judgment rules. They are defined fol-

lowing the styles of Stølen and Xu’s proof systems [42], [47],
[48]. We assume that rely/guarantee-conditions are reflexive and
transitive. Each judgment has form {pre, rely} G {guar, post}
(where pre and post have no next variable), which states that,
if the program graph G is computed under the pre-condition
pre and rely-condition rely (which the other threads guaran-
tee) according to the operational semantics of Section 3, then
the guarantee-condition guar (on which the other threads rely)
holds (for any possible nondeterministic computation), as usual
in the conventional rely-guarantee systems. Furthermore, if the
computation terminates and does not get stuck, then the post-
condition post also holds. In the rest of paper, we denote �

Fig. 7 The interpretation of the assertion language.

{pre, rely}G {guar, post} if {pre, rely}G {guar, post} can be derived
from the judgment rules of Fig. 6.

More specifically, rule L-MV handles the substitution of
thread-local variables with expressions. This is the same as in
conventional rely-guarantee proof systems. [e/v] represents a
substitution of v with e. We define � Φ as 〈σ, Σ〉, 〈σ′, Σ′〉 � Φ
for any 〈σ, Σ〉, 〈σ′, Σ′〉, where 〈σ, Σ〉, 〈σ′, Σ′〉 � Φ is defined as
an extension (for buffered variables) of that in a standard manner
of rely-guarantee system as shown in Fig. 7. In the following, we
often write 〈σ, Σ〉 � Φ when Φ has no next variable. The first and
second assumptions mean that pre and post are stable under rely,
respectively, that another thread guarantees where we state that Φ
is stable under Ψ (written asΦ ⊥ Ψ) asΦ(−→v)∧Ψ (−→v ,−→v) ⊃ Φ(−→v).
The third assumption means that pre must be a sufficient condi-
tion that implies guar under an invariant condition about variables
before and after an execution of C (written as �C�UW) where U and
W are finite sets of current non-buffered and buffered variables
that occur in guar, respectively. A formula �MVi r e�UW is defined
as r = e∧∧ Inv U \ {r} ∧∧ Inv W, which means that the value of
r becomes equal to the evaluation of e while values of variables
in U \ {r} and W are invariant where

Inv U = { u = u | u ∈ U }
Inv W = {w = w ∧ (df(w) ⊃ df(w)) | w ∈ W }

Its formal definition is shown in Fig. 8 where B(x) is { x j | 0 ≤

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 8 Invariants.

j < N }. The fourth assumption means that pre must be a suffi-
cient condition that implies post with respect to the substitution.

Rule L-EM of Fig. 6 states that the empty graph does not affect
anything. Rule L-LD handles substitutions of thread-local vari-
ables with shared variables. Please note that r is substituted with
the auxiliary buffer variables xi, instead of the shared variables
x. Rule L-ST handles the substitution of shared variables with
expressions. Please note that, as in L-LD, this rule considers the
buffered variable xi instead of the shared variable x. Rule L-RF
handles reflections from a store buffer to shared memory. Threads
js and ks have and do not have pending stores in their own buffers,
respectively. Any sequence of xks are simultaneously replaced
with xi since xks are undefined; i.e., thread k observes the effect
of the store of thread i if there is no pending store for x on thread
k where

−→
X denotes multiple Xs and fv(Φ) represents a set of free

variables in Φ in the standard manner. Any sequence of x js are
not replaced with xi; i.e., thread j observes a pending store in its
own buffer. Although a pre-conditions appears to become huge
by combinations of buffered variables, we can often construct a
derivation in which there exists buffered variables xis only in a
pre-condition of RFi x by using L-PR appropriately. Please refer
to an example verification in Section 6. Rule L-FN handles FN
and does nothing like L-EM, which means that FN is only used
as a landmark in linking nodes which have dependency. Rule
L-GD handles a guard ϕ. It asserts that pre and ϕ implies post.
Rule L-WK is the so-called consequence rule. Rule L-SQ han-
dles G0 → G1, which is considered as a sequential composi-
tion of program graphs since all nodes in G0 must be executed
before any command of G1 is executed. L-PR handles program
graphs that have G0 and G1 where there is no edge between G0

and G1. This corresponds to a rule of parallel compositions of
programs in a standard rely-guarantee system. The third assump-
tion means that G1’s rely condition rely1 must be guaranteed by
the global rely-condition rely or G0’s guarantee-condition guar0.
The fourth assumption is similar. The fifth assumption means that
guar must be guaranteed by either guar0 or guar1. L-LN handles
the nondeterministic choice of one of the leaf nodes of G. This
rule focuses on every leaf node (denoted as C) in G one by one,
and checks exhaustively whether {pre, rely}G \ {C} {guar, Φ} and
{Φ, rely} C {guar, post} hold. It can be considered that this rule
handles all the linearizations [18] of commands.

Validity
We define computations of program graphs, and give valid-

ity for judgments. We define the set of computations Cmp(G)
of G as a finite or infinite sequence c of configurations where
adjacent configurations are related by

c−→ defined in Section 3

Fig. 9 Computations under pre/rely-conditions satisfies guarantee/
post-conditions.

or
e−→, which is defined by 〈G, st〉 e−→ 〈G, st′〉 for any st and

st′. Cfg(c, i), Prg(c, i), and St(c, i) as the i-th configuration, pro-
gram graph, and state of c, respectively. The program graph
Prg(c, 0) is G. |c| denotes its length, which is the smallest limit
ordinal ω if c is an infinite sequence. Let c′ be a computation
that satisfies St(c′, |c′| − 1) = St(c, 0). We define c′ · c as a con-
catenation of c′ and c. We define � {pre, rely} G {guar, post} as
Cmp(G) ∩ A(pre, rely) ⊆ C(guar, post), which means that any
computation under pre/rely-conditions satisfies guarantee/post-
conditions as shown in Fig. 9. This kind of validity is called par-

tial correctness [46].

Program Verification via Program Graphs
The verification of a program is carried out by deriving judg-

ments with the rules defined in Fig. 6 for its program graphs that
consist of finitely unfolded loops. Careful readers may notice
that the logic described in this section handles a single program
graph, but the translation in Section 2.3 may generate an infinite
family of program graphs. Formally speaking, an infinite fam-
ily of derivations for the generated program graphs correspond
to the proof of the original program. That is, we have to con-
struct a derivation for each generated program graph. Although
it seems difficult to construct an infinite family of derivations, it
is not always impossible. For example, we show an inductive
construction of derivations in Section 6. Careful readers may
also wonder why we unfold loops unlike the conventional pro-
gram logics [19], [26]. The reason is that our work explicitly
handles dependencies/independencies across loop iterations, and
unfolding loops is the most straightforward way to achieve this.
To the best of our knowledge, there is no concurrent program
logic which handles dependencies/independencies across loop it-
erations. Careful readers may also wonder if a family of program
graphs contains an inadmissible behavior of a program. For ex-
ample, the program in Fig. 1 generates a program graph which
has ¬ r0 = 0 as a root node, but the condition is never satisfied
because r0 is initialized to 0. Therefore, the program graph can
be considered to denote an inadmissible behavior of the program.
However, this is not a problem because the program graph gets
stuck according to the operational semantics 3, and a derivation
of a judgment for a program graph that gets stuck does not imply
that the behavior of the program is valid by the definition of va-
lidity of judgments as described. In addition, careful readers may
also wonder if a program graph cannot capture a behavior of a
program that is represented by an infinitely unfolded loop. How-
ever, that is not a problem because a non-terminating program is
out of the scope of this work that considers the so-called partial

correctness [46].

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

5. Soundness and Relative Completeness

In this section, we show our concurrent program logic is sound
to the operational semantics defined in Fig. 4. We also show
soundness and relative completeness [46] between a slight ex-
tension of our concurrent program logic and its corresponding
operational semantics with respect to histories of computations
introduced in Refs. [47], [48].

Most of the soundness and relative completeness proofs in
this paper follow those in Xu’s PhD thesis and its journal ver-
sion [47], [48]. Differences in some definitions, propositions,
lemmas, and theorems are derived from that our semantics and
logic handle not programs themselves but program graphs. Inter-
esting differences are that our proof for completeness is simpler
than the proof in Refs. [47], [48], and our completeness theorem
claims a conclusion including L-SQ and L-PR-freeness.

To handle arbitrary program graphs, we added the L-LN rule
in Section 4, which is unnecessary to handle programs only. The
rule is so troublesome to require a huge number of judgments
as assumptions and make constructions of derivations tedious.
Instead of it, the L-LN rule is so powerful to make a proof for
completeness theorem drastically simple, while the proof for the
completeness theorem in Refs. [47], [48] appears to be compli-
cated since constructing judgments as assumptions of the L-PR
rule (from a valid judgment) is hard. Actually, L-SQ and L-PR-
freeness in Theorem 2 shows that L-LN contains L-SQ and L-PR
in provability.

In order to prove the relative completeness, we slightly ex-
tend the operational semantics of Section 3 and the concurrent
program logic of Section 4 with a notion of a history, which in-
formally holds a sequence of pairs of executed assignments and
states, following the style of Refs. [47], [48]. History variables
allow us to take snapshots of computations at arbitrary time, and
formally enriches assertion languages. As high expressibility of
assertion languages is a point of proving completeness of pro-
gram logics such as Hoare logic [46], introducing history vari-
ables is a typical method to enrich assertion languages in concur-
rent program logics. Formally, we assume that the set of val-
ues contain histories, which consist of sequences of the form
〈C0,
−−→
val0〉 · · · 〈Cn−1,

−−−−→
valn−1〉 where C j is a command or a sym-

bol Env (meaning an environment), and introduce special vari-
ables (called history variables). Given a program graph, let −→v be
the sequence of its current variables and their buffered variables.
We extend the definition of commands of assignments MV r e,
LD r x, ST x e, and RF x so that they can have additional assign-
ments of histories to history variables. Formally, C is converted
to atomic{C, h0 � h0 · 〈C,−→v 〉, . . . , hn−1 � hn−1 · 〈C,−→v 〉 } where
h0, . . . , hn−1 are history variables, and atomic{C,C′ } means that
C and C′ are atomically (without being disturbed by the other
threads) executed.

We also extend the operational semantics so that history vari-
ables are updated appropriately. Please note that the effect of
assignments to h are not saved at Σ but immediately reflected
to σ, i.e., history variables are shared and unbuffered. We also
extend the concurrent program logic so that, on each judgment
rule for an assignment C, h in a post-condition is updated to

h · 〈C,−→v 〉, and h = h · 〈C,−→v 〉 is added to �C�UW as a conjunc-
tion. We treat h as a non-buffered variable, i.e., h can belong to U

in �C�UW . Furthermore, we add the so-called auxiliary variables

rule [41], [42], [48] as follows:

{pre ∧ pre0, rely ∧ rely0}G0 {guar, post}
� ∃−→v0. rely0((−→v ,−→v0), (−→v ,−→v0)) � ∃−→v0. pre0(−→v ,−→v0)
−→v0 ∩ (fv(pre) ∪ fv(rely) ∪ fv(guar) ∪ fv(post)) = ∅

(L-AX){pre, rely} (G0)−→v0
{guar, post}

where (G)−→v0
is defined as the program graph that coincides with

G except that C ∈ N(G) is removed if
• C is an assignment whose left value belongs to −→v0,
• no variable in −→v0 occurs in assignments whose left values do

not belong to −→v0, and
• no variable in −→v0 freely occurs in guards.
Let c be 〈G0, 〈σ0, Σ0〉〉 δ0−→ · · · δi−1−→ 〈Gi, 〈σi, Σi〉〉 δi−→ · · ·

where δi is c or e for any 0 ≤ i. We write tr(c, i) as δi. Given
c ∈ Cmp(G0 � G1), c0 ∈ Cmp(G0), and c1 ∈ Cmp(G1), a ternary
relation c = c0 ‖ c1 is defined if |c| = |c0| = |c1| and
(1) St(c, i) = St(c0, i) = St(c1, i),
(2) tr(c, i) = c implies either of tr(c0, i) = c or tr(c1, i) = c holds,
(3) tr(c, i) = e implies tr(c0, i) = e and tr(c1, i) = e hold, and
(4) Prg(c, i) = Prg(c0, i) � Prg(c1, i)
for 0 ≤ i < |c|. We write prefix(c, i) and postfix(c, i) as the prefix
of c with length i + 1 and the sequence that is derived from c by
removing prefix(c, i − 1), respectively.
Proposition 1. Cmp(G0 � G1) = { c0 ‖ c1 | c0 ∈ Cmp(G0), c1 ∈
Cmp(G1) }.
Lemma 1. Assume � {pre0 ∧ pre1, rely} G0 �G1 {guar, post0 ∧
post1} by L-PR, Cmp(G0) ∩ A(pre0, rely0) ⊆ C(guar0, post0),
Cmp(G1) ∩ A(pre1, rely1) ⊆ C(guar1, post1), � rely ∨ guar0 ⊃
rely1, � rely ∨ guar1 ⊃ rely0, � guar0 ∨ guar1 ⊃ guar, and

c ∈ Cmp(G0 � G1) ∩ A(pre0 ∧ pre1, rely). In addition, we take

c0 ∈ Cmp(G0) and c1 ∈ Cmp(G1) such that c = c0 ‖ c1 by Prop. 1.

(1) St(c, i), St(c, i + 1) � guar0 and St(c, i), St(c, i + 1) � guar1

hold for any Cfg(c0, i)
c−→ Cfg(c0, i + 1) and Cfg(c1, i)

c−→
Cfg(c1, i + 1), respectively.

(2) St(c, i), St(c, i + 1) � rely ∨ guar1 and St(c, i), St(c, i + 1) �
rely ∨ guar0 hold for any Cfg(c0, i)

e−→ Cfg(c0, i + 1) and

Cfg(c1, i)
e−→ Cfg(c1, i + 1), respectively.

(3) St(c, i), St(c, i + 1) � guar for any Cfg(c, i)
c−→ Cfg(c, i + 1)

holds.

(4) Assume |c| < ω and Prg(c, |c| − 1) = ∅. Then, St(c, |c| − 1) �
post0 ∧ post1 holds.

Proof. 1. Let us consider the former case. Without loss of gen-
erality, we can assume that St(c, i), St(c, i + 1) � guar0 where
St(c, j), St(c, j + 1) � guar0 and St(c, j), St(c, j + 1) � guar1 for
any 0 ≤ j < i.

By the definition, there exists Cfg(c, k)
e−→ Cfg(c, k + 1) or

Cfg(c1, k)
c−→ Cfg(c1, k + 1) corresponding to Cfg(c0, k)

e−→
Cfg(c0, k + 1) for any 0 ≤ k ≤ i. Therefore, St(c, k), St(c, k + 1) �
rely ∨ guar1 holds. By � rely ∨ guar1 ⊃ rely0, prefix(c0, i +

1) ∈ A(pre0, rely0) holds. Since Cmp(G0) ∩ A(pre0, rely0) ⊆
C(guar0, post0) holds, in particular, St(c, i), St(c, i + 1) � guar0

holds. This contradicts St(c, i), St(c, i+1) � guar0. The latter case
is similar.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

2. Immediate from the definition of c = c0 ‖ c1 and 1.
3. Immediate from 1 and � guar0 ∨ guar1 ⊃ guar.
4. By 2, � rely ∨ guar0 ⊃ rely1, and � rely ∨ guar1 ⊃ rely0,
c0 ∈ A(pre0, rely0) and c1 ∈ A(pre1, rely1) hold.

By Cmp(G0)∩A(pre0, rely0) ⊆ C(guar0, post0) and Cmp(G1)∩
A(pre1, rely1) ⊆ C(guar1, post1), St(c, |c|) � post0 and St(c, |c| −
1) � post1 hold. Therefore, St(c, |c| −1) � post0 ∧post1 holds. �

Theorem 1. The extended concurrent program logic (and the

original one) is sound. That is, � {pre, rely} G {guar, post} im-

plies � {pre, rely}G {guar, post}.
Proof. By induction on derivation and case analysis of the last
inference rule.

First, assume L-MV. Let c ∈ Cmp({MVi r e}) ∩ A(pre, rely). By
O-MV, there exist σ0, Σ0, . . . such that 〈σn+1, Σn+1〉 = 〈σn[r �
〈|e|〉σn], Σn〉,

c = 〈{MVi r e}, 〈σ0, Σ0〉〉 e−→∗ 〈{MVi r e}, 〈σn, Σn〉〉
c−→ 〈∅, 〈σn+1, Σn+1〉〉 e−→ · · · ,

〈σ0, Σ0〉 � pre, and 〈σ j, Σ j〉, 〈σ j+1, Σ j+1〉 � rely for any 0 ≤ j < n.
By � pre ⊥ rely, 〈σn, Σn〉 � pre. By the definition,
〈σn, Σn〉, 〈σn[r � 〈|e|〉σn], Σn〉 � �MVi r e�UW . By � pre ⊃
�MVi r e�UW ⊃ guar, 〈σn, Σn〉, 〈σn[r � 〈|e|〉σn], Σn〉 � guar, that
is, 〈σn, Σn〉, 〈σn+1, Σn+1〉 � guar.

In addition, assume |c| < ω. By � pre ⊃ [e/r]post, 〈σn, Σn〉 �
[e/r]post. By the definition, 〈σn[r � 〈|e|〉σn], Σn〉 � post, that is,
〈σn+1, Σn+1〉 � post. By � post ⊥ rely, 〈σ|c|−1, Σ|c|−1〉 � post.

The case that G is { atomic{C, h0 � h0 · 〈C,−→v 〉, . . . , hn−1 �
hn−1 · 〈C,−→v 〉 } } is similar where C is MVi r e.

Cases of L-EM, L-LD, L-ST, L-RF, and L-FN are similar.
Second, assume L-WK. Let c ∈ Cmp(G) ∩ A(pre, rely). By

� pre ⊃ pre0 and � rely ⊃ rely0, c ∈ Cmp(G) ∩ A(pre0, rely0)
holds. By induction hypothesis, c ∈ C(guar0, post0) holds. By
� guar0 ⊃ guar and � post0 ⊃ post, c ∈ C(guar, post) holds.

Third, assume L-GD. Let c ∈ Cmp({ϕi}) ∩ A(pre, rely). There
exist σ0, Σ0, . . . such that 〈σn+1, Σn+1〉 = 〈σn, Σn〉,

c = 〈ϕi, 〈σ0, Σ0〉〉 e−→∗ 〈ϕi, 〈σn, Σn〉〉 c−→ 〈∅, 〈σn+1, Σn+1〉〉
e−→ · · · ,

σn � ϕ, 〈σ0, Σ0〉 � pre, and 〈σ j, Σ j〉, 〈σ j+1, Σ j+1〉 � rely for any
0 ≤ j < n.

By the reflexivity of guar, 〈σn, Σn〉, 〈σn, Σn〉 � guar holds, that
is, 〈σn, Σn〉, 〈σn+1, Σn+1〉 � guar holds.

In addition, assume |c| < ω. By � pre ⊥ rely, 〈σn, Σn〉 � pre.
By � pre ⊃ ϕ ⊃ post and σn � ϕ, 〈σn, Σn〉 � post holds. That is,
〈σn+1, Σn+1〉 � post holds. By � post ⊥ rely, 〈σ|c|−1, Σ|c|−1〉 � post

holds.
The case that G is { atomic{C, h0 � h0 · 〈C,−→v 〉, . . . , hn−1 �

hn−1 · 〈C,−→v 〉 } } is similar where C is ϕi.
Fourth, assume L-SQ. Let c ∈ Cmp(G0 → G1) ∩ A(pre, rely).

There exist st0, δ0, . . . such that

c = 〈G0 → G1, st0〉 δ0−→ · · · δn−1−→ 〈G1, stn〉 δn−→ · · · ,
st0 � pre, and st j, st j+1 � rely for any 0 ≤ j < n.

Let c′ and c′′ be 〈G0, st0〉 δ0−→ · · · δn−1−→ 〈∅, stn〉 and postfix(c, n),

respectively. Obviously, c′ ∈ Cmp(G0) ∩ A(pre, rely) holds. By
induction hypothesis, c′ ∈ C(guar, Φ) holds. By the definition,
〈σn, Σn〉 � Φ holds. Therefore, c′′ ∈ Cmp(G1) ∩ A(Φ, rely) holds.
By induction hypothesis, c′′ ∈ C(guar, post) holds. Therefore,
c ∈ C(guar, post) holds.

Fifth, assume L-PR. By Lem. 1.3 and 1.4.
Sixth, assume L-LN. Let c ∈ Cmp(G) ∩ A(pre, rely). There

exist st0, δ0, . . . such that

c = 〈G, st0〉 δ0−→ · · · δn−1−→ 〈{C}, stn〉 δn−→ · · · ,

st0 �
∧{ preC | C ∈ L(G) }, and st j, st j+1 � rely for any 0 ≤ j < n.

Let c′ and c′′ be 〈G \ {C}, st0〉 δ0−→ · · · δn−1−→ 〈∅, stn〉 and
postfix(c, n), respectively. Obviously, c′ ∈ Cmp(G \ {C}) ∩
A(preC , rely) holds. By induction hypothesis, c′ ∈ C(guar, ΦC)
holds. By the definition, 〈σn, Σn〉 � ΦC holds. Therefore,
c′′ ∈ Cmp(C) ∩ A(ΦC , rely) holds. By induction hypothesis,
c′′ ∈ C(guar, post) holds. Therefore, c ∈ C(guar, post) holds.

Finally, assume L-AX. Let c ∈ Cmp(G) ∩ A(pre, rely). There
exist σ0, Σ0, δ0, . . . such that

c = 〈(G)−→v0
, 〈σ0, Σ0〉〉 δ0−→ · · · δn−1−→ 〈Gn, 〈σn, Σn〉〉 δn−→ · · · ,

〈σ0, Σ0〉 � pre, and 〈σ j, Σ j〉, 〈σ j+1, Σ j+1〉 � rely for any 0 ≤ j <

n. Since � ∃−→v0. pre0(−→v ,−→v0), � ∃−→v0. rely0((−→v ,−→v0), (−→v ,−→v0)), and
−→v0 ∩ (fv(pre) ∪ fv(rely) ∪ fv(guar) ∪ fv(post)) = ∅, there exist
G′0, σ

′
0, Σ

′
0, . . . such that

c′ = 〈G′0, 〈σ′0, Σ′0〉〉 δ0−→ · · · δn−1−→ 〈G′n, 〈σ′n, Σ′n〉〉 δn−→ · · · ,

and G′0 = G, (G′n)−→v0
= Gn, σ′jv1 = σ jv1, Σ′jv1 = Σ jv1, 〈σ′0, Σ′0〉 �

pre∧ pre0, and 〈σ′j, Σ′j〉, 〈σ′j+1, Σ
′
j+1〉 � rely∧ rely0 for any v1 �

−→v0

and 0 ≤ j < n. Therefore, c′ ∈ Cmp(G)∩A(pre∧pre0, rely∧rely0)
holds. By induction hypothesis, c′ ∈ C(guar, post) holds. There-
fore, c ∈ C(guar, post) holds. �

Next, we show relative completeness. We define Gh, which has
an additional assignment to h for each assignment. We also define
(pre(−→v)

h
)(−→v , h) = pre(−→v)∧h = ε, and (rely(−→v ,−→v)

h
)(−→v , h,−→v , h) =

(rely(−→v ,−→v)∧h = h · (Env,−→v))∨ (−→v = −→v ∧h = h) where ε denotes
the sequence with length 0.

We define that Φ characterizes G0, Gn, pre, and rely if stn � Φ
holds if and only if 〈G0, st0〉 δ0−→ · · · δn−1−→ 〈Gn, stn〉 ∈ A(pre, rely)
holds for some st j and δ j (0 ≤ j < n). We say an assertion lan-
guage is expressive if, for any G0, Gn, pre, and rely, there exists
Φ that characterizes G0

h, Gn
h, preh, and relyh.

Proposition 2. Assume that h does not appears in G, pre, rely,

guar, and post. Then, � {pre, rely} G {guar, post} if and only if

� {preh, relyh}Gh {guar, post}.
For any pre, rely, post, we define

prerely(−→v) ≡ ∃−→v0. pre(−→v0) ∧ rely(−→v0,
−→v)

postrely(
−→v) ≡ post(−→v) ∧ ∀−→v0. rely(−→v ,−→v0) ⊃ post(−→v0) .

Lemma 2. (1) � pre ⊃ prerely.

(2) � postrely ⊃ post.

(3) � prerely ⊥ rely.

(4) � postrely ⊥ rely

(5) � {pre, rely}G {guar, post} iff � {prerely, rely}G {guar, post}.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

(6) � {pre, rely}G{guar, post} iff � {prerely, rely}G{guar, postrely}.

Proof. 1. By reflexivity of rely.
2. By the definition of postrely.
3. By transitivity of rely.
4. By the definition of postrely.
5. By 1, 2, and L-WK, the if-part holds. Let us show the only-
if-part. Let c ∈ Cmp(G) ∩ A(prerely, rely). Since St(c, 0) � prerely,
there exists st such that c′ · c ∈ Cmp(G) ∩ A(pre, rely) where c′ is
〈G, st〉 e−→ 〈G, St(c, 0)〉. By the assumption, c′ ·c ∈ C(guar, post).
Therefore, c ∈ C(guar, post).
6. In addition to the assumptions of the proof of 5, assume
|c| < ω. Let c′′ be 〈∅, St(c′ · c, |c′ · c| − 1)〉 e−→ 〈∅, st′′〉 where
St(c′ ·c, |c′ ·c|−1), st′′ � rely. Therefore, St(c·c′′, |c·c′′|−1) � post.
By the definition of postrely, c ∈ C(guar, postrely). �

Theorem 2. The extended concurrent program logic is complete.

Assume that the assertion language is expressive, and G is termi-

nating and does not get stuck. Then, � {pre, rely} G {guar, post}
implies that there exists an L-SQ and L-PR-free derivation of

� {pre, rely}G {guar, post}.

Proof. By induction on cardinality of G.
First, assume G = {MVi re}. Let 〈σ, Σ〉, st′ � prerely∧�MVi re�fv(e)

∅
.

Let c be 〈G, 〈σ, Σ〉〉 c−→ 〈∅, 〈σ[r � 〈|e|〉σ], Σ〉〉 ∈ A(prerely, rely).
By 〈σ, Σ〉, st′ � �MVi r e�fv(e)

∅
and reflexivity of rely, we can define

c′ ∈ A(prerely, rely) as c · 〈∅, 〈σ[r � 〈|e|〉σ], Σ〉〉 e−→ 〈∅, st′〉. By
Lem. 2, c′ ∈ C(guar, postrely) holds. Therefore, 〈σ, Σ〉, st′ � guar

holds.
In addition, by c ∈ A(prerely, rely) ⊆ C(guar, postrely),

〈σ[r � 〈|e|〉σ], Σ〉 � postrely holds. By the definition, 〈σ, Σ〉 �
[e/r](postrely) holds.

Therefore, � {pre, rely}G {guar, post} holds by L-MV, Lem. 2,
and L-WK.

The case that G is { atomic{C, h0 � h0 · 〈C,−→v 〉, . . . , hn−1 �
hn−1 · 〈C,−→v 〉 } } is similar where C is MVi r e.

Cases that G is ∅ or a program graph consisting of one node
are similar.

Next, assume G = {ϕi}. Let 〈σ, Σ〉, st′ � prerely. Let c

be 〈ϕi, 〈σ, Σ〉〉 c−→ 〈∅, 〈σ, Σ〉〉 ∈ A(prerely, rely). By the def-
inition, σ � ϕ holds. By reflexivity of rely, we can define
c′ ∈ A(prerely, rely) as c · 〈∅, 〈σ, Σ〉〉 e−→ 〈∅, st′〉. By Lem. 2,
c′ ∈ C(guar, postrely) holds. Therefore, 〈σ, Σ〉, st′ � guar holds.

In addition, by c ∈ A(prerely, rely) ⊆ C(guar, postrely), 〈σ, Σ〉 �
postrely holds.

Therefore, � {pre, rely} G {guar, post} holds by L-GD, Lem. 2,
and L-WK.

The case that G is { atomic{C, h0 � h0 · 〈C,−→v 〉, . . . , hn−1 �
hn−1 · 〈C,−→v 〉 } } is similar where C is ϕi.

Finally, assume the other case. Let C ∈ L(G). Let h be a his-
tory variable that does not appear G, pre, rely, guar, and post.
By Prop. 2, � {preh, relyh} Gh {guar, post} holds. Since the asser-
tion language is expressive, there exists ΦC that characterizes Gh,
{C}h, preh, and relyh. Let c ∈ Cmp(Gh \ {C}h) ∩ A(preh, relyh) be
〈Gh \ {C}h, st0〉 δ0−→ · · · δn−1−→ 〈∅, stn〉. We define c′ ∈ Cmp(Gh) ∩
A(preh, relyh) as 〈Gh, st0〉 δ0−→ · · · δn−1−→ 〈{C}h, stn〉. Since ΦC char-
acterizes Gh, {C}h, preh, and relyh, stn � ΦC holds. Therefore,

c ∈ C(guar, ΦC) holds.
Also, let c′′ ∈ Cmp({C}h) ∩ A(ΦC , relyh). By the definition,

c · c′′ ∈ Cmp(Gh) ∩ A(preh, relyh) holds. Therefore, c · c′′ ∈
C(guar, post) holds. By the definition, c′′ ∈ C(guar, post) holds.

We derive � {preh, relyh} Gh \ {C}h {guar, ΦC} and
� {ΦC , relyh} {C}h {guar, post} from induction hypotheses.
Since we take C ∈ L(G) arbitrarily, � {preh, relyh}Gh {guar, post}
holds by L-LN. By L-AX, � {pre, rely}G {guar, post} holds. �

6. Example Derivations

In this section, we give example derivations in the logic in Sec-
tion 4.

First, we give a simple derivation for a trivial program in
Fig. 10 to show that detecting an invariant is a point.

If a precondition is x is non-negative and the buffers are empty,
then r2 is non-negative when the program finishes, since x is in-
creasing by the writer thread, where we assume that 0 ≤ r1, for
simplicity. We can easily construct a derivation that ensures this.
The program graph G0 of the first (writer) thread of the program
under PSO is shown in Fig. 11 where a rectangle means a loop
iteration. A judgment is {I, rely0} G′0 {guar0, I} where G′0 is any

subgraph of G0, and

I ≡ 0 ≤ x ∧ 0 ≤ x0 ∧ 0 ≤ r1

rely0 ≡ guar1 ≡ Inv{x, r0, r1} ∧ Inv{x0}
rely1 ≡ guar0 ≡ df(x1) ⊃ df(x1) ∧ 0 ≤ x ∧ Inv{r2} .

Since a judgment {0 ≤ x1, rely1} G1 {guar1, 0 ≤ r2} is derived
where G1 is a program graph of the reader thread of the program,
{I∧0 ≤ x1, rely0∧ rely1}G0 �G1 {guar0∨guar1, 0 ≤ r2} is deriv-
able. Thus, to detect an invariant I is a key point in constructing
a derivation.

At last, we demonstrate verification of the program introduced
in Section 1 by using the concurrent program logic in Section 4.
Let us prove that r2 ≤ r3 + 1 holds when the program terminates
with an appropriate pre-condition under TSO.

We denote a family of program graphs generated by the TSO
translation (in Section 2) as Dn � G1 where Dn is derived by
unfolding WL loop on the left-side thread at n times, and G1 is
LD1 r2 x → LD1 r3 y → ST1 z 1 → RF1 z on the right-side thread.
For example, Fig. 12 shows D2 where the two rectangles denote
the two iterations. As shown in Fig. 12, there exists a dependency

Fig. 10 An example program.

Fig. 11 A part of the program graph of the example program.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

(denoted by an edge) across the two loop iterations except the
edge from the exit to the entry of the loop.

Let us consider another view of the program graph, which en-
ables us to use L-SQ rule. The program graph in Fig. 13 also
denotes a unit of Dn, where it does not exactly match an iteration
in the original program. Formally, G0 is defined as follows:

G0 ≡ FN0 → ST0 y r1 + 1→ (G′0 � {RF0 y})→ RF0 x

G′0 ≡ r0 = 0→ LD0 r0 z→ LD0 r1 y→ ST0 x r1 + 1 .

By the definition, we can represent Dn as sequential compositions
of program graphs:

D0 ≡ ¬ r0 = 0

Dn ≡ G′0 → RF0 x→ G0
n−1 →

FN0 → ST0 y r1 + 1→ ({¬ r0 = 0} � {RF0 y}) (1 ≤ n)

where G0 = ∅ and Gn = G → Gn−1 (1 ≤ n). We prove that G0

has an invariant I at its entry and exit, as shown in Fig. 14 where

I ≡ x = x0 = r1 + 1 ∧ y = y0 = r1

pre0 ≡ x0 = r1 + 1 ∧ y = y0 = r1 pre1 ≡ y ≤ y0

post1 ≡ y = y0 post2 ≡ x0 = r1 + 1 ∧ y0 = r1 ∧ y ≤ y0

Fig. 12 A program graph D2 under TSO.

Fig. 13 The program graph Dn by a different viewpoint.

Fig. 14 A part of a derivation for G0.

Fig. 15 A derivation for the program graph by the TSO translation.

pre2 ≡ post3 ≡ x = x0 = y0 = r1 ∧ y ≤ y0

pre3 ≡ post4 ≡ x = x0 = y0 ∧ y ≤ y0

rely0 ≡ Inv{x, y, r1} ∧ Inv{x0, y0}
guar0 ≡ (df(x1) ⊃ df(x1)) ∧ (df(y1) ⊃ df(y1)) ∧

Inv{r2, r3} ∧ y ≤ y ∧ (x ≤ y + 1 ⊃ x ≤ y + 1)

Figure 15 shows a full derivation where

pre5 ≡ post5 ≡ post6 ≡ r2 ≤ r3 + 1

pre6 ≡ post7 ≡ ¬ df(y1) ∧ r2 ≤ y1 + 1

pre7 ≡ ¬ df(x1) ∧ ¬ df(y1) ∧ x ≤ y + 1

rely1 ≡ (df(x1) ⊃ df(x1)) ∧ (df(y1) ⊃ df(y1)) ∧
Inv{r2, r3} ∧ y ≤ y ∧ (x ≤ y + 1 ⊃ x ≤ y + 1)

guar1 ≡ Inv{x, y, r1} ∧ Inv{x0, y0} .

Since D0 gets stuck under a pre-condition r0 = 0 and a rely-
condition r0 = r0, all admissible behaviors of the program have
been verified.

On the other hand, under PSO we can construct no similar
derivation since there exists no edge from RF0 y to RF0 x. For-
mally, there exists no derivation by soundness of logic described
in Section 4 and existence of the computation as follows:

〈D′2 �G1, 〈σ, Σ〉〉
c−→∗ 〈(RF0 y→ FN0 → ST0 y r1 + 1→ ({¬ r0 = 0} � {RF0 y}))

�G1, 〈σ[r1 � 1, x � 2], Σ[0 � Σ0[y � 1]]〉
c−→∗ 〈(RF0 y→ FN0 → ST0 y r1 + 1→ ({¬ r0 = 0} � {RF0 y})),

〈σ[r1 � 1, r2 � 2, x � 2, z � 1], Σ[0 � Σ0[y � 1]]〉
c−→∗ 〈∅, 〈σ[r1 � 1, r2 � 2, x � 2, y � 2, z � 1], Σ〉〉

where D′1 and D′2 are the program graphs derived from D1 and D2

by removing the edges between RF0 y and RF0 x, respectively, R∗

is defined as the reflexive and transitive closure of a relation R,
and σ and Σ are constant functions to 0 and udf, respectively.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

7. Related Work

There exist some papers about concurrent program logics for
relaxed memory consistency models. However, most of them are
specific to memory consistency models. Therefore, they cannot
be essentially compared with this work, whose goal is to handle
various memory consistency models.

Ridge [33] gave a rely-guarantee system for the x86-TSO se-
mantics [32], and demonstrated differences of behaviors of Simp-
son’s four slot algorithm [37] under SC and x86-TSO. However,
the annotated pseudo-code in Ref. [33] has barriers and memory
fences at exits of loop iterations, that is, each iteration has depen-
dencies on the other iterations. It is unclear whether his system
can handle the program with dependencies across loop iterations
introduced in Section 1. Also, the system is specific to x86-
TSO, and he did not prove its completeness, whereas our work
expresses multiple relaxed memory consistency models as trans-
lations into program graphs, and proves relative completeness.

Ferreira et al. [17] introduced a relation � between commands
in their paper (corresponding to statements in our paper) called
subsumptions, and represented memory models as binary rela-
tions between statements. By extending judgments of the conven-
tional separation logic [12], [30], they developed concurrent sep-
aration logic for relaxed memory models with invariants satisfied
by the binary relations. However, since the subsumption relation
� is congruent, for example, c0 � c1 implies WL ϕ?c0 � WL ϕ?c1,
their concurrent separation logic looks to handle loops roughly,
and does not seem to directly verify the program with dependen-
cies across loop iterations introduced in Section 1. In addition,
they did not show its completeness.

Vafeiadis et al. [44], [45] gave concurrent separation logics for
restricted C11/C++11 memory models [22], [24], and showed
some example derivations that include loops. However, all the
loops consist of one expression, one conditional branch with one
atomic load operation, or have compare-and-swap at their exits.
Therefore, similar to [33], it is unclear how to handle the program
with dependencies across loop iterations introduced in Section 1.
Similarly, since no program in Lahav et al.’s paper, which per-
formed Owicki-Gries reasoning for weak memory models, con-
tains multiple statements except SK [27], it is never clear how to
handle dependencies across loop iterations. In addition, they did
not show their completeness.

This paper provides a concurrent program logic following
Stølen and Xu’s proof systems [42], [47], [48], which do not deal
with relaxed memory consistency models. In other words, their
systems deal with the strictest memory consistency model only.

8. Conclusion and Future Work

This paper provides concurrent program logic for relaxed
memory consistency models that can represent standard mem-
ory consistency models and handle dependencies across loop
iterations. We introduced graph representations of programs
called program graphs, gave a small-step operational semantics
for them, and formalized relaxed memory consistency models as
translations to graphs. We keep our concurrent program logic the-
oretically simple, and not only sound but also relatively complete

to the semantics.
There are four future directions for this work. The first is to

support memory hierarchy. We assumed one-layer store buffers
for simplicity of presentation. Therefore, our logic cannot cur-
rently verify programs that show different orders of effects to
different threads, for example, Independent-Reads-Independent-

Write [10]. The authors’ previous works on model checking [2],
[3], [5] handled such memory consistency models by introduc-
ing a notion of visibility of effects on each thread. We think that
verification of the program is possible by introducing multilay-
ered store buffers in operational semantics and auxiliary variables
that represent variable on the buffers in concurrent program logic.
The second is to support relaxed memory consistency models
(e.g., UPC memory model [43] and C11/C++11 memory mod-
els [22], [24]) that do not assume global time. The authors’ previ-
ous works on model checking [2], [3], [5] handled such memory
consistency models by introducing a notion of speculative behav-

ior on each thread. We think that the operational semantics and
concurrent program logic can be extended in a similar way. The
third is to enhance our approach to support pointers, arrays, func-
tions, dynamic creation and termination of threads, and so forth,
so that our approach can be applied to real-world programs like
OpenMP [31]. We consider that our formulation seems compat-
ible with some existing works (e.g., separation logic [12], [30],
deny-guarantee [16], and concurrent views framework [15]). The
fourth is to develop a software to construct/check derivations. As
we have seen in Section 6, it is not easy to construct a deriva-
tion, on the contrary, to check whether the derivation follows the
inference rules in our logic or not.

Finally, program graphs proposed in this paper also seem to be
used as representations of programs in other fields, for example,
representations of programs in model checking that is parame-
terized by memory consistency models, intermediate representa-
tions in compilers that are parameterized by memory consistency
models, etc.

Acknowledgments Most of the soundness and relative com-
pleteness proofs in this paper follow those in Qiwen Xu’s PhD
thesis and its journal version [47], [48]. The authors would like
to thank him for answering some questions respectfully. The au-
thors also thank the anonymous reviewer for several comments to
improve the final version of the paper. This work was supported
by JSPS KAKENHI Grant Numbers 25871113 and 16K21335.

References

[1] Abe, T. and Maeda, T.: Model Checking with User-Definable Memory
Consistency Models, Proc. PGAS, short paper, pp.225–230 (2013).

[2] Abe, T. and Maeda, T.: A General Model Checking Framework
for Various Memory Consistency Models, Proc. HIPS, pp.332–341
(2014).

[3] Abe, T. and Maeda, T.: Optimization of a General Model Checking
Framework for Various Memory Consistency Models, Proc. PGAS
(2014).

[4] Abe, T. and Maeda, T.: Towards a Unified Verification Theory for
Various Memory Consistency Models, Proc. LOLA (2015).

[5] Abe, T. and Maeda, T.: A General Model Checking Framework for
Various Memory Consistency Models, International Journal on Soft-
ware Tools for Technology Transfer (2016). To appear.

[6] Adve, S. and Gharachorloo, K.: Shared memory consistency models:
A tutorial, Computer, Vol.29, No.12, pp.66–76 (1996).

[7] Alglave, J., Kroening, D., Nimal, V. and Tautschnig, M.: Software

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Verification for Weak Memory via Program Transformation, Proc.
ESOP, LNCS, No.7792, pp.512–532 (2013).

[8] Alglave, J., Maranget, L., Sarkar, S. and Sewell, P.: Fences in weak
memory models, Proc. CAV, LNCS, pp.258–272 (2010).

[9] Atig, M.F., Bouajjani, A., Burckhardt, S. and Musuvathi, M.: On the
verification problem for weak memory models, Proc. POPL, pp.7–18
(2010).

[10] Boehm, H.-J. and Adve, S.V.: Foundations of the C++ Concurrency
Memory Model, Proc. PLDI, pp.68–78 (2008).

[11] Boudol, G. and Petri, G.: Relaxed memory models: An operational
approach, Proc. POPL, pp.392–403 (2009).

[12] Brookes, S.: A Semantics for Concurrent Separation Logic, Theoreti-
cal Comp. Sci., Vol.375, No.1–3, pp.227–270 (2007).

[13] Cray Inc: Chapel Language Specification Version 0.98 (2015).
[14] Dan, A., Meshman, Y., Vechev, M. and Yahav, E.: Predicate Abstrac-

tion for Relaxed Memory Models, Proc. SAS, pp.84–104 (2013).
[15] Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M. and

Yang, H.: Views: Compositional reasoning for concurrent programs,
ACM SIGPLAN Notices, Vol.48, No.1, pp.287–300 (2013).

[16] Dodds, M., Feng, X., Parkinson, M. and Vafeiadis, V.: Deny-
Guarantee Reasoning, Proc. ESOP, pp.363–377 (2009).

[17] Ferreira, R., Feng, X. and Shao, Z.: Parameterized Memory Models
and Concurrent Separation Logic, Proc. ESOP, pp.267–286 (2010).

[18] Herlihy, M.P. and Wing, J.M.: Linearizability: A Correctness Condi-
tion for Concurrent Objects, TOPLAS, pp.463–492 (1990).

[19] Hoare, C.A.R.: An Axiomatic Basis for Computer Programming,
Comm. ACM, Vol.12, No.10, pp.576–580, 583 (1969).

[20] Intel Corp.: A Formal Specification of Intel Itanium Processor Family
Memory Ordering (2002).

[21] Intel Corp.: Intel 64 and IA-32 Architectures Software Developer’s
Manual (2016).

[22] ISO/IEC 14882:2011: Programming Language C++ (2011).
[23] ISO/IEC 1539-1:2010: Information technology – Programming lan-

guages – Fortran (2010).
[24] ISO/IEC 9899:2011: Programming Language C (2011).
[25] Jagadeesan, R., Pitcher, C. and Riely, J.: Generative Operational

Semantics for Relaxed Memory Models, Proc. ESOP, pp.307–326
(2010).

[26] Jones, C.B.: Development Methods for Computer Programs including
a Notion of Interference, PhD Thesis, Oxford University (1981).

[27] Lahav, O. and Vafeiadis, V.: Owicki-Gries Reasoning for Weak Mem-
ory Models, Proc. ICALP, pp.311–323 (2015).

[28] Lamport, L.: Time, Clocks, and the Ordering of Events in a Dis-
tributed System, Comm. ACM, Vol.21, No.7, pp.558–565 (1978).

[29] Manson, J., Pugh, W. and Adve, S.V.: The Java memory model, Proc.
POPL, pp.378–391 (2005).

[30] O’Hearn, P.W.: Resources, concurrency, and local reasoning, Theor.
Comput. Sci., Vol.375, No.1-3, pp.271–307 (2007).

[31] OpenMP Architecture Review Board: OpenMP Application Program
Interface Version 4.0 (2013).

[32] Owens, S., Sarkar, S. and Sewell, P.: A Better x86 Memory Model:
x86-TSO, Proc. TPHOLs, LNCS, Vol.5674, pp.391–407 (2009).

[33] Ridge, T.: A Rely-Guarantee Proof System for x86-TSO, Proc.
VSTTE, pp.55–70 (2010).

[34] Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O. and Grove, D.:
X10 Language Specification Version 2.5.3 (2015).

[35] Saraswat, V., Jagadeesan, R., Michael, M. and von Praun, C.: A The-
ory of Memory Models, Proc. PPoPP, pp.161–172 (2007).

[36] SCALE: Scalable Computing for Advanced Library and Environment.
available from 〈http://scale.aics.riken.jp/〉.

[37] Simpson, H.R.: Four-slot fully asynchronous communication mecha-
nism, IEE Proc. Part E Computers and Digital Techniques, pp.17–30
(1990).

[38] SPARC International, Inc.: The SPARC Architecture Manual, Version
8 (1991).

[39] SPARC International, Inc.: The SPARC Architecture Manual, Version
9 (1994).

[40] Steinke, R.C. and Nutt, G.J.: A unified theory of shared memory con-
sistency, J. ACM, Vol.51, No.5, pp.800–849 (2004).

[41] Stirling, C.: A Generalization of Owicki–Gries’s Hoare Logic for a
Concurrent While Language, Theoretical Computer Science, Vol.58,
No.1–3, pp.347–359 (1988).

[42] Stølen, K.: Development of Parallel Programs on Shared Data-
structures, Technical Report UMCS-91-1-1, Department of Computer
Science, University of Manchester (1991).

[43] The UPC Consortium: UPC Language Specifications Version 1.3
(2013).

[44] Turon, A., Vafeiadis, V. and Dreyer, D.: GPS: Navigating weak mem-
ory with ghosts, protocols, and separation, Proc. OOPSLA, pp.691–
707 (2014).

[45] Vafeiadis, V. and Narayan, C.: Relaxed separation logic: A program
logic for C11 concurrency, Proc. OOPSLA, pp.867–884 (2013).

[46] Winskel, G.: The formal semantics of programming languages, MIT
Press (1993).

[47] Xu, Q.: A Theory of State-based Parallel Programming, PhD Thesis,
Oxford University Computing Laboratory (1992).

[48] Xu, Q., de Roever, W.P. and He, J.: The Rely-Guarantee Method for
Verifying Shared Variable Concurrent Programs, Formal Asp. Com-
put., Vol.9, No.2, pp.149–174 (1997).

[49] Yang, Y., Gopalakrishnan, G. and Lindstrom, G.: UMM: An opera-
tional memory model specification framework with integrated model
checking capability, Concurr. Comput.: Pract. Exper., Vol.17, No.5-6,
pp.465–487 (2005).

Tatsuya Abe was born in 1979. He re-
ceived his B.Sc. and Ph.D. degrees from
Kyoto University and the University of
Tokyo in 2002 and 2007, respectively. He
worked for National Institute of Advanced
Industrial Science and Technology, Kyoto
University, and RIKEN. He is currently
a senior research scientist at STAIR Lab,

Chiba Institute of Technology. His research interests include pro-
gramming languages, program verification, concurrency, and dis-
tributed computation. He is a member of the IPSJ and ACM.

Toshiyuki Maeda was born in 1977, and
received his bachelor’s degree in Science,
master’s degree in Information Science
and Technology, and Ph.D. in Information
Science and Technology from University
of Tokyo in 2000, 2002, and 2006, re-
spectively. From 2006 to 2012, he was
a Research Associate at Graduate School

of Information Science and Technology, University of Tokyo. In
April 2012, he joined RIKEN AICS (Advanced Institute for Com-
putational Science) as the Team Leader of HPC Usability Re-
search Team (he is the Part-Time Team Leader from 2016). In
April 2016, he joined Chiba Institute of Technology as a prin-
cipal research scientist of STAIR Lab. His research interests
include programming languages, systems software, virtualiza-
tion/container technologies, HPC usability, and software for re-
search/development of artificial intelligence.

c© 2017 Information Processing Society of Japan

