A Simple Algorithm for r-gather-clusterings on the Line

Shin-ichi Nakano, ${ }^{\text {a) }}$

Abstract

In this paper we study a recently proposed two variants of the facility location problem, called the r-gatherclustering problem and the r-gathering problem. Given a set C of n points on the plane an r-gather-clustering is a partition of the points into clusters such that each cluster has at least r points. The r-gather-clustering problem finds the r-gather-clustering minimizing the maximum radius among the clusters, where the radius of a cluster is the minimum radius of the disk which can cover the points in the cluster. A polynomial time 2-approximation algorithm for the problem is known. When all C are on the line, an $O(n \log n)$ time algorithm, based on the matrix search method, to find an r-gatherclustering is known. In this paper we give an $O\left(n \log ^{*} n\right)$ time algorithm to solve the problem. We also give an algorithm to solve a similar problem, called the r-gathering problem.

1. Introduction

The facility location problem and many of its variants are studied[5], [6].

In this paper we study recently proposed two variants of the problem, called the r-gather-clustering problem and the r gathering problem [1], [4].

Given a set C of n points on the plane an r-gather-clustering is a partition of the points into clusters such that each cluster has at least r points. The cost of an r-gather-clustering is the maximum radius among the clusters, where the radius of a cluster is the minimum radius of the disk which can cover the points in the cluster. The r-gather-clustering problem [1] is the problem to find the r-gather-clustering minimizing the cost. The problem is NPcomplete in general, however a polynomial time 2 -approximation algorithm for the problem is known[1]. When all C are on the line, an $O(n \log n)$ time algorithm, based on the matrix search method[2], [7], for the problem is known[3].
In this paper we give an $O\left(n \log ^{*} n\right)$ time algorithm to solve the problem, by reducing the problem to the min-max path problem[9] in a weighted directed graph.

Assume that C is a set of residents and we wish to locate emergency shelters for the residents so that each shelter serves r or more residents. Then r-gather clustering problem computes optimal locations for shelters which minimizung the evacuation time span, where each shelter for a cluster is located at the center of the cluster.
In this paper we consider one more similar problem. Given sets C and F of points on the plane an r-gathering of C to F is an assignment A of C to open facilities $F^{\prime} \subset F$ such that r or more customers are assigned to each open facility.

[^0]The cost of an r-gathering is the maximum distance $d(c, f)$ between $c \in C$ and $A(c) \in F^{\prime}$ among the assignment, which is $\max _{c \in C, A(c) \in F^{\prime}}\{d(c, A(c))\}$.

Assume that F is a set of possible locations for emergency shelters, and $d(c, f)$ is the time needed for a person $c \in C$ to reach a shelter $f \in F$. Then an r-gathering corresponds to an evacuation assignment such that each opened shelter serves r or more people, and the r-gathering problem finds an evacuation plan minimizing the evacuation time span.

Armon[4] gave a simple 3-approximation algorithm for the r-gathering problem and proves that with the assumption $P \neq$ $N P$ the problem cannot be approximated within a factor of less than 3 for any $r \geq 3$. When all C and F are on the line an $O((|C|+|F|) \log (|C|+|F|))$ time algorithm[3] and an $O(|C|+$ $\left.|F| \log ^{2} r+|F| \log |F|\right)$ time algorithm[10] to solve the r-gathering problem are known.
In this paper we give an $O\left(|C|+r^{2}|F| \log ^{*}|C|\right)$ time algorithm to solve the problem, where $\log ^{*}|C|$ is the number of times the \log must be iteratively applied before results in less than 1 . Since in typical case $r \ll|F| \ll|C|$ holds our new algorithm is faster than the known algorithms.

The remainder of this paper is organized as follows. Section 2 gives an algorithm for the r-gather-clustering problem. Section 3 gives an algorithm for the r-gathering problem. Finally Section 4 is a conclusion.

2. r-gather-clustering on the line

In this section we give an algorithm for the r-gather-clustering problem when all points in C are on the line. Let $C=$ $\left\{c_{1}, c_{2}, \cdots, c_{n}\right\}$ be points on the horizontal line and we assume they are sorted from left to right. Our idea is to reduce the r-gather-clustering problem to the mix-max path problem in a weighted directed (acyclic) graph[9]. First we have the follow-

Fig. 1 the weighted directed path D.

(a)

(b)

Fig. 2 (a)an r-gather clustering (b)its corresponding min-max path of D.
ing two lemmas.
Lemma 2.1 One can assume the points in each cluster in a solution are consecutive.
Proof. Otherwise repeat swapping some points between the clusters until the condition holds, which never increase the cost.
Q.E.D.

Lemma 2.2 One can assume the number of points in each cluster in a solution is at most $2 r-1$.
Proof. Otherwise devide such clusters into two (or more) clusters, respectively, which never increase the cost.
Q.E.D.

Then we difine the directed (acyclic) graph $D(V, E)$ and the weight of each edge, as follows.

$$
\begin{gathered}
V=\left\{p_{0}, p_{1}, p_{2}, \cdots, p_{n}\right\} \\
E=\left\{\left(p_{i}, p_{j}\right) \mid i+r \leq j \leq i+2 r-1\right\}
\end{gathered}
$$

See Fig. 1. Note that the number of edges is at most $r n$. The weight w of an edge $w\left(p_{i}, p_{j}\right)$ is the half of the distance between c_{i+1} and c_{j}, and denoted by $w\left(p_{i}, p_{j}\right)$.

The cost of a directed path from p_{0} to p_{n} is defined by the weight of the edge having the maximum weight in the directed path. The min-max path from p_{0} to p_{n} is the directed path from p_{0} to p_{n} with the minimum cost.

Now C has an r-gather-clustering with cost k iff $D(V, E)$ has a directed path from p_{0} to p_{n} with cost k. See Fig. 2.

Thus if we can compute the min-max path in D then it corresponds to the solution of the r-gather-clustering problem. Intuitively, each (directed) edge in the min-max path corresponds to a cluster of an r-gather-clustering.

We can construct the $D(V, E)$ in $O(r n)$ time. Then compute the min-max path from p_{0} to p_{n} in $O\left(r n \log ^{*} n\right)$ time, since an $O\left(|E| \log ^{*}|V|\right)$ time algorithm for the min-max path problem for a
directed graph $D=(V, E)$ is known [9].
Thus we have the following theorem.
Theorem 2.3 One can solve the r-gather-clustering problem in $O\left(r n \log ^{*} n\right)$ time, when all points in C are on the line.

3. r-gathering

In this section we give an algorithm for the r-gathering problem when all points in C and F are on the line, by reducing the problem to the min-max path problem for a weighted directed graph.

Let $C=\left\{c_{1}, c_{2}, \cdots, c_{n}\right\}$ and $F=\left\{f_{1}, f_{2}, \cdots, f_{m}\right\}$ be points on the horizontal line and we assume they are sorted from left to right, respectively. Similar to Lemma 2.1 we can assume the points assigned to a facility are consecutive in a solution.

For consecutive three facilities f_{j-1}, f_{j} and f_{j+1} in F let m_{L} be the midpoints of f_{j-1} and f_{j}, and m_{R} the midpoints of f_{j} and f_{j+1}. We have the following two lemma.

Lemma 3.1 If C has $2 r$ or more points on the left of m_{L}, then $c_{i^{\prime}}$ with $i^{\prime}<i$ is never assigned to f_{j} in a solution of the r-gathering problem, where c_{i} is the $2 r$-th point in C on or left of m_{L}.
Proof. Assume for a contradiction such $c_{i^{\prime}}$ is assigned to f_{j}. We have two cases.

If the rightmost point assigned to f_{j} is on the left of m_{L} then reassigning the points assigned to f_{j} to f_{j-1} results in a new r gathering and since it does not increase the cost the resulting r gathering is also a solution of the given r-gatheing problem.

Otherwise, the rightmost point assigned to f_{j} is on or right of m_{L}. Then at least $2 r$ points on or left of m_{L} are assigned to f_{j} (possibly with other points on the right of m_{L}) Let C^{\prime} be the subset of C consisting of the points (1) assigned to $f_{j},(2)$ on or left of m_{L}, and (3) but not the rightmost r points on or left of m_{L}. Note that $\left|C^{\prime}\right| \geq r$ holds and C^{\prime} contains $c_{i^{\prime}}$. Reassigning the points in C^{\prime} to f_{j-1} results in a new r-gathering and the resulting r-gathering is also a solution since it does not increase the cost.
Q.E.D.

Intuitively if $c_{i^{\prime}}$ is too far form f_{j} then $c_{i^{\prime}}$ is never assigned to f_{j}. Symmetrically we have the following lemma.

Lemma 3.2 If C has $2 r$ or more points on the right of m_{R}, then $c_{i^{\prime}}$ with $i^{\prime}>i$ is never assigned to f_{j}, where c_{i} is the $2 r$-th point in C on or right of m_{R}.

We have more lemma. Let C^{\prime} be the set of points between m_{L} and m_{R} except the leftmost $2 r$ points and the rightmost $2 r$ points.

Lemma 3.3 If C has $5 r$ or more points between m_{L} and m_{R}, then the customers in C^{\prime} are assigned to f_{j} in a solution of the r-gathering problem.
Proof. Immediate from the two lemmas above.
Q.E.D.

Thus if we can compute the solution for $C-C^{\prime}$ then appending the assignment from points in C^{\prime} to f_{j} results in the solution for C. From now on we assume we have removed every such C^{\prime} from C.

We have more lemmas for the boundary case. Let m be the midpoints of f_{1} and f_{2} in F.

Lemma 3.4 If C has $2 r$ or more points on the left of m, then each $c_{i^{\prime}}$ with $i^{\prime}<i$ is assigned to f_{1} in a solution of the r-gathering
problem, where c_{i} is the $2 r$-th customer in C on the left of m.
Proof. Immediate from Lemma 3.1.
Q.E.D.

Let m be the midpoints of f_{m-1} and f_{m} in F.
Lemma 3.5 If C has $2 r$ or more points on the right of m, then each $c_{i^{\prime}}$ with $i^{\prime}>i$ is assigned to f_{m} in a solution of the r-gathering problem, where c_{i} is the $2 r$-th customer in C on the right of m.

Thus we have the following lemma.
Lemma 3.6 The number of points in C possibly assignning to each facility $f \in F$ is at most $9 r$.
Proof. For each f_{j} with $1<j<m$ define m_{L} and m_{R} as above. The number of points possibly assigning to f_{j} is (1) at most $2 r$ on the left of m_{L}, (2) at most $2 r$ on the right of m_{R}, and (3) at most $5 r$ between m_{L} and m_{R}, by the lemmas above. Similar for f_{1} and f_{m}.
Q.E.D.

Now we are going to define a weighted directed graph $D(V, E)$ for F and C, and the weight of each edge.

The set of vertices is defined as follows.

$$
V=\left\{p_{0}, p_{1}, p_{2}, \cdots, p_{n}\right\}
$$

For each facility f_{h} with $h=2,3, \cdots, m-1$ and its possible cluster consisting of points $\left\{c_{i+1}, c_{i+2}, \cdots c_{j}\right\}$ we define an edge $\left(p_{i}, p_{j}\right)$. So $\left(p_{i}, p_{j}\right)$ is an edge iff
(1) $i+r \leq j \leq i+2 r-1$
(2) $i \geq i^{\prime}$ where i^{\prime} is the $2 r$-th customer on the left of m_{L}, and
(3) $j \leq j^{\prime}$ where j^{\prime} is the $2 r$-th customer on the right of m_{R}, where m_{L} and m_{R} are defined for f_{h} as in Section 2. Let E_{j} be the set of edges consisting of edges defined above. Simillary we define E_{1} and E_{m}.

Finally,

$$
E=E_{1} \cup E_{2} \cup \cdots E_{m}
$$

Note that G may contain many multi-edges.
The weight w of an edge $\left(p_{i}, p_{j}\right)$ for f_{h} is the maximum of (1) the distance between p_{i} and f_{h}, and (2) the distance between p_{j} and f_{h}.

The cost of a directed path from p_{0} to p_{n} is defined by the weight of the edge having the maximum weight in the directed path. The min-max path from p_{0} to p_{n} is the directed path from p_{0} to p_{n} with the minimum cost.

We need to compute for each f_{h} the $2 r$-th customer on the left of m_{L} and the $2 r$-th customer on the right of m_{R}. By scanning the line we can compute them for all f_{h} in $O(|F|+|C|)$ time in toal. Note that each edge in E corresponds to a pair of customers possibly assigning to a common facility. Thus the number of the edges in E is at most $81 r^{2}|F|$ by Lemma 3.6. Thus we can construct $D(V, E)$ in $O\left(|F|+|C|+81 r^{2}|F|\right)$ time in toal.

Similar to Section 2 we have reduced the r-gathering problem to the min-max path problem, and have the following theorem.

Theorem 3.7 When all C and F are on the line one can solve the r-gathering problem in $O\left(n+r^{2} m \log ^{*} n\right)$ time, where $n=|C|$ and $m=|F|$.

4. Conclusion

In this paper we have presented an algorithm to solve the r gather clustering problem when all C are on the line. The running
time of the algorithm is $O\left(r n \log ^{*} n\right)$, where $n=|C|$. We also presented an algorithm to solve the r-gathering problem, which runs in time $O\left(n+r^{2} m \log ^{*} n\right)$, where $n=|C|$ and $m=|F|$.

Can we design a linear time algorithm for the r-gathering problem when all C and F are on the line?

References

[1] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy, D. Thomas and A. Zhu, Achieving anonymity via clustering, Transactions on Algorithms, 6, Article No. 49 (2010).
[2] P. Agarwal and M. Sharir, Efficient Algorithms for Geometric Optimization, Computing Surveys, 30, pp.412-458 (1998).
[3] T. Akagi and S. Nakano, On r-gatherings on the Line, Proc.of FAW 2015, LNCS 9130, pp.25-32 (2015).
[4] A Armon, On min-max r-gatherings, Theoretical Computer Science, 412, pp.573-582 (2011).
[5] Z. Drezner, Facility Location: A Survey of Applications and Methods, Springer (1995).
[6] Z. Drezner and H.W. Hamacher, Facility Location: Applications and Theory, Springer (2004).
[7] G. Frederickson and D. Johnson, Generalized Selection and Ranking: Sorted Matrices, SIAM Journal on Computing, 13, pp.14-30 (1984).
[9] H. Gabow and R. Tarjan, Algorithms for Two Bottleneck Optimization Problems, J. of Algorithms, 9, pp.411-417 (1988).
[10] Y. Han and S. Nakano, On r-Gatherings on the Line, Proc. of FCS2016, pp.99-104 (2016).

[^0]: Gunma University, Kiryu 376-8515, Japan
 a) nakano@cs.gunma-u.ac.jp

