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Implementation of Enumerating All Edge-Constrained

Triangulations without the General Position Assumption
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Abstract: Enumeration problems of triangulations are studied in some problem settings. In this paper, without general

position assumption, we enumerate all edge-constrained triangulations on a given set of points in the plane. Katoh and

Tanigawa proposed an algorithm that enumerates all edge-constrained triangulations for a given point set in general

position. In a point set P in general position, no three points are collinear. By extending their algorithm, we design

and implement an algorithm that for a given point set P, enumerates all edge-constrained triangulations without the

general position assumption(i.e. three points in P may be collinear).

1. Introduction

Triangulations of a point set are fundamental and important ob-

jects in geometry such as convex hulls and convex polyhedrons.

Triangulations have many applications including mesh genera-

tions in computer graphics and finite element analysis and inter-

polation. Fig. 1 is an example of a triangulation.

Recently, some enumeration algorithms for triangulations of a

point set were proposed [1], [3]. For a given point set, if we have

an enumeration algorithm, by using this, we can construct the ex-

haustive list of triangulations of the point set. The list can be used

for choosing good triangulations for any criteria. From this point

of view, there are some results on enumerating triangulations.

Avis and Fukuda [2] presented an algorithm that enumerates

all triangulations of a point set in O(n) time for each, where n is

the number of points. Bespamyatnikh [1] gave an algorithm that

enumerates all triangulations of a given point set. The algorithm

generates each triangulation in O(log log n) time, where n is the

number of points. Katoh and Tanigawa [3] extended this algo-

rithm. They pointed out the number of all triangulation is huge

and the complete enumerations essentially require much time for

a large point set. Hence, we require “reasonable” constraints to

reduce the number of triangulations to be enumerated. From this

point of view, they improved Bespamyatnikh’s an algorithm, so

that, for a given edge set F, the algorithm enumerates all the trian-

gulations including the edges in F. The algorithm also generates

each triangulation in O(log log n) time.

The papers [1], [3] assume that input points are in general po-

sition. However, triangulations of a point set without the general

position assumption are also natural and important for the fol-

lowing reasons. First, point sets without the general position as-

sumption, such as grids, are used frequently in application areas.
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Fig. 1 A triangulation.

For example, when 3D printers read the surface of a given object,

they use triangle meshes on 3-dimensional grids to represent the

surface. Next, the number of the triangulations of point sets with-

out the general position assumption tends to be smaller than the

one of triangulations of point sets with the assumption. (This ten-

dency is confirmed in this report from experimental results.) This

tendency would be preferred from the viewpoint that the num-

ber of triangulations to be enumeration should be reduced by us-

ing reasonable constraints. Thus, enumerating triangulations on a

point set without the general position assumption is also a natural

problem setting.

In this paper, we show that the algorithm by Katoh and Tani-

gawa [3] still works without the general position assumption by

slightly modifying the algorithm. Besides, we implemented the

algorithm and measure the practical performance of the algo-

rithm.

2. Preliminariers

Let P be a set {p1, p2, . . . , pn} of n distinct points in the

plane. We assume that the points are sorted by x-coordinate

and two points with the same x-coordinate are sorted by their

y-coordinates. Note that three points in P may be collinear. If all

points in P are collinear, there is no triangulation for P. Thus

we suppose that all points are not collinear. An ordered pair

(pi, p j), i < j, of distinct two points in P is called an edge if

the line segment connecting pi and p j does not contain any other

point of P. A triple {p, q, r} is a triangle if they are not collinear

and the convex hull for p, q, and r contain no point in P. An edge

in P is external if it is contained in the boundary of the convex

hull of P, and internal otherwise. A triangulation of P is a set
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Fig. 2 The point set P = {p1, p2, . . . , p11} in which p3, p5, and p8 collinear

and the constrained edge set F = {(p2, p6), (p7, p9)}. The point p5 is

visible from p3, but p8 and p10 are not visible.

Fig. 3 The upper (pi, p
up

i
) tangent and the lower tangent (pi, p

low
i

) of pi with

respect to F.

E of edges in P such that (1) E contains all the external edges

and (2) E divides the inside region of the convex hull of P into

triangles. We denote {pi+1, pi+2, . . . , pn} by Pi+1.

A total ordering ≺ on the set of edges is defined as follows: for

e = (pi, p j) and e′ = (pk, pl) (with pi < p j and pk < pl), e is

smaller than e′ , denoted by e ≺ e′, if and only if pi < pk , or

pi = pk and p j < pl. Let E = 〈e1, . . . , em〉 and E′ = 〈e′
1
, . . . , e′m〉

be two sorted edge lists with e1 ≺ · · · ≺ em and e′
1
≺ · · · ≺ e′m.

Then, E is lexicographically smaller than E′ if ei ≺ e′
i

for the

smallest i such that ei , e′
i
. For two triangulations T1 and T2,

T1 is smaller than T2 if the sorted edge list of T1 is smaller than

the one of T2. We say that two edges (pi, p j) and (pk, pl) prop-

erly intersect each other if (pi, p j) and (pk, pl) have a point in

common except for their endpoints. An edge set is non-crossing

if no two edges in the set properly intersect. Let F be a non-

crossing edge set on P. For a set F of non-crossing line segments

on P, a triangulation containing F is called an F-constrained tri-

angulation. For two points pi, p j ∈ P, p j is visible from pi with

respect to F if (pi, p j) does not properly intersect any edge of F

and (pi, p j) contains no other point (see Fig. 2). Since we do not

assume the general position, it is required to clarity the visibility

among collinear points. We assume that p j is visible from pi if

(pi, p j) ∈ F. If a point px is on an edge (pi, p j) ∈ F, we can

divide (pi, p j) into the two edges (pi, px) and (px, py). Thus, we

assume that there is no point on an edge in F.

The upper tangent (pi, p
up

i
) and the lower tangent (pi, p

low
i

) of

pi with respect to F is defined as those from pi to the convex hull

of the points of Pi+1 that are visible from pi with respect to F. See

Fig. 3

3. Enumeration algorithm

The enumeration algorithm of edge-constrained triangulations

by Katoh and Tanigawa [3] works for a point set without the gen-

eral position assumption using the definition of the visibility in

Section 2. Their algorithm is based on the reverse search tech-

nique proposed by Avis and Fukuda [2]. We first define a tree

Fig. 4 The edge ea is the flippable edge, but eb is not the flippable edge.

structure called a “triangulation tree” which contains all edge-

constrained triangulations of a given point set. Then the algo-

rithm generates all triangulations by traversing the triangulation

tree with the depth-first search. In this section, we briefly explain

their algorithm for self-containment.

3.1 Triangulation tree

Let P = {p1, p2, . . . , pn} be a set of points, and let F be a

set of edges in P. In this subsection, we define a tree structure

T = (VT ,ET ), called a triangulation tree, such that (1) each

vertex v in VT corresponds to an F-constrained triangulation

of a given point set P, (2) each edge e in ET corresponds to a

parent-child relation between two triangulations, and (3) the root

of T corresponds to the lexicographically largest triangulation

T ∗ having the lexicographically largest edge list among all the

F-constrained triangulation on P.

Let T ∗ denote the F-constrained lexicographically largest tri-

angulation on P. For any F-constrained triangulation T with

T , T ∗, the critical vertex of T is the vertex having the small-

est label among those incidents to some edge in T\T ∗. For an

edge e = (u, v) ∈ T\T ∗, let uvx and uvy be the triangles incident

to e. Then, e is called flippable if two triangles incident to e in

T form a convex quadrilateral. See Fig.4 for an example. Note

that if either x, u, y or x, v, y are collinear, the two triangles are not

quadrilateral. Hence, (u, v) is not flippable. The flip of e is replac-

ing e with the other diagonal edge of e. Flipping e in T generates

a new F-constrained triangulation. Such an operation is called

an improving flip if the triangulation obtained by flipping e is lex-

icographically larger than the previous one, and we say that e is

called improving flippable. See Fig. 5 for an example.

Lemma 1 [3] Let T be an F-constrained triangulation with

T , T ∗ and pc be the critical vertex of T . Then, there exists at

least one improving flippable edge incident to pc in T\T ∗.

For every F-constrained triangulation T with T , T ∗, let us

define the parent of T as the triangulation obtained by flipping

the smallest improving flippable edge among T\T ∗. Note that

the parent of T always exists from Lemma 1. Besides, the par-

ent is also an F-constrained triangulation. Also, we can find the

parent of the parent of T . By repeatedly find the parents, we ob-

tain a sequence of F-constrained triangulations. The sequence

always ends up with T ∗. The sequence can be obtained for any

F-constrained triangulation. By merging the sequence for every

F-constrained triangulation, we have a tree structure, called tri-

angulation tree rooted at T ∗.

3.2 Constructing T
∗

In the previous section, we define the triangulation tree. By

traversing the triangulation tree, we enumerate all the edge-

constrained triangulation. To traverse the tree, we first construct
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Fig. 5 The edge (1, 4) is improving flippable.

the root triangulation, namely the F-constrained lexicographi-

cally largest triangulation T ∗. In this subsection, we explain how

to construct T ∗.

For pi ∈ P and a triangulation T of P, let us denote by δT (pi)

the subset of edges of T which are incident to pi with the left (or

bottom) endpoints. Similarly, for an edge set F of P, δF(pi) de-

notes the subset of edges of F which are incident to pi with the

left (or bottom) endpoints.

Now we show a construction of T ∗ below. For pi ∈ P

let (pi, p
up

i
) and (pi, p

low
i

) be the upper and lower tangents of

pi ∈ P, and denote the right (or top) endpoints of δF(pi) ∪

{(pi, p
up

i
),(pi, p

low
i

)} by pi0 , pi1 , . . . , pim in clockwise order around

pi, where pi0 = p
up

i
and pim = plow

i
hold. Let Ck be the cone with

apex pi bounded by two consecutive edges (pi, pik ) and (pi, pik+1
)

for each k with 0 ≤ k ≤ m − 1 , where Ck contains both pik and

pik+1
, and construct the convex hull Hk of Pi+1 ∩ Ck inside each

Ck. Then, we repeat the following process for all pi ∈ P in an

arbitrary order: Connect from pi to every point p j ∈ Pi+1 ∩ Ck if

(1) p j = (pi, p j) ∩ Hk holds for some k and (2) p j is visible from

pi. Intuitively, we connect pi with every point visible from pi.

The difference between the construction above and the one in

[3] is only the check of visibility. The triangulation obtained

by the above construction is the F-constrained lexicographically

largest triangulation. To show the correctness of the above con-

struction, we can apply the same proof in [3]. We omit the proof

is this manuscript.

3.3 Generating all children

Given an edge-constrained triangulation T of P, by flipping

some flippable edge of T , we obtain a child of T , but flipping an

arbitrary flippable edge does not always produce a child of T . We

consider how to find the children of each T .

Let T be an F-constrained triangulation, and let e be a flippable

edge in T . Let us denote by flip(T, e) the triangulation obtained

from T by flipping e. It is easy to observe that flip(T, e) is a child

if and only if the parent of flip(T, e) is T , that is, dual(e) is the

smallest improving flippable edge of flip(T, e), where dual(e) is

the edge obtained by flipping e. We can use the following lemma

by Bespamyanikh [1] to check a flippable edge produces a child

triangulation.

Lemma 2 [1] Let (pa, pb), a < b is the smallest improving

flippable edge among T\T ∗. Let (pc, pd), c < d is the edge ob-

tained by flipping a flippable edge e of T . Then by flipping e, we

can obtain the child of T if and only if either

(i) c < a, or

(ii) a = c and d < b, or

(iii) a = c, d > b, and (pa, pb) is non-flippable in flip(T, e) and

the second lexicographically smallest flippable edge in T\T ∗

Algorithm 1 ChildEdge(e,T )

1: Let (a, b), a < b be the smallest improving flippable edge in T\T ∗, and

let (c, d), c < d be an edge obtained by flipping e

2: if the edge e satisfies either
(i) c < a or
(ii) a = c and d < b or
(iii) a = c and d > b and the smallest improving flippable edge in T\T ∗

is non-flippable in flip(T, e) and second smallest flippable edge(if

any) in T\T ∗ is larger than (c, d) then

3: return true

4: end if

Algorithm 2 EnumTri(T )

1: for all flippable edge e of T\T ∗ do

2: if ChildEdge(e, T )= true then

3: output: flip(T, e)

4: EnumTri(flip(T, e))

5: end if

6: end for

is lexicographically larger than (pc, pd).

By implementing the above lemma straightforwardly, we have

an algorithm shown in Algorithm 1. This algorithm determined,

for a given edge, whether flipping the edge produce a child.

We also have an enumeration algorithm shown in Algorithm 2.

Bespamyatnikh showed that we can maintain a set of flippable

edges that produce children of the current triangulation during a

traversal of the triangulation tree. Such list can be updated in

O(log log n) whenever a child is generated. Hence, we have the

following theorem.

Theorem 3 [1] The triangulations of a point set in the

plane with the general position assumption can be enumerated

in O(log log n) time per triangulation using linear space.

The theorem can be applied to the triangulations of a point set

without the general position assumption since the conditions of

flippability are equal. (Note that a quadrangle including collinear

three points is not a convex quadrilateral.) Thus we have the fol-

lowing corollary.

Corollary 4 For a given point set P without the general po-

sition assumption and a set F of edges in P, one can enumerate

all F-constrained triangulations of P.

4. Experimental results

We implemented the enumeration algorithm in Section 3. In

this section, we give experimental results.

4.1 Influence of the general position assumption

In this subsection, we investigate the numbers of triangula-

tions of point sets with the general position assumption and with-

out the assumption. Table 2 shows our experimental results.

To generate data sets, we do the following process. For each

n = 10, 11, . . . , 16, we generated 100 sets each of which con-

sists n random points with the general position assumption in a

100×100 square. Then, to make each set contain collinear three

points, we choose three points in each point set, and change x, y-

coordinates of them with (25,25), (50,50), and (75,75). Thus,

each set includes exactly one collinear triple of points. Next,

to generate point sets with the general position assumption, we

move the center point (50,50) in each point set to (50,49). (We
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Table 1 Experimental environment.

CPU Intel R©CoreTMi7-4770S 3.10GHz

Memory 16GB

OS Ubuntu 14.04.1 LTS

Language ANSI Common Lisp (SBCL 1.1.14.debian)

Table 2 Experimental results for the general position assumption. In each

cell, the top value is the average number of triangulations and the

bottom value is the average running time [sec] for 100 point sets.

n With the general position Without the general position assumption

10 1106.38 969.18

0.010 0.008

11 4389.58 3787.1

0.045 0.038

12 18090.3 15617.9

0.199 0.172

13 75771.9 69320.7

0.879 0.812

14 319642.2 283584.8

3.932 3.467

15 1557440.1 1369596.6

20.321 17.714

16 7392895.0 6995192.5

100.214 95.580

checked that this movement does not produce a collinear triple.)

We performed the algorithm to each point set. Each cell in Ta-

ble 2 contains the average number of triangulations (top) and the

average running time [sec] (bottom). For n = 10, 11, . . . , 16, one

can observe that the number of triangulations without the general

position assumption is smaller than the one with the assumption.

4.2 Edge-constraint

In this subsection, we investigate the numbers of edge-

constrained triangulations of point sets without the general po-

sition assumption. For each n = 10, 11, . . . , 17, we generate 5

random point sets each of which includes at least one collinear

triple. Besides, for each point set, we choose p% edges, where

p = 0, 10, 20, 30, 40, 50, as the constrained edges at random.

Table 3 shows our experimental results. Each cell in Table 3

contains the average number of edge-constrained triangulations

(top) and the average running time [sec] (bottom). For exam-

ple, when n = 17, the average number of triangulations without

edge-constraint is 8,897,090, and the average number of trian-

gulations in which 10% edges are constrained is only 13,703.

Edge-constraints tend to decrease the numbers of triangulations

significantly.

4.3 Grid graphs

Finally, we performed the enumeration algorithm on grid

graphs. As we refer in Section 1, grid graphs are used in prac-

tical applications such as 3-D printers. For a 3×3 grid, a 4×4

grid, and a 5×5 grid, we measured the numbers of triangulations

and running time. For the case without edge-constraint, the re-

sults in Table 4 is obtained (left column). For the case with edge-

constraints, we prepared the two pattern: a vertical constraint and

a diagonal-constraint (Figs.6–11). The results are shown in Ta-

ble 4 (center and right columns). From the results, we can ob-

serve that the number of triangulation is reduced significantly

by designating constrained edges. For the 5×5 grid, the num-

ber of diagonal-constrained triangulations is only 7.4% of the no-

constrained one.

5. Conclusions

We have implemented enumeration of all constrained triangu-

Table 3 Experimental results for edge-constraint. In each cell, the top value

is the average number of edge-constrained triangulations and the

bottom value is the average running time [sec] for 5 point sets.

n 0% 10% 20% 30% 40% 50%

10 713.0 64.2 26.6 7.0 4.0 2.8

0.008 0.000 0.000 0.000 0.000 0.000

11 2714.6 413.0 181.6 23.8 5.4 1.2

0.033 0.004 0.001 0.000 0.000 0.000

12 6326.8 543.8 90.4 12.4 5.4 3.8

0.080 0.005 0.001 0.000 0.000 0.000

13 21962.0 1621.0 50.0 24.0 7.0 4.0

0.304 0.021 0.000 0.000 0.000 0.000

14 73727.0 5083.4 260.6 46.4 6.2 3.0

1.064 0.061 0.003 0.000 0.000 0.000

15 297122.8 24126.4 1874.0 73.0 6.0 5.8

4.299 0.341 0.021 0.021 0.000 0.000

16 1572699.4 20140.0 3818.4 1321.2 48.8 14.2

24.292 0.282 0.043 0.015 0.000 0.000

17 8897090.0 13703.2 569.6 69.4 - -

135.959 0.176 0.006 0.000 - -

Table 4 Experimental results for the grids. In each cell, the number of

edge-constrained triangulations (top) and running time (bottom) of

the grid.

n × n No-constraint Vertical-constraint Diagonal-constraint

3×3 64 36 16

0.001 0.001 0.000

4×4 46456 17040 6241

0.616 0.187 0.074

5×5 736983568 148108900 55115776

13001.669 2489.553 939.494

Fig. 6 A 3×3 grid with

a vertical constraint.

Fig. 7 A 3×3 grid with

a diagonal constraint.

Fig. 8 A 4×4 grid with

a vertical constraint.

Fig. 9 A 4×4 grid with

a diagonal constraint.

Fig. 10 A 5×5 grid with

a vertical constraint.

Fig. 11 A 5×5 grid with

a diagonal constraint.

lations without the general position assumption. We observed

that the numbers of triangulations are significantly decreased us-

ing edge-constraint for point sets without the general position as-

sumption. Future works include designing an algorithm that enu-

merates triangulations with other constraints. For instance, we

enumerate all the triangulations of a given point set with bounded

degrees.
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