
IPSJ SIG Technical Report

Towards Making Legacy HPC Codes Maintainable:
Two-Way Fortran-Python Transpilation

with Python Type Hints
(Unrefereed Workshop Manuscript)

Mateusz Bysiek1,a) Aleksandr Drozd1 Satoshi Matsuoka1

Abstract:
We propose a method of accelerating Python code by just-in-time compilation leveraging type hints mecha-
nism introduced in Python 3.5. In our approach performance-critical kernels are expected to be written as if
Python was a strictly typed language, however without the need to extend Python syntax. This approach can
be applied to any Python application, however we focus on a special case when legacy Fortran applications
are automatically translated into Python for easier maintenance. We developed a framework implementing
two-way transpilation and achieved performance equivalent to that of Python manually translated to Fortran,
and better than using other currently available JIT alternatives (up to 5x times faster than Numba in some
experiments).

Keywords: Application migration, gradual typing, interoperability, just-in-time compilation, legacy code,
software maintenance, transpilation.

1. Introduction – Traits of Python and

Fortran

Python is praised by many because its flexible and dy-

namic nature makes programming much easier. However,

this nature also makes overcoming its various performance

issues much harder. Especially when compared to C, C++

and Fortran, Python is computationally very slow.

On the other hand, performance is not and never was an

issue in Fortran, indeed it is one of its hallmarks. Addi-

tionally, compared to more modern approaches Fortran is

hard to use, but despite the difficulties, it is still in use be-

cause it has accumulated a remarkable legacy of fast code.

Over the years a lot of money was invested to create huge

code base that now would be expensive to port – and is

increasingly expensive to use [4, 13]. How might we enable

continued use and development of old but very efficient com-

putational solutions, implemented using legacy technologies

such as Fortran 77? Maybe by migrating it to easy to use

Python.

However, at present, by such migration we would lose per-

formance. How might we make high performance in Python

more accessible? Specifically, how might we increase perfor-

mance of performance-critical kernels written in Python, so

that their performance matches the performance of equiva-

1 Tokyo Institute of Technology
a) bysiek.m.aa@m.titech.ac.jp

lent kernels written in Fortran (or other HPC-enabled pro-

gramming language)?

After looking at strong and weak points of both languages,

we observe that Python and Fortran seem to be complemen-

tary solutions. Also, because modern Python can be typed,

they might be close enough at the language level for source-

to-source translation to become feasible.

Our approach to problems of both languages is source-

to-source translation employed in the right way at the

right time. Cumbersome legacy Fortran application code

could be translated (migrated) to type-hinted Python once

and permanently. Since, by Amdahl’s Law [1], only the

performance-critical parts of application require top perfor-

mance, at the time of execution most of Python code could

be interpreted normally without noticeable impact on appli-

cation performance. The performance-critical kernels, how-

ever, would be JIT-translated back to Fortran.

This way, we will take advantage of the best traits of

Python and Fortran to create computational solutions that

are efficient, maintainable and build upon efficient legacy

code. However, no known mapping exists between Python

and Fortran. For the purpose of assisting application migra-

tion, and to enable JIT transpilation, we need such mapping

– at least for a reasonably defined subset of both languages.

c⃝ 2016 Information Processing Society of Japan 1

Vol.2016-HPC-157 No.9
2016/12/21

IPSJ SIG Technical Report

2. Background

2.1 Performance Issues in Python

2.1.1 Everything is an object – Problems with dy-

namic indirection

In many languages there is a distinction between normal

types and primitive types (among them usually integers,

floating point numbers, and character type) which receive

special treatment from the compiler and therefore result in

fast machine code. Taking this Python example:

i = 0

while i < 123456789:

i += 1

Since in Python everything is an object, even i = 0 does

not declare an integer variable in a sense in which in C++11

auto i = 0; would. In Python, an object is created,

and when i is incremented, Python interpreter must check

how to increment value of object i, and execute the rele-

vant incrementation subroutine. This consumes unnecessary

amount of computing resources.

2.1.2 Duck typing – Static type information is un-

available

Duck-typing is the principle that follows the saying “If it

looks like a duck, it walks like a duck and it quacks like a

duck, then it must be a duck.” that, in programming, trans-

lates to saying “If all objects from class A all have properties

a and b, and if some unrelated given object has property a

and b, then it must comes from class A.” Needless to say,

such statement is unreliable.

In general-purpose programming such rule is not a prob-

lem by itself, it can be even advantageous sometimes, but

in case of computation it will cause an incredible slowdown.

The reason for this is that in order to have efficient com-

putation, code needs to be compiled to optimized machine

code and static type checking is necessary for many compiler

optimizations. Statically, one cannot check what properties

a given instance has, because at the moment of checking

nothing is yet instantiated. Therefore for every operation,

the most generic and robust machine code representation

must be chosen, and such representation is necessarily much

slower than the version designed for, for example operation

on two floating-point numbers of specified precision.

The duck typing problem is, in the context of efficient

computation, a consequence of the fact that everything is

an object. If there was some short list of types that were

not objects, they would have reliable type information, and

optimizations would be applicable.

2.2 Software Development Issues in Fortran

2.2.1 Designed for numerics – Problems with gen-

erality

There are perfectly good reasons why Fortran is

numerically-oriented. However, to unlock that power of nu-

merical calculations it is essential to have easy access to data

on which those calculations are to be performed. We argue

that in Fortran, such access is problematic.

Depending on the individual use case, the data might be

in a database, in a binary file, in a text file or in some

other media – which might be stored locally or remotely.

There are many ways and formats in which data is stored in

practice in modern heterogeneous world. Fortran does not

provide solutions to access that data in many cases. It can

be managed using an external tool, however this increases

the complexity of the solution and maintenance effort.

It is important to note that the issue of generality is still

present in modern Fortran.

2.2.2 Fixed form – Problems with extensibility

Fortran code in general has two forms: fixed and free form.

Legacy Fortran code is often written in fixed form, because

the new free form was only introduced in Fortran 90. Form,

in this context, is in other words a set of constraints on how

the source code must be formatted.

The definition of fixed form contains very strict rules

about what can be in each column*1 of the source code file:

• Column 1: Blank, or a “C” or “*” for comments – how-

ever many compilers allow other characters.

• Columns 1-5: Optional statement label.

• Column 6: Continuation of previous line, optional.

• Columns 7-72: Statements.

• Columns 73-80: Sequence number, optional and rarely

used today.

Therefore, line of code cannot have more than 80 charac-

ters, and only 65 of those can be used for instructions.

An example application of some of those rules would be:

statement

C comment

100 statement with label

sum = a + b + c + d

& + e + f

The free format, on the other hand, does not impose any

very strict rules on code formatting, it is in fact almost iden-

tical to the coding style seen in many modern languages such

as C++ or Java. Therefore, in case of modern Fortran appli-

cations the problem of code format should not exist. Despite

that, the standard practice for modern Fortran programs is

to reuse existing legacy Fortran code as is – therefore al-

though some parts of modern Fortran programs are rela-

tively easier to build upon, depending on the case, a large

fraction of code base might be in fixed form.

2.2.3 Command-line, environment variables and

problems with interoperability

The ability to use command-line arguments*2 or environ-

ment variables*3 in Fortran programs was introduced into

the language standard in year 2003. Before that, apart from

*1 Stanford University, Fortran 77 Tutorial – Basics:
https://web.stanford.edu/class/me200c/tutorial_77/

03_basics.html
*2 Fortran Wiki, Command-line arguments: http:

//fortranwiki.org/fortran/show/Command-line+arguments
*3 GET ENVIRONMENT VARIABLE – The GNU Fortran

Compiler: https://gcc.gnu.org/onlinedocs/gfortran/GET_

005fENVIRONMENT_005fVARIABLE.html

c⃝ 2016 Information Processing Society of Japan 2

Vol.2016-HPC-157 No.9
2016/12/21

IPSJ SIG Technical Report

extensions available in some compilers, the only way to pro-

vide data to Fortran program was through a file. In case of

modern command-line argument parsing, there is a Fortran

library*4 that was inspired by Python’s built-in argument

parsing library – in fact even its usage looks surprisingly

similar to that of Python’s version.

Fortran-C interoperability was standardized in the 2003

language edition, and extended in 2008. One of the impor-

tant features of the upcoming Fortran 2015 specification is

the improvement of C language interoperability. Fortran in-

teroperability with other programming languages and tools

is still an issue today, although not nearly at the scale at

which it was in older Fortran.

2.3 Gradual Typing with Type Hints

After enumerating various examples of issues in Python

and Fortran, let us go forward by describing how type infor-

mation can be conveyed in a modern Python program. The

method adopted by Python is called gradual typing. In this

method, type information might be but does not have to be

provided.

Python language version 3.5, published in September

2015, in a Python Enhancement Proposal (PEP) numbers

0483 and 0484, introduced so-called type hints [14, 15]. As-

suming one has the following function (remark: the example

code is superfluous on purpose):

1 def sum(a, b):

2 c = None

3 c = a + b

4 return c

Then, one can annotate it using type hints:

1 def sum(a: int, b: int) -> int:

2 c = None # type: int

3 c = a + b

4 return c

There are two kinds of type hints: type annotations

(line no.1 contains 3 annotations), and type comments (line

no.2 contains a single type comment). The annotations are

present in Python grammar since version 3.0 of the language.

They were originally meant as a means of function signature

documentation, which did not have to contain type informa-

tion and if it did its format was not standardized.

With Python 3.5 a unified approach to annotations was

introduced but for backwards compatibility those type an-

notations, although parsed into the abstract syntax tree

(AST), are completely ignored by CPython interpreter dur-

ing execution. Type comments are treated like regular com-

ments, and are discarded by the parser, thus making type

hints backwards-compatible to Python 3.0. Apart from lack

of support for them in built-in CPython modules, also al-

most all other packages take no notice. This situation has

much potential for improvement.

Type hints can be used to convey the intent of the author

*4 FLAP: Fortran command Line Arguments Parser for poor peo-
ple: https://github.com/szaghi/FLAP

of the code, but that intent disappears and Python neither

does take advantage of it, neither it is troubled by it. In

the above case, the 2nd implementation might as well be

used to add floating point numbers, concatenate strings of

characters, or even concatenate lists – exactly like 1st im-

plementation. This can be considered a good thing, or a

bad thing. In our opinion, this flexible nature is one of core

characteristics of Python, and is inherently a good thing.

The intent of the original author of the code is not forced in

any way, which leaves increased possibility for code reuse.

When 1st and 2nd version of the sum() function is parsed

using built-in modules, the resulting AST looks slightly dif-

ferent, because the function signature annotations are re-

tained. Execution, however, is not affected even if in princi-

ple it could be affected. And we think that for performance

reasons, in some cases it should be affected.

3. Related Work

3.1 Migrating Legacy Fortran

For converting legacy Fortran code, there are several so-

lutions available: f2c [6] converts it to C, Fable [7] to C++,

there are ways to convert it to Java bytecode [12], or par-

tially to CUDA [5]. The issue with those solutions is that in

many cases they do not attempt to generate human-readable

code, and even if they do the target language cannot offer

programming flexibility at the Python level, and thus con-

necting from high-level orchestrating code to low-level im-

plementation might be necessary.

3.2 Improving Python Performance

As improving performance of Python is a very popular re-

search topic, there is a lot of work being done in that area.

We shall not attempt to give a detailed survey of all avail-

able solutions in this section. Instead, we will familiarize

the reader with solutions that are most related.

3.2.1 NumPy

NumPy [9] is a BLAS-compliant numerical library for

Python, which, when used correctly, can achieve very good

performance. NumPy’s approach to higher performance in

Python is very straightforward. NumPy is partially imple-

mented in Python, but it mostly consists of a big collection

of low-level language implementations which are interfaced

with Python through the CPython API. The implementa-

tions often contain manually unrolled loops to support SIMD

compiler optimizations, or contain code that is preprocessed

by the C compiler at installation time to generate the code.

Those low-level implementation are very efficient, but are

not useful in cases when they would need to be tailored for

some specific use. NumPy cannot be used to accelerate any

given algorithm.

3.2.2 f2py

In the context of this work, one very notable part of

NumPy is f2py [10], a Python wrapper generator for For-

tran code. It scans Fortran code for modules and func-

tion signatures and creates Python interface for them. It

delegates compilation of Fortran to chosen compiler avail-

c⃝ 2016 Information Processing Society of Japan 3

Vol.2016-HPC-157 No.9
2016/12/21

IPSJ SIG Technical Report

able in the system, and couples together the compiled For-

tran code with the Python interface for it into a single bi-

nary file that can be imported in Python using standard

import module_compiled_with_f2py statement.

Code compiled using f2py benefits from outsourcing the

compilation process because of the compiler optimizations

available in many mature Fortran compilers. Unfortunately,

it suffers from significant compilation overhead. Compila-

tion process heavily involves the file system as many inter-

mediate files need to be created and then discarded, which

slows it down significantly. This overhead is especially vis-

ible in case of compiling relatively small pieces of Fortran

code.

3.2.3 Numba

Numba [8] is a JIT compiler for Python. It does not com-

pile Python directly, but instead transforms it into LLVM

Intermediate Representation, and delegates the compila-

tion to the LLVM toolchain. Through an easy-to-use API,

Numba enables JIT compilation of selected parts of Python

code. The compiled code sections have to contain only a

restricted subset of Python syntax. Additionally, Numba

cannot shed all layers of indirection present in Python, be-

cause it is not capable of complete type analysis.

An interesting advantage of using Numba is a relatively

short compilation time, which is achieved by performing

compilation completely in memory. The lack of involvement

of the file system can have significant compilation time ben-

efits in case of compiling single Python functions.

As mentioned in the introduction, there are inherent un-

avoidable problems with unavailability of reliable type in-

ference in Python, and with dynamic indirection – Numba

runs into those problems.

3.2.4 Cython

Cython [3] is a language derived from Python, and also

a software solution that translates Cython language to C

with certain extensions. Reason is performance, especially

the case of numerical loops [11]. Cython can usually out-

perform NumPy in cases of construction of sparse matrices,

data transformation, repacking, equation solving, among

others [2].

Cython language is very similar to Python in a sense that

a subset of Python is also valid Cython code. However,

Cython extends Python syntax by adding few C-related con-

structs. This makes Cython code backwards-incompatible

with Python – once the code is converted to Cython so as

to benefit from its performance boost, it is no longer valid

Python. For example: variable types have to be defined in

a way which is not compatible with Python, and, there is a

separate import system for C-related constructs*5 which is

not compatible with Python.

Cython provides a so-called “pure mode” via which the

original Python code can be left untouched, and a separate

file with static type information for that code needs to be

created instead [2]. This additional file is ignored by Python

*5 Cython documentation – Faster code via static typing: http:

//docs.cython.org/src/quickstart/cythonize.html

interpreter, but used by Cython framework, which provides

some level of compatibility, however this lowers maintain-

ability of the code because two files have to be kept in sync

manually.

Cython framework, apart from providing application per-

formance boost, incurs a significant compilation overhead,

because Cython framework delegates the compilation of C

code to an external compiler (as available in the system) [2],

exactly as it is in the case of f2py.

4. Our Solution

This work contributes a two-way transpiler operating on

subsets of Fortran 77/90/95 and Python 3 that is able to

handle:

• fundamental types, basic syntax, selected array opera-

tions,

• some idiomatic statements (command-line printing, ba-

sic file I/O),

• internal API calls (selected Fortran intrinsics, Python

built-ins and stdlib functions) and

• external APIs (MPI to a limited extent).

We also contribute a workflow design for migrating legacy

Fortran applications to Python without sacrificing their per-

formance. The workflow consists of 3 main steps:

(1) transpilation of legacy Fortran to Python already an-

notated with type hints – because type information is

available in Fortran;

(2) performance-critical functions in the resulting Python

code have to be manually marked using decorators (a

standard Python language feature);

(3) decorated kernels are translated at runtime to Fortran,

compiled, interfaced with Python using f2py and exe-

cuted instead of their Python counterparts.

Workflow also supports boosting performance of any

Python code as long as it is translatable to Fortran.

The workflow does not aim at full automation when it

comes to translating Fortran to Python, because with a com-

plete legacy application translation in mind the only feasible

aim can be significant simplification of migration process –

with some manual work still required.

Moreover, workflow leverages existing Python tools as

much as possible to decrease functional overlap.

Workflow is designed with two main use cases in mind.

4.1 Use Case 1

User has high-performing Fortran 77/90/95 source code

that she wants to migrate to Python, possibly change some

things, and still be able to run it with equivalent efficiency

as the original Fortran implementation. At the same time,

after migrating to Python, user wants for her application to

remain in Python.

c⃝ 2016 Information Processing Society of Japan 4

Vol.2016-HPC-157 No.9
2016/12/21

IPSJ SIG Technical Report

existing manual steps our transpiler

Fortran

simplified
Fortran

annotated
Python

annotated
Python

partial
Fortran

runtime

simplify

translate
whole application

mark
kernels

translate
the kernels

f2py:
compile

CPython:
interpret normally

Figure 1 Translation of Fortran to Python creates Fortran-like
(i.e. compatible with static type system) Python code.

The process is as follows:

• Fortran source code is translated to Python 3.5 code au-

tomatically augmented with type annotations and type

comments.

• User can annotate selected functions of resulting

Python code with a special decorator.

• This decorator, at runtime, triggers an automatic trans-

lation of Python code into Fortran, compilation of For-

tran code, creation of Python-Fortran interface, and

substitution of original Python function with that in-

terface.

• Whenever a function is executed, the call is forwarded

to wrapped Fortran function and return value, if any, is

forwarded from Fortran to Python.

User thus benefits from high performance of Fortran while

maintaining all of her code in Python.

4.2 Use Case 2

User has a computational application written Python, and

wishes to enhance its performance while keeping the source

code in Python.

existing

manual steps

our transpiler

Python
modified
Python

annotated
Python

partial
Fortran

runtime

mark
kernels

annotate
types in kernels

translate
the kernels

f2py:
compile

CPython:
interpret normally

Figure 2 Performance of Fortran-like Python code can be en-
hanced by leveraging the similarities between subsets
of Python and Fortran.

The process is as follows:

• User can extract the computing kernels into separate

functions – this is most probably done already.

• User can annotate selected kernel functions with a spe-

cial decorator.

• Additionally, user can provide type information for

those functions using Python type hints – describing

function argument types and return type (both with

type annotations) and types of local variables (with type

comments).

• The decorator, at runtime, triggers the same process as

described in the last 2 steps of Use Case 1.

Again: user benefits from high performance of Fortran

while maintaining all of her code in Python.

5. Implementation

5.1 Mapping Between Fortran and Python

Languages like Python and Fortran, although very differ-

ent, have some common syntax. Not exhaustive list includes:

numeric types such as integer and floating point numbers,

arrays, integer-indexed for loops, binary operator for expo-

nentiation, branching statements and routines that can re-

ceive data by reference. It follows that some parts of a given

Python or Fortran program’s source code might look very

similar to each other.

Translation is straightforward when a 1-to-1 mapping ex-

ists between syntax elements of each language. Prominent

examples of such syntax would be: simple mathematical ex-

pressions, boolean formulas, some assignments, comments,

integer-indexed for loops, while loops, etc. These syntactic

structures are very simple and vary relatively little across

both programming languages.

Non-straightforward translation occurs when there is no

exact mapping and the relationship is more complex. Still,

there are many such structures which occur commonly. File

operations, printing to command-line, etc. In the scientific

context some cases of array indexing, array memory layout

and usage of various APIs, e.g. MPI, are not so trivial to

translate.

5.1.1 Fundamental types

Translating type names between programming languages

effectively requires a 1-to-1 predefined mapping, and all

types not present in the mapping simply cannot be trans-

lated. Moreover, in case of certain types, only approximate

translation is available. For example, Python’s str can be

mapped only approximately, by assuming some reasonable

upper bound on its length.

character*1024 :: s = ’hello’

s = ’hello’ # type: str

5.1.2 Basic syntax

Among things trivially translated are many of the binary

operators like addition, subtraction, multiplication, division

and exponentiation as well as boolean operators.

With static type information available, Python’s true di-

vision operator can be reliably translated. The same applies

to translating to Python: the truncating behaviour of For-

tran’s division in cases when dividend is integer and For-

tran’s string concatenation operator.

Translation complexity of while loops depends on the com-

plexity of the expression of loop exit condition, and the syn-

tactic overhead of the while loop itself is nearly non-existent.

The for loop handling is currently limited to those with

with integer index variable. It would also be possible to do

a straightforward translation of Python sequence enumera-

tion – in cases where one can depend on sequence having a

c⃝ 2016 Information Processing Society of Japan 5

Vol.2016-HPC-157 No.9
2016/12/21

IPSJ SIG Technical Report

measurable length that does not change at runtime.

Python’s usage of unnamed entities can be directly re-

flected in Fortran in many cases, however in case of boolean

operators applied on arrays there is the same problem as in

the case of intrinsic functions.

A .ne. 0 ! logical array

nonzero = count(A .ne. 0)

A[A != 0] # sub-array

nonzero = len(A[A != 0])

The variable name must be duplicated in case of trans-

lating to Python, and the duplicate must be detected and

eliminated in case of translating to Fortran. Moreover, since

the actual result type of such operations is different, they are

translatable only in specific context of use as arguments for

intrinsic functions.

5.1.3 Array operations

Translation of array access is surprisingly easy, because

NumPy arrays and Fortran arrays are addressed very simi-

larly. Arrays in Fortran are indexed from 1 by default, but

with care the array section access and assignment are trans-

latable.

Since assignment in Python works differently in case of

immutable and mutable objects, its translation depends on

the type of translated object and array assignment has to

reflect that.

Also, some array operations look entirely different in For-

tran and Python. Translation of those operations must

sometimes be done on case-by-case basis.

Function call and array element access is in some cases be

indistinguishable from one another in Fortran without use

of name resolution. The heuristic that we propose in our ap-

proach is to assume that a name is a call to a function unless

it is found to be a declared variable. Since variable declara-

tions are necessary to be given first, the call/array distinc-

tion can be done by the parser provided that the variable

declarations are cached and accessible when parsing subse-

quent statements.

5.1.4 Idiomatic statements

The assignment translation becomes complex if value of

assigned variable cannot be easily copied.

Fortran’s variable declarations have no direct translation

in Python because in Python variables are never declared.

As such, the translator from Fortran to Python must convert

all Fortran variable declarations to assignments, but trans-

lator from Python to Fortran must generate extra state-

ments at the beginning of the function after all local vari-

ables from the function and their types are known. This is

not a straightforward 1-to-1 translation, because in case of

two-way translation, the translator cannot know for sure if

a given assignment originated as an assignment, or as a vari-

able declaration. Such simplistic approach might create su-

perfluous assignments at the beginning of the function body

with each two-way translation iteration. It is, however, not

a problem for the intended workflow.

The Fortran’s implicit none statement has no direct

translation in Python. The heuristic we propose is to as-

sume that all generated Fortran functions start with this

statement. In perspective, the information about presence

or lack of any idiomatic statements can be embedded in

Python source code in specially-formatted comments, which

are only activated and expressed if a function is transpiled

to a language matching the comment’s format.

Python’s import and Fortran’s include or use state-

ments require special treatment not because of their syntax,

which is rather simple, but because they add functionality

to the code, as explained above in an MPI API example.

This added functionality depends completely on the content

hiding behind the path/name that is included/imported.

There are many ways to introduce the exact same func-

tionality, and sometimes the mere inclusion of some func-

tionality has side effects. For example, when importing

mpi4py in Python, in some cases the MPI_Init() is exe-

cuted automatically, while in other cases it is not.

A heuristic that we propose in our approach is to disallow

non-canonical inclusion statements. This ensures generation

of a reliable translation for cases it is possible according to

the implementation, and signaling a problem for other cases.

5.1.5 Internal API calls

Some Fortran’s intrinsics have a corresponding Python’s

stdlib function, others are a combination of several func-

tions. In general, they must translated on case-by-case basis.

We provide mappings for a small subset of Fortran’s intrin-

sic functions. Other functions are translated as-is. Such

translation might seem useless until we consider that our

aim is to support one-way whole-migration from Fortran so

that only the kernels are to be translated back to Fortran.

In this context, faithful translation functions for accessing

environment variables or reading input data from files dur-

ing application setup is not necessary, because almost always

these are better expressed in object-oriented APIs which are

available only in Python, and initialization has no effect on

computational performance.

5.1.6 External APIs: MPI

We consider it as the most important external API to

be handled by the transpiler, because it is sometimes used

in computational kernels to synchronize progress of many

processes, or to overlap communication with computation.

After analysis of conventions followed by native Fortran API

compared with Python’s object-oriented mpi4py, we deter-

mined what transformations need to be applied to many

commonly used functions.

5.1.7 Unsupported Python features

class keyword and any concepts related to classes, instan-

tiation etc. are not supported. That is simply because those

concepts have limited use in the context of high-performing

numerical kernels.

with statement and async keyword are not supported.

Dynamic type change is what occurs in Python when a

variable that initially had some type is assigned a value of a

different, incompatible type. Such behaviour is by definition

illegal in a statically typed language.

c⃝ 2016 Information Processing Society of Japan 6

Vol.2016-HPC-157 No.9
2016/12/21

IPSJ SIG Technical Report

The Python’s dynamic behaviour cannot be expressed in

Fortran directly, but variable renaming, approach used by

compilers in optimization, can be used in deterministic as-

signment cases to resolve the problem. If, from a control

flow graph, we determine that a subsequent assignment in-

validates the variable for all control flow paths, we can safely

create a renamed duplicate and from that point on use the

renamed duplicate instead of the original variable. Such ap-

proach will not work in all cases, and therefore in our solu-

tion we propose to forbid dynamic retyping – i.e. we assume

that once a value of specific type is given to a variable, the

variable retains that type through its lifetime.

5.1.8 Unsupported Fortran features

Fortran’s indication of variable memory length via kind

attribute, as well as kind-related intrinsic functions sup-

port is missing. Still, most of the time there is a very

straightforward workaround for this. Specifically, instead of:

integer(kind=8) one can use integer*8 or integer(8).

Fortran 90 and later supports arrays with assumed shape

– meaning that the sizes of dimensions of an input array do

not have to be predefined in the subroutine. Support for this

is missing in the current implementation of the translator.

It is possible to transpile two or more Python functions

from the same module to Fortran, and in theory they could

as well call each other without any issues. However, in the

current implementation, each transpiled function is com-

piled to a separate shared library object, and therefore cur-

rently all translated kernels have to be separate computa-

tional entities – one may not call any other.

We do not support Fortran’s n-dimensional assignment

expression, however it can be reexpressed using equivalent

multi-level do loops before translation:

forall(i=1:ni,j=1:nj) B(i, j) = i * j

We currently do not support pragmas for compiler exten-

sions such as OpenMP and OpenACC.

5.2 Technologies Used

We developed a Python 3 package that provides all afore-

mentioned features. To parse code and store Python’s AST

we use a recent typed_ast*6 package. To generate code

from it we use typed_astunparse*7 package. For migrat-

ing Fortran, we use our own transpiler implementation and

a custom designed AST. We transform between our AST

and Python’s AST as necessary.

6. Case Study 1: DGEMM

To test the transpiler and both use cases, we did several

case studies that highlight the characteristics of both the

approach and its current implementation. For all our exper-

iments, we are using the following system:

Operating system Linux, Ubuntu 14.04.1 x64
Linux kernel 4.2.0-41
Python 3.5.1

Table 1 System of the evaluation environment.

*6 https://pypi.python.org/pypi/typed-ast
*7 https://pypi.python.org/pypi/typed-astunparse

ATLAS 3.10.1-4
LAPACK 3.5.0-1
numpy 1.11.1
llvmlite 0.12.0
numba 0.26.0
mpi4py 2.0.0

Table 2 Versions of packages.

In our first case study, we assume that user has a C-like

matrix-matrix multiplication implementation in Python,

and wants to accelerate it. The starting code is as follows:

1 def my_matmul(a, b, a_width, a_height, b_width):

2 c = [0 for _ in range(b_width * a_height)]

3 for y in range(a_height):

4 for i in range(a_width):

5 for x in range(b_width):

6 c[y * b_width + x] += \

7 a[y * a_width + i] * b[i * b_width + x]

8 return c

6.1 Currently Available Solutions

What approaches can she use to boost performance, and

what results do they yield? We compare NumPy [9], Numba

[8], f2py [10] and our framework.

6.1.1 NumPy

This is the most obvious solution in this particular sce-

nario. User can abandon her code and simply use a routine

provided by NumPy. This, however, requires restructuring

the data. After reshaping the arrays, the DGEMM is simply

a @ b. This solution, however, is inapplicable in case that

the user would like to change the function even a little bit.

6.1.2 Numba

Instead of using NumPy like this, user can only change

her data format from plain Python lists to NumPy arrays,

while retaining her implementation. After that, NumPy-

enabled function can be decorated with @numba.jit to get

some performance boost though JIT compilation.

6.1.3 f2py

A very drastic alternative that increases the performance

boost is manual translation of the implementation to a For-

tran 77 subroutine and creation of Python interface for it

using f2py tool provided with NumPy. The resulting inter-

face will take NumPy arrays and return a NumPy array.

1 subroutine my_matmul(a, b, c, a_width, a_height,

2 & b_width)

3 integer*4, parameter :: max_width = 200

4 integer*4, parameter :: max_height = 200

5 real*8, intent(in) :: a(max_width * max_height)

6 real*8, intent(in) :: b(max_height * max_width)

7 real*8, intent(out) :: c(max_height * max_height)

8 integer*4, intent(in) :: a_width

9 integer*4, intent(in) :: a_height

10 integer*4, intent(in) :: b_width

11 integer*4 :: y, i, x

12 c = 0

13 do y = 1, a_height

14 do i = 1, a_width

15 do x = 1, b_width

16 c((y - 1) * b_width + x) =

17 & c((y - 1) * b_width + x) +

18 & a((y - 1) * a_width + i) *

19 & b((i - 1) * b_width + x)

20 end do

21 end do

22 end do

23 return

24 end subroutine my_matmul

c⃝ 2016 Information Processing Society of Japan 7

Vol.2016-HPC-157 No.9
2016/12/21

IPSJ SIG Technical Report

The resulting code is much longer – it contains as many

extra lines for variable and constant declarations, as the

original Python function counted in total. Moreover, since

unfortunately in Fortran 77 arrays cannot have dynamically

defined sizes, we need to set a limit for matrix size.

This solution is non-trivial and requires additional knowl-

edge about Fortran and f2py interface in order to create a

function that can be later interfaced with Python so that it

has, for example, the same signature.

Finally, this solution also requires boilerplate code that

would compile the Fortran file, create the Python interface

for it and import the interface in a desired place in Python.

6.1.4 This work

Finally, the user can opt to use our work, which requires

her to decorate the kernel, and annotate variable types.

1 @reexpress(’Fortran77’)

2 def my_matmul(

3 a: np.ndarray((200 * 200,), dtype=np.double),

4 b: np.ndarray((200 * 200,), dtype=np.double),

5 a_width: np.int32, a_height: np.int32,

6 b_width: np.int32

7) -> np.ndarray((200 * 200,), dtype=np.double):

8 c = np.zeros(b_width * a_height, dtype=np.double)

9 for y in range(a_height): # type: np.int32

10 for i in range(a_width): # type: np.int32

11 for x in range(b_width): # type: np.int32

12 c[y * b_width + x] += \

13 a[y * a_width + i] * b[i * b_width + x]

14 return c

Type of c is implied by the fact that it is returned.

Since the code is going to be translated to Fortran 77,

the same constraints apply to it as to target language. For

example, arrays need to have predefined sizes, and choice of

the right size can be non-obvious. In this specific case, the

maximum array length was set to 40000.

6.2 Compilation Overhead Analysis

Figure 3 Compilation and/or translation overhead comparison
for existing approaches and this work. Numba JIT-
compiles completely in memory, whereas f2py and we
(because we use f2py as part of the workflow) use in-
termediate files and create a shared library file.

In traditional computing, compiling cost is paid with each

source code update, therefore under ordinary circumstances

it doesn’t count towards time measurements. On the other

hand, in interactive computing, if the whole application were

to be compiled with each small change of the code, it would

pose a significant problem. However, when the source code

is expected to change rapidly, compilation cost may be miti-

gated by modularizing the application and re-compiling only

the necessary parts – approach of Numba and this work.

Figure 4 Binary object reuse in our framework and Numba’s
compilation time. Numba needs to recompile with each
application launch, while we can simply load the com-
piled file.

6.2.1 Numba

The JIT compiler Numba compiles the function com-

pletely in memory. Although code is translated to LLVM

IR, and then to machine code, in-memory approach yields

short compilation times – as seen in Figure 3.

Compilation is initiated at first call to the decorated func-

tion, so if in a given application run the function is not

called, there is no compilation overhead. After the initial

call that includes the JIT compilation, the binary object is

reused without any visible overhead for subsequent call.

The binary is not stored on disk, so recompilation is

needed for each application launch – as seen in Figure 4.

6.2.2 f2py and this work

On the other hand, f2py (and thus, this work) uses the

file system, creating Fortran source code file even when it is

given a string of characters via its Python interface, addi-

tional files related to building the Fortran library and some

more for building a Python extension module containing the

Fortran routine. Then, it launches the Python toolchain to

create the library. All this happens behind the scenes in a

temporary folder which is discarded at the end of the process

with a single exception - the Python extension module that

is copied to the destination directory. All this file-juggling

takes considerable time, even for a very simple Fortran rou-

tine – as seen in Figure 3.

The advantage of this approach is that the compiled

binary object can be reused even in-between application

launches – as seen in Figure 4.

6.3 Computational Performance Analysis

Let us compare the computational performance of each

c⃝ 2016 Information Processing Society of Japan 8

Vol.2016-HPC-157 No.9
2016/12/21

IPSJ SIG Technical Report

DGEMM implementation. Apart from the manual Fortran

reimplementation of the routine, and its complete scrap-

ing in favour of matrix multiplication routine provided by

NumPy, remaining solutions do not differ that much from

the original code. Despite that, their performance varies

enormously.

Figure 5 Computational performance of pure Python while us-
ing our framework is the same as launching Fortran
implementation through f2py.

Overall, interpreted implementation is unsurprisingly the

slowest. Let us consider it as a baseline and go down ac-

cording to running time for matrix size 200.

Numba achieves 230× improvement over the baseline im-

plementation.

User will see another factor 5 improvement after reimple-

menting it all in Fortran, or over 1000× improvement over

the initial version. The same boost is also achieved by auto-

matic translation provided by our transpiler, with which the

user didn’t have to abandon her Python implementation.

Finally, not shown in the Figure, but achieving factor 2.5

speedup over the simple Fortran code and nearly factor 2900

over initial code, is NumPy. This solution, however, is using

a different algorithm entirely, because NumPy behind the

scenes delegates matrix multiplication to a high-performing

BLAS library. In principle, however, after changing the

GEMM algorithm to a better one, the performance differ-

ence should be smaller or non-existent.

7. Case Study 2: Miranda IO

Miranda IO*8 is a parallel file system benchmarking ap-

plication developed in Lawrence Livermore National Labo-

ratory (LLNL). It is written in pure Fortran, and the latest

intrinsic functions it uses were introduced in Fortran 95.

The benchmark that the application performs is as fol-

lows. Miranda performs 100 iterations, and in every itera-

tion it makes very heavy reads and writes and validates that

the data was stored and retrieved correctly. It also uses

MPI, although mainly for synchronizing the processes so

that reads and writes occur concurrently, and to broadcast

*8 Scalable I/O Benchmark Downloads: https://computing.

llnl.gov/?set=code&page=sio_downloads

initialization data from the master process to all processes.

Before migrating to Python, we have refactored the code

in order to simplify some Fortran constructs currently un-

supported by the transpiler. Additionally, the resulting

Python code was not entirely correct. The numerical parts

of code were translated correctly, however the orchestrating

code had to be adjusted for conformance with Python stan-

dard library, specifically: the environment variable access

code had to be adjusted and the I/O filename generating

formulas were changed. Also, the computational kernel had

to be extracted to a separate function.

7.1 Translation Overhead Analysis

Figure 6 Binary object reuse overhead for approaches that sup-
port it – Numba and any-lang.

Translation from Python to Fortran is fully automatic.

Necessity of manual source code adjustments specifically so

that it can work in Fortran, but not anymore in Python,

would defeat the purpose of maintaining the code in Python

and making it runnable from within Python.

Figure 6 indicates that even if for small functions trans-

lation efficiency doesn’t matter, for larger translations per-

formance improvements are necessary before the framework

becomes useful in a highly interactive environment, where

the kernel is supposed to change frequently.

If computing kernel is less likely to change, the cost of

translation is lowered by binary object reuse. In case of

MPI applications, like Miranda IO, the kernel needs to be

transpiled only once per computing node, and then all MPI

processes on that node can reuse it.

7.2 Computational Performance Analysis

We measured computational performance at 4 stages of

migration process:

• original – stands for original Miranda 1.0.1 code;

• refactored – is the refactored Miranda 1.0.1 code;

• python – stands for Python version that was first au-

tomatically generated from the refactored Fortran, and

then refactored manually to make up for details missed

by current translator implementation; and

• this work – stands for Python code with benchmark

c⃝ 2016 Information Processing Society of Japan 9

Vol.2016-HPC-157 No.9
2016/12/21

IPSJ SIG Technical Report

kernel annotated with transpilation decorator.

Figure 7 Our framwork completely recovers from computational
performance drop of Python version of Miranda IO
while maintaining the code in Python.

Original Miranda 1.0.1 code and the refactored version ex-

hibit identical performance, illustrating that rewriting For-

tran code without the modern forall syntax did not incur

any performance penalties.

Code auto-translated to Python version and then refac-

tored displays factor of 6 slowdown. This is a relatively

good result for Python code. Although Miranda IO is an

I/O benchmarking application, in does not consist entirely

of reads and writes. To prepare non-trivial data to write and

verify the data that was read, certain amount of calculations

is necessary. Those calculations are the primary reason for

the slowdown.

8. Conclusion

We described a workflow design for migration of legacy

Fortran code and acceleration of Python code satisfying cer-

tain criteria. The key idea is that Python code can be ef-

ficiently compiled if the code is annotated with type hints

and written as if the language was static – and the transpiled

legacy Fortran code automatically meets these requirements.

We have implemented two-way transpiler that achieves

tolerable translation overhead (mitigated by reusability of

binary objects between launches) and maximizes the compu-

tational speed-ups. Overall, we show that maintainability,

extensibility and interoperability can be improved without

sacrificing performance.

We have evaluated the work on compute-intensive and

I/O-intensive cases. We demonstrated that performance of

DGEMM written in Python equals that of Fortran: there

is no computational overhead from the framework; Python

code can be as fast as Fortran when it is compiled to well-

optimized machine code.

Also, we showed that benchmark written in Fortran re-

tains original performance after migration to Python: two-

way translation approach is not only feasible, but also useful.

Our final thought is that type hints are not only a static

analysis tool, but can also be used as a reliable source of

information for runtime performance optimization.

Acknowledgments

This research was supported by JST, CREST (Research

Area: Advanced Core Technologies for Big Data Integra-

tion).

References

[1] Amdahl, G. M.: Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities, Proceedings
of the April 18-20, 1967, Spring Joint Computer Confer-
ence, AFIPS ’67 (Spring), New York, NY, USA, ACM, pp.
483–485 (online), DOI: 10.1145/1465482.1465560 (1967).

[2] Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn,
D. S. and Smith, K.: Cython: The Best of Both Worlds,
Computing in Science & Engineering, Vol. 13, No. 2, pp. 31–
39 (online), DOI: http://dx.doi.org/10.1109/MCSE.2010.118
(2011).

[3] Behnel, S., Bradshaw, R., Seljebotn, D., Ewing, G. et al.:
Cython: C-Extensions for Python, 2008.

[4] Bennett, K.: Legacy systems: coping with success,
IEEE Software, Vol. 12, No. 1, pp. 19–23 (online), DOI:
10.1109/52.363157 (1995).

[5] Corrigan, A., Camelli, F., Löhner, R. and Mut, F.: Semi-
automatic porting of a large-scale Fortran CFD code to
GPUs, International Journal for Numerical Methods in Flu-
ids, Vol. 69, No. 2, pp. 314–331 (2012).

[6] Feldman, S. I.: A Fortran to C converter, ACM SIGPLAN
Fortran Forum, Vol. 9, No. 2, ACM, pp. 21–22 (1990).

[7] Grosse-Kunstleve, R. W., Terwilliger, T. C., Sauter, N. K.
and Adams, P. D.: Automatic Fortran to C++ conversion
with FABLE, Source code for biology and medicine, Vol. 7,
No. 1, p. 1 (2012).

[8] Lam, S. K., Pitrou, A. and Seibert, S.: Numba: A LLVM-
based Python JIT Compiler, Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC,
LLVM ’15, New York, NY, USA, ACM, pp. 7:1–7:6 (online),
DOI: 10.1145/2833157.2833162 (2015).

[9] Oliphant, T. E.: A guide to NumPy, Vol. 1, Trelgol Publish-
ing USA (2006).

[10] Peterson, P.: F2PY: a tool for connecting For-
tran and Python programs, International Jour-
nal of Computational Science and Engineering,
Vol. 4, No. 4, pp. 296–305 (online), available from
⟨http://cens.ioc.ee/ pearu/papers/IJCSE4.4 Paper 8.pdf⟩
(2009).

[11] Seljebotn, D. S.: Fast numerical computations with Cython,
Proceedings of the 8th Python in Science Conference, Vol. 37
(2009).

[12] Seymour, K. and Dongarra, J.: Automatic translation of
Fortran to JVM bytecode, Concurrency and Computation:
Practice and Experience, Vol. 15, No. 3-5, pp. 207–222
(2003).

[13] Tinetti, F. G. and Méndez, M.: Fortran Legacy Software:
Source Code Update and Possible Parallelisation Issues, SIG-
PLAN Fortran Forum, Vol. 31, No. 1, pp. 5–22 (online), DOI:
10.1145/2179280.2179281 (2012).

[14] van Rossum, G., Lehtosalo, J. and Langa, .: PEP 484 – Type
Hints (2014).

[15] van Rossum, G. and Levkivskyi, I.: PEP 483 – The Theory
of Type Hints (2014).

c⃝ 2016 Information Processing Society of Japan 10

Vol.2016-HPC-157 No.9
2016/12/21

