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Abstract: Several quantitative models of motion-sensitive neurons called lobula plate tangential cells (LPTCs) in
the fly visual system have been proposed: The four-detector (4D), six-detector (6D) models and the two-detector (2D)
model. Here, we select the most suitable model from the above three ones by fitting electrophysiological data of LPTCs
in responses to motion stimuli. We calculated generalization errors (GEs) of the models by cross-validation method.
Due to the result of cross-validation and non-reasonability of the 4D and 6D models fitted to the electrophysiological
data, we can select the 2D model.
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1. Introduction

Detecting a direction of image motion is a fundamental el-
ement in visual computation and is essential for survival be-
cause motion occurs when an animal is moving in its environ-
ment [1], [2]. Insect motion vision has been well-known as an ef-
fective example for studying fundamental principles of informa-
tion processing in visual system [2], [3]. The fly’s visual system
including fruit fly Drosophila melanogaster has been received at-
tention as a model organism in systems neuroscience due to the
availability of a wide range of genetic tools for manipulating and
dissecting neural circuits [2], [3]. Furthermore, the combination
of physiological recording and genetic manipulation has been es-
tablished in Drosophila melanogaster [1], [2]. Although the fly’s
visual system shares similar structural and functional traits with
that of vertebrates [4], [5], the fly’s nervous system contains only
a few hundred thousand neurons as opposed to billions and more
in the vertebrate central nervous system [1], [2]. This simplicity
makes us possible to analyze circuits in the fly’s nervous system
more effective, at least to some extent [1], [2].

The visual ganglia in the fly visual system consist of four differ-
ent layers called the lamina, the medulla, the lobula and the lob-
ula plate [1], [2]. Motion-evoked behaviors in Drosophila depend
on R1-R6 photoreceptors as well as their immediate postsynap-
tic targets, the lamina monopolar cells L1 and L2 cells [2], [6].
There are two major separated pathways called the L1 and L2
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pathway that L1 and L2 cells relay signals to the medulla respec-
tively [2], [3]. The signals are finally transmitted to the third-
order neuropil consisting of lobula and lobula plate [2], [3]. In the
lobula plate, large directionally selective tangential cells, which
are called lobula plate tangential cells (LPTCs), extend their elab-
orate dendrites and spatially integrate the output of local presy-
naptic motion detectors [2], [3]. In the context of neural coding in
the fly visual system, it has been remained controversial whether
the L1 and L2 pathways could code OFF-ON and ON-OFF se-
quence stimuli [7], [8], [9].

There are the following three typical models of elementary
motion detection (EMD) models that are classified into the
correlation-type model [7], [10]. The four-detector (4D) model
(Fig. 1 B), which consists of four standard Reichardt detector
units (SRD units) (Fig. 1 A), had been proposed to address the is-
sue on the difficulty of the biological implementation of the SRD
unit. Furthermore, the two-detector (2D) model (Fig. 1 D) and
six-detector (6D) model (Fig. 1 C), which consist of two and six
SRD units respectively, had been proposed under different hy-
pothesis on whether or not the L1 and L2 pathways could respond
to ON-OFF and OFF-ON sequence stimuli [3], [6], [7].

In this paper, we sought quantitatively to select the most ap-
propriate model from the three models using the common exper-
imental data set. We used electrophysiological data reported in
Suzuki et al. [11], which consists of membrane potential traces
of LPTCs in response to panoramic vertically striped square-
wave grating rotating in both preferred direction (PD) and non-
preferred direction (ND) with six levels of ambiguity per direc-
tion. Firstly, we estimated parameters of the three models by
fitting those models’ responses to the electrophysiological data,
and checked the requirement of reasonableness, whether or not
estimated parameters of each model satisfies functional and bio-
logical constraints. Next, we performed the leave-one-out cross-
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Fig. 1 Elementally motion detection (EMD) models we compare. A: Standard Reichardt detector (SRD)
unit. The following three models compared here are composed of several number of SRD unit. B:
4D model consisting of four SRD units. C: 6D model consisting of six SRD units. D: 2D model
consisting of two SRD units. HP is high-pass filter defined in Eq. (1), LP is low-pass filter defined
in Eq. (2) and DC is direct connection to pass a signal directly. A relative synaptic weight, g,
represents asymmetry between excitatory and inhibitory postsynaptic potentials (0 ≤ g ≤ 1). The
three models in B, C and D have the common three parameters needed to be tuned individually:
the time constants of the LP and HP, τl and τh, and the relative synaptic weight, g.

validation to evaluate the generalization error (GE) of the three
models. Finally, we selected the most appropriate model in view
of both the GE and reasonableness of estimated parameters in
each of the three models. Through the model selection process,
we concluded that the 2D model was most appropriate for ex-
plaining the data and satisfying functional and biological con-
straints. Furthermore, the result obtained here suggests coding
properties in LPTCs.

2. Methods

2.1 Elementary Motion Detection Models
2.1.1 Common Structure of EMD Models

The 2D model in Fig. 1 D, the 4D model in Fig. 1 B and the 6D
model in Fig. 1 C compared here are composed of several num-
ber of the standard Reichardt detector unit shown in Fig. 1 A. The
SRD unit consists of two low-pass filters (LPs), two multipliers
and one subtracter [1], [2], [12]. The SRD unit calculates cross-
correlations of two opposite combinations of delayed and non-
delayed signals of neighboring photoreceptors in a symmetrical
fashion, and finally outputs a difference of the two time-lagged

cross-correlations [12].
The LP commonly used here is a simple first-order lag system.

The transfer function of the filter is

LP(s) =
1

1 + τls
, (1)

where τl is a time constant of the LP. The same LPs had
been commonly used in the original 2D, 4D and 6D mod-
els [3], [6], [11], [13]. To align the conditions of the three mod-
els compared here, the three models use the same simple high
pass filter (HP) and direct connection (DC) connected in parallel,
which works as the band-stop filter. The same parallel filter had
been used in the 2D model [3]. The transfer function of the HP is

HP(s) =
τhs

1 + τhs
, (2)

where τh is a time constant of the HP [3], [6], [11], [13]. The DC
commonly used in the three models allows a signal to pass for all
frequencies with attenuation to 10% of its original intensity for
all frequencies [3]. We use the same value of attenuation as that
of previous studies [3], [11].
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Fig. 2 Motion stimuli used in previous electrophysiological experiment [11] and in the following numer-
ical simulations. The motion stimuli were panoramic vertically striped square-wave gratings with
six different noise levels. The six panels in A and B show examples of stimuli of all different noise
levels. A: Spatial plot of stripe stimuli (elevation [deg] vs azimuth [deg]). The SNR of each stimu-
lus, which was defined in Eq. (3), is indicated at the head of each panel. B: Spatial-temporal plot of
stripe stimuli (azimuth [deg] vs time [sec]). Each frame of stimuli was composed of 80× 16 pixels
that spanned 300 degrees in azimuth and ±60 degrees in elevation. The stripe width was 8 pixels.
The stimuli were rotated clockwise and counterclockwise with frame rate of 8 Hz, the rotation
speed was 30 degrees per second, and the duration of the rotation was 1 second. A total of 12 stim-
ulation conditions consisting of PD and ND stimuli with the six noise levels per direction have
been applied.

A relative synaptic weight g before the subtracter in the SRD
unit is a relative synaptic weight that represents asymmetry be-
tween excitatory and inhibitory postsynaptic potentials (0 ≤ g ≤
1) [13], [14], which had been commonly used in the original 2D,
4D and 6D models [3], [6].

In the implementation, these models are arranged in a two-
dimensional 80× 16 grid, and photoreceptors that are one to one
paired to each element of these models are also arranged in a two-
dimensional 80× 16 grid (as in Fig. 2 A, in Ref. [11]). The output
of the models is defined as the sum of output from all the elements
arranged in the 80× 16 grid.
2.1.2 4D Model

Figure 1 B shows the 4D model that consists of four SRD
units [3], [6].

Hassenstein et al. pointed out the issue on the difficulty of the
biological implementation of the SRD unit because of the mul-
tiplication of negative and positive signals [3], [6], [7], and they
remodeled the SRD unit to the 4D model that had been sepa-
rated into the following four units receiving all possible four com-
binations of ON and OFF inputs: ON-ON, ON-OFF, OFF-ON
and OFF-OFF SRD units under the rectification provided by four
half-wave rectifies. Therefore, the 4D model used here is basi-
cally equivalent to the single SRD unit except for the existence of
the HP and DC.

In performing estimation, we search the three parameters, the
time constant of the LP, τl, the time constant of the HP, τh, and
the relative synaptic weight, g.
2.1.3 6D Model

Figure 1 C shows the 6D model that consists of six SRD
units [6], [9]. Clark et al. reported that both the L1 and L2 path-
ways can respond to ON-OFF and OFF-ON sequence stimuli,
and they remodeled the 4D model to the 6D model that had been
separated into two blocks representing the L1 and L2 pathways
(Fig. 1 C). The block for the L1 pathway consists of ON-ON, ON-
OFF and OFF-OFF SRD units, and the block for the L2 pathway

consists of ON-ON, OFF-ON and OFF-OFF SRD units. The 6D
model is basically equivalent to the 4D model and the single SRD
unit even though there are two redundant components, but the po-
sition of half-wave rectifies in the 6D model is different from that
of the 4D model (see Figs. 1 B and C). To align the conditions of
the three models, we added the DCs in parallel with the HPs as
being different from the original 6D model.

In performing estimation, we search the three parameters, the
time constant of the LP, τl, the time constant of the HP, τh, and
the relative synaptic weight, g.
2.1.4 2D Model

Figure 1 D shows the 2D model that consists of two SRD
units [3], [15]. Eichner et al. reported that the L1 and L2 path-
ways could not respond to ON-OFF and OFF-ON sequence stim-
uli, whereas these could respond to ON-ON and OFF-OFF se-
quence stimuli. Following their experimental result, they modi-
fied the 4D model to the 2D model that consists of ON-ON and
OFF-OFF SRD units (See Fig. 1 C). Thus, the response of the
2D model to visual stimuli is different from that of the 4D and
6D models. To align the conditions of the three models, we set a
threshold of OFF-type half-wave rectifier to be 0 instead of 0.05
as being different from the original 2D model [3].

In performing estimation, we search the three parameters, the
time constant of the LP, τl, the time constant of the HP, τh, and
the relative synaptic weight, g.

2.2 Electrophysiological Data
Electrophysiological data reported in Suzuki et al. are used in

the present work [11]. They recorded membrane potential of in-
vivo horizontal system (HS) cells in the lobula plate of right hemi-
sphere of Drosophila melanogaster using the whole-cell patch
clamp technique. Its sampling frequency is 1 kHz. The whole
data set consists of a total of 888 samples of membrane poten-
tial of seven HS cells (different individuals) in response to both
preferred direction (PD) and non-preferred direction (ND) stimuli
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with six noise levels per direction (a total of 12 stimulation con-
ditions) as explained below. There are more than eight samples
of membrane potential per individual per stimulation condition.
Here, we averaged samples within each stimulation condition in
each cell, and we obtained a total of 84 samples of membrane
potential (corresponding to 12 conditions × 7 individuals). In the
following numerical simulations, we sought to fit the model out-
put to the averaged samples.

2.3 Motion Stimuli
Figure 2 shows motion stimuli used in electrophysiological ex-

periments done by Suzuki et al. [11]. The motion stimuli used in
Suzuki et al. are also used in the following numerical simulations
that fit the three models to their data.

The LED arena, which was composed of 80× 16 pixels and
spanned 300 degrees in azimuth and ±60 degrees in elevation, dis-
played panoramic vertically striped square-wave grating rotating
clockwise and counterclockwise with frame rate of 8 Hz. The
stripe width was 8 pixels, i.e., approximately 30 degrees. The ro-
tation speed was 30 degrees per second, and the duration of rota-
tion was 1 second. As shown in Fig. 2, the ambiguity of motion
stimuli was varied with six different levels of noise. They gen-
erated stimulus noise and controlled its level using the following
procedure. In each frame of motion stimuli, pixels of the LED
arena were randomly selected with a probability of 0.4. They
assigned a specific intensity of the random dot (RI) to the ran-
domly selected pixels. If a pixel within those selected pixels was
located on bright bars in the original stripe pattern, its intensity
value became the subtraction of RI from the bright bar intensity.
Note that the bright bar’s intensity was 1.0. Otherwise, a pixel
within those selected pixels was turned on with the value of RI. In
the previous work, they used six levels of RI: 0, 0.2, 0.4, 0.6, 0.8
and 1.0. They introduced the following signal-noise ratio (SNR)
to quantify the ambiguity of the motion stimuli,

SNR = 10 log10
1 − 0.4RI

0.4RI
. (3)

The SNRs of the six stimuli corresponding to the six levels of RI
are indicated at the head of the panels in Fig. 2. They used a total
of 12 stimulation conditions consisting of clockwise and coun-
terclockwise rotation stimuli (i.e., PD and ND stimuli) with six
noise levels per direction.

Following the above procedure, we also synthesized motion
stimuli (80× 16 pixels in each flame) with the same 12 condi-
tions, and provided the synthesized stimuli to photoreceptors of
these models arranged in the 80× 16 grid.

2.4 Parameter Estimation and Model Selection
2.4.1 Mean Square Error between Data and Rescaled Model

Outputs
To evaluate fitness between model output and membrane po-

tentials of the HS-cell, we calculated the mean square error
(MSE) between them for two seconds from the start of the ro-
tation to 1 sec after the rotation stops.

Because the output of these models is dimensionless quantity,
we need to adjust the scale of the model output to that of the
membrane potential of the HS-cells. Firstly, we evaluated a scale

factor for each HS-cell by calculating the ratio of two temporal
averages of the model output and membrane potential of each
HS-cell for the duration of rotation (i.e., one second) when using
the PD stimulus in zero noise condition. Next, with respect to
each HS-cell, all the model outputs in 12 stimulation conditions
were rescaled with the scale factor estimated in zero noise condi-
tion, and we calculated the MSE between membrane potentials of
each cell and the rescaled model outputs. Finally, we obtained the
total MSE by averaging the MSE with respect to each HS-cell.
2.4.2 Grid Search

The three models compared here (Figs. 1 B, C and D) have the
common three parameters needed to be tuned individually: the
time constant of the LP in each SRD unit, τl, the time constant of
the HP, τh and the relative synaptic weight, g. The parameter es-
timation was performed with grid-search over a parameter grid in
the three-dimensional parameter space. The parameter grid con-
sists of 20 grid points along the τh axes at equal intervals from
30 msec to 600 msec, 50 grid points along the τl axes at equal in-
tervals from 20 msec to 1,000 msec and 21 grid points along the
g axis at equal intervals from 0 to 1. Thus, we exposed 21,000
combinations of parameter values over the parameter grid to find
the minimum point of the MSE.
2.4.3 Cross-validation for Model Selection

Model selection with the data of all seven individuals: The
whole data obtained from seven individuals consists of 84 sam-
ples as explained above. We performed the leave-one-out cross-
validation (LOOCV) to evaluate the generalization error (GE) of
the three models. Of the 84 samples, a single sample was retained
as the validation data for evaluating the models’ GE quantified us-
ing the MSE, and the remaining 83 samples were used as training
data for estimating the parameters of the models with the grid-
search. Repeating the cross-validation process with each of the
84 samples used exactly once as the validation data, we obtained
84 MSEs quantifying the GE of each of the three models. The sig-
nificance of the difference between the GEs of all possible pairs
of the models was tested using the Wilcoxon signed rank-sum
test.

3. Results

3.1 Parameter Estimation with Grid-search
The three models compared here (Figs. 1 B, C and D) have the

common three parameters needed to be tuned individually: the
time constants of the LP and HP, τl and τh and the relative synap-
tic weight, g. The parameter estimation was performed with the
whole data of all the seven individuals (84 samples). Figure 3
shows dependency of the MSE on the parameters in each of the
three models. The MSE of the individual models becomes mini-
mum at the point marked with the asterisk * shown in Fig. 3. The
minimum points are at τh = 360 [msec], τl = 260 [msec] and g =
0.70 in the 2D model, at τh = 120 [msec], τl = 400 [msec] and
g = 0 in the 4D model and at τh = 120 [msec], τl = 400 [msec]
and g = 0 in the 6D model, respectively. In the 4D and 6D mod-
els, the estimates of the relative synaptic weight, g are equal to
zero (Fig. 3 E and F).

Figure 4 shows results of numerical simulations with the best-
fitting parameters in each of the three models in response to the
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Fig. 3 Dependency of the MSE on the parameters in the three models when fitted to the data of all the
seven individuals. A, B and C: The three panels show the dependency of the MSE on τl [msec]
and τh [msec] in the 2D, 4D and 6D models, respectively. D, E and F: The three panels indicate
the dependency of the MSE on g in the 2D, 4D and 6D models, respectively. Other parameters not
plotted in each panel are set to be optimal. The MSE of the individual models becomes minimum
at the point marked with the asterisk *.

12 different stimuli consisting of PD and ND stimuli with the
six noise levels per direction. We superimposed examples of the
membrane potential of the HS-cell most fitted to the results of
numerical simulations on Fig. 4. Compared to the 2D model, re-
sponses of the 4D and 6D models to the ND stimuli are not in
good agreement with the membrane potential responses of the
HS-cell as shown in Fig. 4. This tendency is kept in almost all
other samples.

3.2 Cross-validation for Model Selection and Variation
among Individuals

We performed the LOOCV with the whole data obtained from
seven individuals (84 samples), and we obtained 84 MSEs on the
validation data, which quantify the GE, with 84 times validation
process for each of the three models. Figure 5 shows distribu-
tions of the 84 MSEs of the three models using scatter plots. We
checked the significance of the difference between GEs of all pos-
sible pairs of the models. As shown in Fig. 5, the GE of the 2D
model was significantly smaller than those of both the 4D and
6D models. Note that variation of the parameters estimated in
each LOOCV iteration was 8.4% (the standard deviation divided
by the mean) in the HP time constants of 4D model, which was
largest in those of the parameters in the three models.

4. Discussions

4.1 Reasonability of the 2D Model
The results obtained from the LOOCV suggest that the final

candidate is the 2D model.
As shown in Figs. 3 E and 3 F, the estimates of the relative

synaptic weight, g were equal to zero. In principle, if g = 0, the

4D and 6D models, which are basically equivalent to the single
SRD unit in Fig. 1 A, cannot respond to an edge moving in ND.
Figure 6 A shows a numerical example of non-negative (i.e., non-
hyperpolarized [7]) response of the 6D model with g = 0 to the
ND single edge stimulus. On the other hand, in the case of ver-
tical stripe stimuli that are spatially and temporally periodic, the
ON-OFF and OFF-ON SRD units can respond to the ND stimuli.
We confirmed with numerical simulations that if g was equal to
zero, hyperpolarized responses of the 4D and 6D models to the
ND stimuli (lower row panels of Figs. 4 B and 4 C) were mainly
induced by the ON-OFF and OFF-ON SRD units. Figure 6 B
shows a schematic why the ON-OFF and OFF-ON SRD units
can respond to the ND stripe stimuli. If τl is comparable to the
temporal period of rotating stripes, the ON-OFF and OFF-ON
SRD units can respond to such a periodic ND stimulus, because
two successive bars in the stripe respectively provide OFF and
ON sequence signals to the ON-OFF and OFF-ON SRD units,
and cross-correlations of these OFF and ON sequence signals be-
come compatible to the amplitude of PD responses due to the long
delay by the LP. Therefore, the above speculations can give the
following conclusion that the 4D and 6D models with the best-
fitting parameters are not in functionally and biologically reason-
able situations.

Finally, due to the result of LOOCV and non-reasonability of
the 4D and 6D models fitted to the electrophysiological data, we
can select the 2D model.

4.2 Verification and Comparison of the Three Models in
Previous Works

As explained above, two different research groups respectively
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Fig. 4 Results of numerical simulations with the best-fitting parameters in each of the three models with
the data of all seven individuals and examples of the membrane potential of the HS-cell in re-
sponse to stimuli of 12 different conditions. A: 2D model. B: 4D model. C: 6D model. Green
lines: simulation results of the each model. Blue lines: traces of the membrane potential of the
HS-cell most fitted to the simulation results. Upper and lower row panels in A, B and C show the
responses to PD and ND stimuli, respectively. The noise level of each stimulus is indicated at the
top of this figure. Shaded region of each panel indicates the duration of rotation.

modified the 4D model to the 2D and 6D models to explain the
responsiveness of the L1 and L2 pathways. The reasonability and
parameters of each of the 2D and 6D models have been verified on
the basis of the following different experiment. Eichner et al. veri-
fied the reasonability of 2D model and manually tuned its parame-
ters on data of membrane potentials traces of VS cells in response
to apparent motion step stimuli in the four different stimulus con-
ditions consisting of four combinations of ON and OFF stripes
appearing in sequence [3]. Clark et al. verified the structure of
the 6D model on data acquired by calcium imaging targeted to
the L1 and L2 pathways, and estimated its model parameters by
measuring behavioral response to white noise visual stimuli, i.e.,
by employing white noise analysis [6]. Joesch et al. have qualita-
tively compared the 2D and 6D models using membrane potential
traces of VS cells in response to ON-OFF and OFF-ON sequence
stimuli when each of L1 and L2 pathways had been blockade [9].
Leonhardt et al. have tuned the 2D model to maximize its motion
detection ability to natural images, and claimed that parameters of
the 2D model they tuned were qualitatively consistent with their

electrophysiological data of LPTC [16].
However, there has not been a quantitative comparison of the

2D and 6D models. In this paper, we have firstly selected the
most statistically appropriate model from the two models and the
4D model using the common experimental data.

4.3 Reasonableness of Estimates
As described in Section 4.2, the parameters of each of the 2D

and 6D models had been estimated using the different experimen-
tal data set in the previous works [3], [6], [16]. Thus, for instance,
the estimate of LP time constant was different from each other.
Eichner et al. estimated the LP time constant of the 2D model as
50 msec using membrane potentials traces of VS cells, whereas
Clark et al. estimated the LP time constant of the 6D model to
be 10,000 msec using behavioral response data. Furthermore,
Behnia et al. have reported that Mi1, Tm1, Tm2 and Tm3 cells
in the medulla might function as the LP in the SRD unit, and the
time constant mediated by these cells could be 13∼18 msec [17].
Leonhardt et al. have estimated the LP time constant of 2D model
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Fig. 5 Scatter plot of GEs quantified by the MSEs on the validation data.
We performed the LOOCV with the whole data obtained from seven
individuals (84 samples), and we plotted a distribution of MSEs ob-
tained by 84 times validation process in each of the three models. A
plus sign indicates the average point of the GE of the individual mod-
els. The standard deviations of the GEs are indicated at the bottom
of the figure. The significance of the difference between GEs of all
possible pairs of the models was tested using the Wilcoxon signed
rank-sum test.

Fig. 6 Non-reasonability of the 6D model when g = 0. A: Non-negative
response of the 6D model with g = 0 to a single bar stimulus rotating
in ND. B: Schematic of mechanism why the ON-OFF and OFF-ON
pathways are responsible to the ND stripe stimuli when g = 0. Two
successive bars in the stripe respectively provide OFF and ON sig-
nals to this pathway, and cross-correlations of these OFF and ON
signals become compatible to the amplitude of PD responses due to
the LP with large τl.

to be 20∼120 msec by a comparison of the electrophysiological
data of LPTC and the 2D model optimally tuned to natural im-
ages [16].

On the other hand, we estimated the LP time constant of the
2D model to be 260 msec and those of the 4D and 6D models
to be 400 msec. Thus, our estimate of the LP time constant in
the 2D model was larger than those of Eichner et al. and Borst
et al., and our estimate in the 6D model is smaller than that of
Clark et al. The reasons of the difficulty we speculate are that the
stimuli we used in measuring membrane potential responses was
different from those of the previous works as described above,

and we used the membrane potential traces whereas Clark et al.
used the behavioral data. Our estimation was performed using the
data acquired in more various stimulation conditions than those
of the previous works, and thus we could reduce the possibility
of over-fitting in parameter estimation compared to the previous
work.

4.4 Whether L1 and L2 Pathways could Respond to ON-
OFF and OFF-ON Stimuli or Not?

As explained above, our quantitative comparison of the three
models has strongly suggested that the 2D model might be suit-
able for explaining the data of membrane potential traces of HS
cells. Eichner et al. used the 2D model, which only consists of
ON-ON and OFF-OFF units, to explain their hypothesis based
on the experimental data that the L1 and L2 pathways could not
respond to ON-OFF and OFF-ON sequence stimuli. Our result
obtained from the quantitative comparison also gave a possibility
that the L1 and L2 pathways could not respond to ON-OFF and
OFF-ON sequence stimuli, and thus support the Eichner’s hy-
pothesis. However, it is impossible to determine the function of
each of the L1 and L2 pathways through the quantitative compar-
ison performed here. This is because we could not separate a sin-
gle membrane potential trace into two signals delivered from the
L1 and L2 pathways individually, and could not uniquely iden-
tify the response characteristic of each of the L1 and L2 path-
ways from the single potential trace. To overcome this issue, we
have to verify extra data acquired from either L1 or L2 pathway
blockade fly as in the previous works [16], [18].

5. Conclusion

As described in Section 4.1, due to the result of LOOCV and
non-reasonability of the 4D and 6D models fitted to the electro-
physiological data, we can select the 2D model.
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