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概要：Previous methods for skill assessment using ubiquitous computing have relied on a two-tiered approach

that consists of an initial activity recognition process followed by a skill assessment process that uses the results

of activity recognition as input. The intermediate activity recognition process used in those methods increases

the burden placed on researchers when designing and training their skill assessment system. In this paper, we

propose a method for skill assessment that removes the need for an intermediate activity recognition process. We

exploit the ability of deep neural networks to extract high-level features from input data to allow us to run a skill

assessment model that takes raw sensor data as input. We evaluate our method on the task of toothbrushing per-

formance evaluation, and show that deep neural networks have the potential to compete with more traditional skill

assessment systems.

Preliminary Investigation on Using Deep Learning to Evaluate Toothbrushing
Performance with Smartphone Audio
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1. Introduction

One promising area of research that is now attracting at-

tention in the pervasive computing community is the exten-

sion of human activity recognition to performance evaluation.

Using techniques developed by the pervasive computing com-

munity for human activity recognition, it is possible to create

systems that can automate performance evaluation for many

domains, including sports [1], [2], [3], [4], [5] and health

care [6], [7], [8], [9]. Advances in automated performance

evaluation provide doctors with new tools to evaluate patients,

coaches with new insights into their athletes’ performance, and

everyday users with low-cost access to expert advice.

The typical flow used when performing skill assessment with

pervasive computing is as follows. First, data is collected from
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a sensor such as a microphone or an accelerometer while the

subject is performing the target activities. Next, domain spe-

cific features are extracted from the data, with these features

specialized to the target activities. An activity recognition

model is then trained, so that the activities can be automati-

cally recognized in sensor data, e.g., hidden Markov models

(HMMs) may be trained to recognize various classes of ac-

tivity in audio data. Finally, skill assessment is conducted by

examining features in the sensor data when the target activities

are recognized, e.g., measuring the variance and duration of au-

dio segments for segments corresponding to the activity classes

recognized. In the case of our previous study on toothbrush-

ing performance assessment using smart phone audio [8], for

example, Mel-frequency cepstral coefficients (MFCCs) were

first extracted from the audio, then toothbrushing classes cor-

responding to brush-stroke type and mouth location were rec-

ognized using HMMs. The output of the HMMs were then

used to generate independent variables, such as the duration
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spent brushing in different areas of the mouth, for support vec-

tor machine (SVM) based regression models which predicted

performance scores. This process required a great deal of input

from domain experts, from determining appropriate classes and

labeling audio data for activity recognition to determining ap-

propriate independent variables to use during skill assessment.

While such systems have been used successfully in the past,

they create skill assessment models that are highly specific to

the target activity.

Human activity recognition systems rely on a diverse range

of input data (e.g., audio vs. kinematic data), with the appro-

priate type of data to use dependent on the activities being rec-

ognized. For example, while audio data can be used to rec-

ognize some daily-life activities, it would be ineffective when

recognizing surgical tasks. And likewise, while it is practical

to record a large array of kinematic data for surgical tasks, i.e.,

the linear and rotational movements of multiple tools and their

controls used during surgery, daily-life activities are normally

restricted to the data that can be collected by a small number

of sensors in a smartwatch or smartphone in order to reduce

the impact of collection on the end user. Moreover, even when

dealing with the same type of sensor data, the characteristics of

the target activity’s movements have often necessitated anal-

ysis techniques that are tailored to that specific activity, e.g.,

analyzing a patient’s motion during rehabilitation sessions us-

ing a sinusoidal model of accelerometer data [9] vs. measuring

the quality of a rock climber’s holds by measuring the signal

energy in the accelerometer data [4].

Because of this diversity in both the data collected and the

characteristics of the data, most previous research into skill as-

sessment and performance evaluation have used activity recog-

nition techniques that are tailored to a specific target activ-

ity [1], [2], [3], [4], [5], [6], [8], [9], [10], which greatly re-

duces the ability of these techniques to be generalized to other

domains. Additionally, most previous techniques place an in-

creased burden on researchers when training the system, as al-

though the end goal is to train a system capable of estimat-

ing performance levels, they include an intermediate activity

recognition process that requires the additional labeling of in-

dividual actions within the data. Furthermore, the tailored fea-

tures used in previous studies are typically handcrafted and re-

quire domain specific knowledge to create. This means that

experts in the given domain will need to be greatly involved

in their design, which can be burdensome for the experts and

costly for the project.

In this paper, we investigate the use of neural networks

for performance evaluation. In recent years, neural networks

have been shown to be the state of the art recognition tech-

nique for a variety of domains, including automatic speech

recognition [11], [12], [13], [14], [15], [16] and human activ-

ity recognition [17], [18], [19]. Their ability to model com-

plex abstractions of input data allows them to perform recog-

nition tasks with high accuracy without the need for hand-

tailored feature extraction processes. For example, in auto-

matic speech recognition studies, neural networks using raw

Mel filter banks as input have been shown to achieve state-of-

the-art results [14], [15], [16].

We design our neural network for performance evaluation so

that it can take raw sensor data as input, and perform evalu-

ation without the need to label individual actions in the data,

needing only the skill assessments provided by experts as the

ground truths for our evaluation. For example, when evaluating

toothbrushing performance, one such network would take raw

audio data as input and output a score from 0 to 24 assessing

the subject’s overall performance. We examine the effective-

ness of this technique by implementing a toothbrushing skill

assessment system using both deep-feed-forward neural net-

works and long-short-term-memory (LSTM) neural networks.

The contributions of this work are that:

• Our proposed method is the first to use neural networks for

evaluating task performance using activity data with only

the performance scores as labels, eliminating the need to

label individual actions within sessions of data.

• The network architectures used in our method are de-

signed to take entire sessions of activity data as input,

allowing us to perform evaluation without labeling indi-

vidual actions within the session. Because of this, the net-

works we design are capable of handling input sizes that

are much larger than the typical sizes used with deep neu-

ral networks.

• We evaluate our method using the task of toothbrushing

performance evaluation with audio data.

In the rest of this paper, we first introduce related work,

including our previous research into performance evaluation

using pervasive computing. We then introduce our proposed

method for evaluating toothbrushing performance through the

use of deep neural networks.

2. Related Work

2.1 Performance Evaluation
A major area of prior research on performance evaluation us-

ing pervasive computing comes from sports performance eval-

uation. One such example is [1], where wearable sensor data

was used to detect sports-related training activities, and the ori-
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図 1: An overview of the previous process used when evaluating toothbrushing performance using audio data.

図 2: An overview of the training and testing phases used when using neural networks to evaluate toothbrushing performance using audio data.

entations of body parts during the activities then used to iden-

tify potential factors associated with injuries in athletes. In [2],

acceleration sensors were used to collect kinematic data dur-

ing swimming activity as a basis for providing immediate au-

tomated feedback to swimmers on their swimming technique.

Accelerometer data was also used as the basis for skill assess-

ment in [4], where data was collected during rock climbing ac-

tivity using wrist-worn sensors to provide feedback to climbers

that estimated their skill based on a set of criteria that is used

to evaluate competitive climbing. In [5], an automated skill as-

sessment system was designed to provide feedback to amateur

horseback riders based on data collected from inertial measure-

ment units attached to horses’ legs.

In addition to the use of automated performance evaluation

for athletes, techniques have also been developed for use in

exercise and physical rehabilitation. In [3], a smartphone was

used to provide automated feedback to users on their perfor-

mance during exercise on a balance board. In [9], personal-

ized support for physical rehabilitation was achieved by creat-

ing a system that learned a sinusoidal motion model for correct

movement during sessions supervised by a physical therapist,

and provided exercise feedback to the user in later sessions by

comparing their movement to that motion model.

Another important area of research on automated perfor-

mance evaluation is on its medical applications. In [6], deep

learning was used to estimate the severity of symptoms in pa-

tients with Parkinson’s Disease in naturalistic settings, based

on accelerometer data collected from wrist-mounted sensors.

In contrast to our current work, the above approach conducted

performance evaluation by creating a tailored set of features

specific to the target activity as the basis for action recognition

and performance evaluation.

The most relevant previous work on skill assessment using

pervasive computing is [7]. They propose a method for skill

assessment using accelerometer data that is able to automat-

ically extract features from a symbolic representation of the

data using stochastic rule induction. Their technique does not

rely on tailored features and thus provides a more generalized

approach to skill assessment than previous work. In contrast,

our system removes the need for any feature extraction by con-

ducting skill assessment using raw data as input to the neural

networks, allowing the neural networks to automatically ex-

tract features from the data.
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2.2 Audio Recognition using Deep Neural Networks
Audio recognition, and in particular automatic speech recog-

nition, using deep neural networks is a major area of research,

with deep neural networks representing the state-of-the-art.

This research has included speech recognition with both long-

short-term memory (LSTM) networks [14], [15] and deep-

feed-forward networks [13]. In this research, we use the net-

work architectures used in automatic speech recognition as the

basis for our network architectures. However, since we do not

label individual events in sessions of data, our networks are run

on much larger input data, e.g., 15,000 time steps in a single in-

stance.

In [20], the authors proposed a method for creating

interference-robust neural networks to perform tasks such as

ambient scene identification and stress detection using audio

data collected on a smartphone. Their method increases in-

terference robustness by combining their labeled training data

with a large amount of unlabeled data from various locations

that capture a variety of background noises.

2.3 Activity Recognition using Neural Networks
Neural networks have also begun to make an impact in hu-

man activity recognition using wearable sensor data. In [17],

neural networks were used to perform activity recognition on a

Snapdragon 400 SoC (representative of smartwatch hardware),

with the networks outperforming other traditional methods of

activity recognition in terms of accuracy. Work has also been

done on exploring the effectiveness of convolutional neural net-

works (CNNs), feed-forward deep neural networks (DNNs),

and LSTMs when performing activity recognition on wear-

able sensor data [18], with their results indicating that neural

networks can outperform previously published methods. Ad-

ditionally, [19] reported state-of-the-art results when perform-

ing activity recognition on wearable sensor data using a CNN-

LSTM hybrid network.

2.4 Toothbrushing Performance Evaluation
Figure 1 shows the flow of our previous method for evaluat-

ing toothbrushing performance with smartphone audio data. In

our previous study on toothbrushing performance assessment

using smart phone audio [8], MFCCs were extracted from the

audio and used as input to HMMs to recognize toothbrushing

activity classes. These classes corresponded to brush-stroke

type, i.e., fine vs. rough stroke, and mouth locations, i.e., in-

side vs. outside surface of the teeth and front vs. back teeth.

For example, one class would correspond to brushing the out-

side surface of the front teeth with a fine stroke. We then used

the output of the HMMs to generate independent variables that

corresponded to the duration of each class and the variance of

the data for each class. These independent variables were then

used to train SVM-based regression models to predict a user’s

toothbrushing performance, with the ground truths for the re-

gression models assigned by a dentist who evaluated each ses-

sion of toothbrushing using video data. The dentist assigned 12

scores total, corresponding to the quality of the brushing stroke

(Stroke), the duration of brushing (Duration), and how well the

brushing covered each area of the mouth (Coverage) for four

areas of the mouth: inside and outside surfaces of the front and

back teeth.

The dashed gray portions of Figure 1, Activity Labels and

the Intermediate Processes, correspond to the portions of the

standard model for skill assessment via pervasive computing

that we attempt to eliminate in this study.

3. Proposed Method

Figure 2 shows an overview of our proposed method. We

begin with two vectors of input data: a S x1 vector for each

of the S scores being estimated for the current session, e.g.,

three scores corresponding to quality of the Coverage, Stroke,

and Duration of a user’s toothbrushing, and a TxM vector for

the T samples of M dimensional data in the session. We first

standardize each session of sensor data to have zero mean and

unit variance, and normalize the evaluation scores to a range

of [0,1]. The sensor data is then zero padded so that input data

for all sessions have the same length. We then use the sensor

data and scores to train a neural network for each of the scores.

During the test phase, we use the networks to predict each of

the S evaluation scores.

3.1 Preprocessing
Each dimension of the input data was standardized using the

equation:

x′ =
x − x̄
σ

where x′ is the standardized input vector, x is the raw input

vector, x̄ is the mean of the input vector, and σ is the variance

of the input vector.

The scores used to train the networks were normalized to the

range [0, 1] using the equation:

y′ =
y − min(y)

max(y) − min(y)

where y′ is the normalized score, y is the raw score, min(y) is

the minimum score possible, and max(y) is the maximum score

possible.
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図 3: The two neural network architecture used for skill assessment in this study: a deep-feed-forward network (DNN) and a recurrent network (LSTM).

3.2 Network Architectures
In this study, we investigate performance evaluation with

neural networks using two different architectures, which we

will refer to as: DNN and LSTM. We use the following types

of layers in these architectures:

Dense A simple feed-forward layer that does not exploit any

temporal structure in the data.

Gaussian Noise Adds additive zero-centered Gaussian noise

with sigma 0.1 to the input data during the training phase.

LSTM An LSTM recurrent layer, where each node processes

the input vector by stepping through each time step in the

data in order. If the layer is a Many to Many layer, then

each node in the layer outputs a value for each time step,

else if the layer is a Many to One layer, then each node

returns only a single value corresponding to its output at

the final time step.

Temporal Dense Treats each time step t in the input vector

as a separate input to a Dense layer, i.e., splits the TxM

input vector into T vectors and runs a Dense layer using

each of those T vectors as input. The output of this layer

is a vector of size TxN, where N is the number of nodes

in the Dense layer.

All LSTM layers used the hyperbolic tangent function as

their activation function, all internal DNN layers used the rec-

tified linear unit function as their activation function, and the

DNN output layers used the sigmoid function as their activa-

tion function.

3.2.1 DNN
Figure 3(a) shows the architecture for our DNN model. It

takes a session’s TxM vector as input and first uses three Tem-

poral Dense layers to reduce the dimensionality of the input

down to 10, reducing the GPU memory necessary for later

layers. Note that this dimensionality reduction is necessary

when working with large instances of data, since the data is

too large to process in the GPU memory at full dimensionality.

We then use five Dense layers on the Tx10 output of the Tem-

poral Dense layers to estimate a single performance evaluation

score for that session.

3.2.2 LSTM
The architecture for the LSTM network is shown in Fig-

ure 3(b). The LSTM layer starts with two Temporal Dense

layers that reduce the dimensionality of the data down to 100.

The first LSTM layer then takes the Tx100 vector of data as

input, and steps through it in sequential order, with a value re-

turned by each node at each time step. The second LSTM layer

processes the Tx256 output vector from the first LSTM layer

in sequential order, but each node only returns a single value

upon reaching the final time step. Each of the values in the sec-

ond layer’s output now represents some feature captured from

the entire session. We then use four Dense layers to estimate a

performance evaluation score based on the 256x1 output vector

from the second LSTM layer.

4. Evaluation

4.1 Test Environment
We evaluated our method using a desktop PC with an In-
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表 1: Mean absolute error (MAE) for each method when evaluating the

scores at three different granularities.

Total CSD IOxFBxCSD

AvgScore 5.50 2.03 0.79

HMM-SVM 3.31 1.49 0.58

DNN 4.09 1.80 0.69

LSTM 7.97 2.28 0.80

tel i7 6700K CPU with 32 GB ram and a GTX 1080 GPU (8

GB ram). The networks were implemented in Python using the

Keras [21] deep learning library with Theano [22] used as the

back end. All neural networks were trained using 30 epochs of

training.

4.2 Dataset
We evaluated our method using audio data with performance

evaluation scores for toothbrushing performance [8]. The data

includes 94 sessions of audio data taken from 14 users. The

audio was collected using a smartphone placed next to the sink

when the users were brushing their teeth.

The scores used for performance evaluation were assigned to

each session by a dentist who specializes in dental care instruc-

tion. We predicted these scores at three different granularities:

IOxFBxCSD refers to the use of 12 scores, each in the range

[0, 2], to evaluate the user’s Coverage, Stroke, and Dura-

tion for each of four areas of the mouth: the inside surface

of the front teeth, the outside surface of the front teeth,

the inside surface of the back teeth, and the outside sur-

face of the back teeth, with Coverage evaluating how well

the user’s brushing covered the area, Stroke evaluating the

quality of the brush stroke used in the area, and Duration

evaluating the duration of the user’s brushing in the area.

CSD corresponds to the use of three scores: Coverage,

Stroke, and Duration, which each assigned a score in the

range [0, 8]. These scores are each the sum of their corre-

sponding scores for each area of mouth.

Total refers to the use of a single score in the range of [0,

24], used as a coarse-grained assessment of toothbrushing

performance in a session of audio. This score is the sum

of the 12 IOxFBxCSD scores for the given session.

The Mel filter banks used for the audio data were processed

using 40 filter banks, along with the filter banks’ second and

third order delta components, for a total of 120 dimensions,

chosen due to their reported high performance in automatic

speech recognition [11], [12]. The filter banks were processed

using 2048 samples per window with a step size of 1024 sam-

ples. Note that it was not possible to use the actual waveform

表 2: Error ratio for each method when evaluating the scores at three dif-

ferent granularities.

Total CSD IOxFBxCSD

AvgScore 0.229 0.254 0.393

HMM-SVM 0.138 0.186 0.291

DNN 0.170 0.225 0.344

LSTM 0.332 0.285 0.399

data for the audio due to its extreme size.

4.3 Evaluation Methodology
We evaluated our method using user independent models,

with the dataset split into four groups of users and tests run us-

ing leave-one-group-out validation. When evaluating the accu-

racy of the predictions, we use the mean absolute error (MAE)

along with the error ratio. The error ratio is computed as the

MAE divided by the maximum score possible for the given

score type, e.g., 24 for Total scores. All results are evaluated

using the mean absolute error (MAE).

4.4 Methods
When evaluating the effectiveness of our score estimation

models, we will use the following methods:

AvgScore Naive method from [8] that simply assigns each

score as the mean of all scores in the training data.

HMM-SVM The method proposed in [8] for a user inde-

pendent score estimator that uses an HMM-based activity

recognition model to generate features for an SVM-based

regression model.

DNN The deep-feed-forward neural network shown in Fig-

ure 3(a).

LSTM The LSTM recurrent neural network shown in Fig-

ure 3(b).

4.5 Results
4.5.1 Overall Performance

Table 1 shows the MAE for each method on the three score

types. The AvgScore results give a baseline for performance,

with results any worse than this row indicating an inability to

create a working model. Based on this, it is clean that LSTM

was unable to build a working regression model for any type of

score, with its results worse than AvgScore in each case. Look-

ing at Table 2, we can see that the error ratios for LSTM were

over 10 percent worse than AvgScore.

Comparing the results of DNN to AvgScore, we see that the

DNN model was able to train a working regression model, with
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DNN outperforming AvgScore for each score type. Comparing

DNN with HMM-SVM, the top performing method from our

previous study, we see that the neural networks were not able

to perform as well. In each case, the error ratio of DNN was

a few percent higher than that of HMM-SVM. Based on these

results, we believe that the DNN-based evaluation model could

be useful for performance evaluation tasks where one is unable

to properly train the intermediate activity recognition processes

shown in Figure 1.

4.5.2 Processing Times
When conducting performance evaluation, it is often impor-

tant to be able to give feedback to the user in a timely manner.

Because of this, we also examined the processing time needed

to conduct evaluation on a single session of data. We found

that the average time needed to predict a Total score for a ses-

sion was approximately 67 msec. Since our architecture calls

for a separate network to be trained per score, this time scales

linearly with the number of scores. So even in the case of IOxF-

BxCSD, DNN is able to predict all 12 scores in under 1 second.

Note that this time is based on processing on a GPU, so when

the data is collected via smartphone, additional time will be re-

quired for data transfer. In the case of LSTM, the average time

per session was approximately 6 seconds.

4.6 Discussion
While our method allows us to conduct performance evalu-

ation using raw data, there are restrictions on the formatting of

the input data. In the case of audio data, single-channel raw

waveform data for audio sampled at 44.1 kHz for sessions last-

ing for up to 5 minutes results in 13,230,000 x 1 input vectors,

which are too large to be processed by neural networks on a

single GPU with limited memory. Therefore, it was necessary

to choose an alternate representation of the data as input, the

Mel filter-bank representation of the data, allowing us to re-

duce the input vectors’ to a size of 15,000 x 120. For other

datasets, such as accelerometer data, it should be possible to

use raw sensor data as input as the sampling rate is typically

much lower than that of audio data. However, even if the raw

data is not too large, it may be useful to attempt to use an alter-

nate representation of the data, e.g., discrete Fourier transform.

Additionally, it may even be possible to apply this method to

video data if the data is first processed into smaller feature vec-

tors on a per frame basis, e.g., by preprocessing frames using a

pretrained CNN model such as GoogLeNet [23].

Our results indicate that while a deep-feed-forward network

is capable of learning a working regression model, its perfor-

mance is inferior to that of a more traditional method that uses

handcrafted features. However, we feel that one reason for this

is the small size of our dataset, i.e., 94 sessions. In projects

with larger datasets, the additional data may push the perfor-

mance closer to that of more traditional methods.

5. Conclusion

This paper proposes a method for conducting performance

evaluation through the use of deep neural networks. Our

method simplifies the evaluation task by removing the need

to conduct intermediate feature extraction and activity recog-

nition tasks. By doing so, we are able to reduce the burden

on researchers and domain experts when developing evaluation

models. We evaluated our method using the task of toothbrush-

ing performance evaluation using smartphone audio. Our re-

sults indicate that a deep-feed-forward network is able to gen-

erate a working regression model, but the performance is not

yet as good as more traditional methods. In our future work,

we hope to apply our method to other datasets and plan to ex-

plore additional neural network architectures.

6. Acknowledgment

This work was supported by JSPS KAKENHI Grant Num-

ber JP16J01917.

参考文献
[1] A. Ahmadi, E. Mitchell, C. Richter, F. Destelle, M. Gowing,

N. E. O’Connor, and K. Moran, “Toward automatic activity

classification and movement assessment during a sports train-

ing session,” IEEE Internet of Things Journal, vol. 2, no. 1,

pp. 23–32, 2015.
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