
Long Distance Synchronization Method for
In-Memory State Management

Arif HerusetyoWicaksono1 Kazuhide Aikoh1

Abstract: With the needs of protecting data consistency between multiple data centers for state management in trans-
actional system, a long distance data synchronization technology is required, both for improving performance by
distributed processing and for providing fail-over in the case of large-scale disaster. However, in existing method,
maintaining data consistency causes network latency degradation for ensuring completion of synchronization, while
maintaining network latency performance causes large number of data inconsistencies in the case of large-scale disas-
ter, both of which are unacceptable. Therefore, we propose a synchronization method with two main characteristics:
prioritization of transmission of identifier information along with transaction ordering information for faster process-
ing, and confirmation of replication status prior to I/O operation. By applying the proposal to an in-memory KVS,
we verified that the number of data inconsistencies caused by disaster can be reduced by 39% for 100 kB value size,
without affecting the network latency performance. Finally, it can be estimated that the minimizing data inconsisten-
cies while maintaining network latency performance can be achieved with our proposed long-distance synchronization
method.

Keywords: In-memory KVS, DR, Long-distance synchronization

1. Introduction
The state management component in a transactional system re-

quires low-latency to enable fast response during peak time. In-
memory processing is often utilized in such transactional system
due to its capability of providing low-latency response. One ex-
ample is adopting in-memory Key-Value Store (KVS) for state
management.

However, such state management component usually involves
several data centers located in major metropolitan area to improve
the quality of services. Additionally, to ensure business conti-
nuity in the event of a large scale disaster, such as earthquake,
the backup of the data should be stored in different data centers.
In such deployment, it is important to maintain strong consis-
tency[1] guarantee to prevent conflicts between information con-
tained in different sites. Strong consistency can be obtained by
implementing distributed consensus algorithm such as Paxos[2]
or Raft[3], within nodes of a cluster to agree on which action to
take.

To satisfy these two requirements, a long-distance synchro-
nization technology to ensure the consistency while maintaining
the low-latency performance is required. However, it is difficult
to design such technology due to the trade-off between consis-
tency and latency. Ensuring strong consistency model requires
multiple communications between the member nodes for status
confirmation, which cause system latency to degrade. On the
other hand, ensuring low latency response means minimizing the
number of communication between member nodes, thus relaxing

1 Hitachi, Ltd., Research & Development Group, Center for Technology
Innovation-Information and Telecommunications

consistency guarantee.
In this research, we aim to design an approach for long-

distance synchronization, which maintains the low-latency per-
formance of the data store, while having the capability of pre-
venting the occurrence of inconsistencies, especially for use with
KVS with strong consistency model.

2. Existing Method for Long Distance Syn-
chronization

In long distance synchronization there are two main ap-
proaches, asynchronous and synchronous replication. In this sec-
tion, we will consider the characteristics of each approach.

Asynchronous replication[4] technique can satisfy the low-
latency response requirement, but cannot satisfy the strong con-
sistency guarantee. By transmitting the replication data after the
local operation finished at the time independent of the local oper-
ation, low-latency response of the system is preserved. However,
if system disruption occurs prior to completion of the data trans-
mission to the backup server, conflicting information on the same
key may occur.

Synchronous replication[4] works in the opposite way. It can
satisfy the strong consistency guarantee, but cannot satisfy the
low latency operation. A put operation in the main server will
not be confirmed, until the same put operation is completed in the
backup server. By confirming that a data is successfully written
in both main and backup server before the response is given to
the client, conflicting information may never occur. Even with
the fail-over to the backup server, the complete data is available.
However, the trade-off with this approach is that the time it takes
to finish a put operation will grow significantly, due to the in-

c© 2016 Information Processing Society of Japan

コンピュータシステム・シンポジウム 
Computer System Symposium

35

ComSys2016
2016/11/28



volvement of round-trip network communication from main to
backup server.

There have been some approaches [5] [6] which attempt to
combine synchronous and asynchronous replication. However,
those approaches could not satisfy both strong consistency guar-
antee and low-latency response at the same time, because they
require the replication to be finished, for the data to be useful,
which technically fall into the category of synchronous replica-
tion.

Approaches limited to software could not satisfy both low-
latency response and strong consistency guarantee at the same
time. In this research, we implemented hardware solutions,
specifically network infrastructure, in addition to software pro-
cessing technique.

3. Long distance synchronization method for
in-memory KVS

Our method for long distance synchronization has three main
components, key-value pair replication, replication status confir-
mation, and cellular networking for datacenter. In this section,
we will describe each component and discuss our design choices.

3.1 Transmission of replication data from main site
Contrary to the traditional approach, to satisfy the consistency

protection requirement in two distantly located data centers, com-
pletion of key-value pairs replication are not required. Only the
key information from a key-value pairs has to exist at the same
time. Specifically, only the information that a certain key has
changed is required. To maintain the strong consistency guaran-
tee, complete fail-over is not required, only error detection capa-
bility is required.

Therefore, we separated the key from its value, and prioritized
it for transmission. The key size for the key information is small,
thus it can be transmitted with only a single or few packets. On
the other hand, value size is bigger, and majority of the replication
time is often the time it takes to replicate the value data.

Consequently, as the tradeoff for separation between key and
its value, we introduce a new variable called transaction identifier.
This transaction identifier is utilized to recombine a key back to
its value in backup site, and also maintain the order of transaction
as it happens in the main site to preserve consistency.

The corresponding value is transmitted along with key and its
transaction number at times independent of the key transmission.
Due to its bigger size, the value transmission packet will take
longer to finish compared to the key-only packet. Once replica-
tion of the value for a key is finished, then the key and its corre-
sponding value is matched by transaction identifier and moved to
main data store in the backup site. Fig. 1 provides the flowchart
of replication in our method due to a put request from a client.

3.2 Confirmation of replication status in the case of fail-over
In our configuration, as long as main server is operational,

backup server does not answer to read request from client.
If a read request is received by the backup server for any key

and the main server is not available, backup server checks for
the existence of the key in the pending data queue. If the key

does not exist, there is not any unfinished replication for the re-
quested key, which means read request is forwarded to the main
data store and it can be processed normally. However, if it does
exist in the pending data queue, the read request should be de-
ferred until the replication is completed. If the replication cant be
completed, then a data lost is detected, and further access should
be prevented to maintain consistency. Fig. 2 illustrated the flow
of replication status confirmation.

3.3 Cellular networking for key transmission during large-
scale disaster

The final component of our proposed long distance synchro-
nization method is the network transmission control. In addi-
tion to wired network connection, we supplemented a wireless
network connection to provide connectivity between main and
backup server.

This cellular networking components is added to provide addi-
tional safety net for transmitting data to the backup server in the
event of large scale disaster which causes wired connection to be
unavailable. Higher priority is assigned to the key-only packet
information. By utilizing the additional cellular connection from
main to backup server, we transmit at least the key and transac-
tion identifier to the backup server. Due to its small value size,
the key and transaction ID packet can be transmitted quickly.

If the wireless connection is also unavailable, we store the key-
value pairs into permanent storage. After the connectivity is re-
stored, we compare the key-value pairs in main server to the key-
value pairs in backup server and resolve any conflicts by transac-
tion identifier matching.

4. Evaluation
To evaluate the effectiveness of our proposed method where

key is separated from its corresponding value, we compared its
latency performance to traditional approach where key is trans-
mitted together with its value. We developed two prototypes of
KVS, one for our proposed key-value separated method and one
for traditional approach where key is not separated from its value.
We are focusing our evaluation on the software processing tech-
nique to achieve consistency protection..

4.1 Experimental setup
We evaluated the performance of our proposed method by mea-

suring the time required to achieve consistency protection and
prevent conflicts. We start the measurement after request is re-
ceived by main server, when consistency protection is achieved,
and when synchronization finishes. In our proposed method
where key is separated from its value, this corresponds to the time
where the key information reaches the backup server. In tradi-
tional approach, consistency protection corresponds to the time
when the replication is finished. Fig. 3 and Fig. 4 illustrates the
difference in a sequence chart. In our proposed key-value sepa-
ration method, consistency protection time and synchronization
finish time is two distinct measurement points. In traditional no
separation method, they are the same point.

In our evaluation, we focused our evaluation on the latency,
not the throughput. This decision is based on our assumption

c© 2016 Information Processing Society of Japan

コンピュータシステム・シンポジウム 
Computer System Symposium

36

ComSys2016
2016/11/28



Fig. 1 Flowchart of replication from a put request by local client until the end of replication

Table 1 Evaluation environment

Parameter Value
Hardware # of Host 2xQuantaPlex

CPU Intel Xeon R© E5-2640v3 (Haswell) x 2
Memory DDR4-1866 64GB
NIC NIC Intel X540-AT2 10GbE

Software OS CentOS 7 x86 64
Java Java SE 8u77

that the backend storage such as our KVS is not limited by the
database response to application, but by the application response
to the client. Significant processing is performed by the applica-
tion, while storing the data to the in-memory KVS is finished in
comparatively shorter time.

We performed the evaluation on bare metal servers with speci-
fications as listed in Table 1. The servers are connected via IPv4
network as illustrated in Fig. 5.

4.2 Evaluation results and discussion
Fig. 6 depicts the comparison between our proposed key-value

separation method and traditional no separation method for the

required time to achieve consistency protection, for simulated
network latency of 5 ms, and 40 ms respectively.

With small-sized value of less than 10 kB, our proposed
method provided no advantage compared to traditional approach,
the time to achieve consistency protection is approximately the
same. However, when the value-size grows bigger, our proposed
method provided faster time to achieve consistency protection.
In traditional approach, the time it takes to achieve consistency
protection grows with value size, which results in longer time to
achieve consistency protection. In our proposed method, con-
sistency protection is achieved when the key reaches backup site.
Therefore, time to achieve consistency protection in our proposed
method does not grow with value size.

Time to achieve consistency protection grows proportionally to
the simulated latency, because latency corresponds to the required
time to finish round-trip communication from main to backup
server.

Fig. 7 depicts the total synchronization time for our pro-
posed key-value separation method and traditional no-separation

c© 2016 Information Processing Society of Japan

コンピュータシステム・シンポジウム 
Computer System Symposium

37

ComSys2016
2016/11/28



Fig. 2 Flowchart of replication from a put request by local client until the end of replication

method. As the tradeoff for faster consistency protection time,
the total time for synchronization is longer. The reason for this
behavior is our proposed method requires two network transmis-
sions for finishing synchronization. On a side note, we believe
parallel processing can improve the performance of our proposed
method to alleviate this performance tradeoff.

Similar to the time to achieve consistency evaluation, time to
finish synchronization grows proportionally to simulated latency.
Due to the multiple round-trip communication required to finish
the synchronization, our proposed method requires longer to fin-
ish the synchronization.

Finally, Fig. 8 depicts the additional consistency protection our
proposed method provides for cases where our KVS is operat-
ing at maximum throughput. In this evaluation, at the comple-
tion moment of the 1000th transaction, we simulated disaster and
evaluate how much of the original 1000 transactions can be pro-
tected by our proposed key-value separation method and tradi-
tional no separation method. We utilized the latency value of 5
ms. We can observe that, consistent with our previous result, our
proposed method provides better consistency protection at bigger
value size.

In small value size of less than 10 kB our method performed

c© 2016 Information Processing Society of Japan

コンピュータシステム・シンポジウム 
Computer System Symposium

38

ComSys2016
2016/11/28



Fig. 3 Measurement point for our proposed method where key is separated from its value

Fig. 4 Measurement point for traiditional approach where key is transmitted together with its value

Fig. 5 Experimental setup

worse compared to traditional approach. Although, the number of
inconsistencies is similar, due to our design of prioritizing trans-
mission of key information, there are some data whose key exist
without its value.

However, for value bigger than 10 kB our method provided ad-
ditional consistency protection compared to traditional approach.
Since our method does not have the bottleneck of value size, the
number of inconsistencies is constant and proportional to the la-
tency, while in traditional approach, the number of inconsisten-
cies grows with value size.

For value size of 10 kB, 100 kB, 1 MB, and 10 MB, the amount
of inconsistencies reduced by our proposed method corresponds
to 10%, 39%, 64%, and 90% respectively. Nevertheless, we be-
lieve our approach has significant advantage for processing large

data size compared to traditional approach of sending key-value
simultaneously.

5. Related research
Existing KVS performs replication without separation between

key and its value or unable to support replication at all. Mem-
cached[7], which is one of the first in-memory KVS, does not
support cross datacenter replication. Other popular in-memory
KVS such as Apache Cassandra[8], Apache Hbase[9], and Piv-
otal Gemfire[10][11] perform replication by transmitting the key
and value together, without separation. Therefore, if the value
size grows, for example in the case of unstructured data process-
ing, our proposed method will provide better consistency protec-
tion. It is worth to point out these in-memory KVS does not sup-
port strong consistency model by default, therefore some risk of
inconsistencies between main and backup server may be accept-
able for their eventual consistency[1] programming model.

Alternative in-memory KVS which support strong consistency
models exist, such as Basho Riak[12] and Apache Kudu[13], but
are less well-known. These in-memory KVS is more suitable
to our proposed method due to the requirement of maintaining
strong consistency models. However, both Riak and Kudu have

c© 2016 Information Processing Society of Japan

コンピュータシステム・シンポジウム 
Computer System Symposium

39

ComSys2016
2016/11/28



Fig. 6 Time to achieve consistency protection (lower is better)

Fig. 7 Time to finish synchronization (lower is better)

Fig. 8 Additional consistency protection obtained from key-value separation

not support multi datacenter replication yet.
Other techniques [14][15], which are not limited to in-memory

KVS, involving parallel processing for accelerating long distance
replication, has been proposed as well. However, both techniques
did not split the identifier from the main data, and requires the
key-value replication to be completed for preserving consistency.

In the case of prioritizing identifier before the main data, [16]
transmitted metadata before the actual data for provisioning pur-

pose. However, it is not targeted at system with high transaction
write workload, thus lacking transaction ordering by transaction
number and the status confirmation check mechanism to ensure
that the data currently being read is the most recent copy or not.
Therefore, consistency protection is not a focus of the technol-
ogy, which causes inconsistent condition in the case of high-write
workload.

c© 2016 Information Processing Society of Japan

コンピュータシステム・シンポジウム 
Computer System Symposium

40

ComSys2016
2016/11/28



6. Conclusion
We proposed a synchronization method for KVS to improve

consistency protection in long distance data synchronization. Our
method separate key from its value and prioritizes the key for
transmission to the backup location, and utilizes this key infor-
mation and transaction ordering mechanism to reduce the num-
ber of inconsistencies caused by large-scale disasters. By exper-
imentation on synchronization workload, we demonstrated that
our method provided 39% reduction of inconsistencies for 100
kB value size, compared to traditional no separation approach.
From these results we believe our method could provide better
consistency protection for processing of big data.

There are remaining improvements which can be made. Our
method made the tradeoff of faster consistency protection for
longer synchronization time. However, it is possible to reduce
the time to finish synchronization in our proposed method to an
amount comparable to traditional method by parallel processing
for transmitting the key and value data simultaneously. How-
ever, such implementation will require improvement on replica-
tion flow control to handle the additional complexity of state man-
agement.

Additionally, we developed our method towards in-memory
KVS application. Filesystem works in similar capacity, and our
method may be of use. However, applying our method to filesys-
tem may require further investigation for filesystem-specific pro-
cessing, such as how to deal with identifier-only information
when interacting with caching system.

References
[1] Sakr, S., Gaber, M. (Eds.): Large Scale and Big Data: Processing and

Management CRC Press (2014).
[2] Lamport, L.: Paxos made simple, ACM Sigact News, Vol.32, No.4,

pp.18–25 (2001).
[3] Ongaro, D., Ousterhout, J.: In search of an understandable consensus

algorithm, 2014 USENIX Annual Technical Conference (Usenix ATC
14), pp.305–314 (2014).

[4] Zavoral, F., Yaghob, J., Pichappan, P., El-Qawasmeh, E. (Eds.): Net-
worked Digital Technologies, Part II, Springer (2010).

[5] Hoffmann, J.: Mixed mode synchronous and asynchronous replication
system, U.S. Patent 8 301 593, December 17, 2009.

[6] Arnon, D.: Write pacing, U.S. Patent 7 702 871, April 20, 2010.
[7] Memcached (online),

available from 〈https://memcached.org/〉 (accessed 2016-8-4).
[8] Lakshman, A., Prashant, M.: Cassandra - A Decentralized Structured

Storage System, ACM SIGOPS Operating Systems Review, Vol.44,
No.2, pp.35–40 (2010).

[9] Apache Hbase (online),
available from 〈https://hbase.apache.org/〉 (accessed 2016-8-4).

[10] Williams, J. W., Aggour K. S., Interrante J., McHugh J., Pool E.:
Bridging high velocity and high volume industrial big data through
distributed in-memory storage & analytics, Big Data (Big Data), 2014
IEEE International Conference on, pp.932–941, IEEE (2014).

[11] Pivotal Gemfire Multi-site (WAN) Configuration (online),
available from 〈http://gemfire.docs.pivotal.io/docs-gemfire/
topologies and comm/multi site configuration/chapter overview.html〉
(accessed 2016-8-4).

[12] Basho Riak Replication Model (online),
available from 〈http://docs.basho.com/riak/latest/ops/advanced/strong-
consistency/〉 (accessed 2016-8-4).

[13] Cloudera Kudu (online),
available from 〈http://www.cloudera.com/documentation/betas/kudu/0-
5-0/topics/kudu.html〉 (accessed 2016-8-4).

[14] Ramakrishnan, K. K.: Pipelined Data Replication for Disaster Recov-
ery, U.S. Patent Application 20140040206, February 6, 2014.

[15] Zheng, W.: Virtual Machine-based On-Demand Parallel Disaster Re-

covery and the Method Thereof, U.S. Patent 8 161 321, April 17, 2012.
[16] Niki, Y.: Information processing system and method of controlling the

same, U.S. Patent 8 688 632, April 1, 2014.

c© 2016 Information Processing Society of Japan

コンピュータシステム・シンポジウム 
Computer System Symposium

41

ComSys2016
2016/11/28


