スケーラブルなディープラーニング向け アクセラレータチップの設計と評価

高田 遼1 石井 潤1 坂本 龍一1 近藤 正章1 中村 宏1 大久保 徹以2 小島 拓也2 天野 英晴2

概要:

近年,組込みシステムにディープラーニング技術を導入することが期待されており,電力効率に優れた ディープラーニングアクセラレータの開発が重要な課題となっている.しかしながら,これまで提案さ れてきたアクセラレータは2次元畳込み演算などの特定のネットワーク構造向けに最適化されたものや, データアクセス削減のためにネットワーク構造を工夫するものが多い.対象とするネットワーク構成が限 定され汎用性に課題がある.そこで我々は,多様なネットワーク構成に柔軟に対応可能で電力効率の良い アクセラレータのアーキテクチャを検討している.今回,命令により動作するマイクロコントローラと SIMD 型積和演算器から構成される電力効率の良いコアを設計し,マルチコア構成のアクセラレータに対 しスケーラビリティの評価を行った.

1. はじめに

近年,組込みシステムでディープラーニング技術を利用 することが期待されている.一例として,自動車やモバイ ル機器などでは,学習済みの畳込みニューラルネットワー ク (Convolutional Neural Network: CNN)を用いて画像認 識を行いつつ種々の機能を提供することが実用化されつつ ある.そこで,CNN などのディープラーニングによる識別 高速化を組込みシステムの電力制約下で実現するために, 電力効率に優れたディープラーニング専用アクセラレータ の開発が重要な課題となっている.

ディープラーニング向けのアクセラレータによる CNN 識別高速化では,畳込み層における 2 次元畳込みの演算処 理と全結合層における外部メモリとのデータ転送を考慮す ることが重要となる.前者は演算ボトルネックに,後者は メモリボトルネックとなりやすいためである.畳込み層の 2 次元畳込みの演算の高速化・省電力化の研究としては, Chen らの Eyeriss[1] がある. Eyeriss は組込みシステム向 けの CNN アクセラレータで,2次元的に配置した演算ユ ニット間のオンチップネットワークやチップ内バッファ などを工夫することで外部メモリへのアクセス回数を減 らし,消費電力を削減する手法を提案している.一方で, 全結合層の外部メモリとのデータ転送に対しては,多数の 先行研究が存在する.DaDianNao[2] はチップ内に大量の eDRAM を配置することで,データ転送自体を不要とする アプローチをとっている.また,EIE[3],[4] では不要な学 習済みパラメータの省略や,学習済みパラメータ1つあた りのビット数の削減を行うことで,推定精度を落とさずに 学習済みニューラルネットワークモデルのデータサイズを 圧縮している.

しかしながら,これらの従来研究では消費電力削減のた めに畳込み層などの特定のネットワーク構成向けに最適化 したアクセラレータや,データアクセス削減のためにネッ トワーク構造に手を加える研究が多い.対象とするネット ワーク構成が限られる可能性もあり,進化を続けるディー プニューラルネットワークの多様なネットワーク構成を扱 うための柔軟性が課題となる.それに対して,我々は多様 な種類のネットワーク構成に対し,省電力生を失わずかつ 柔軟に対応可能なアクセラレータアーキテクチャを検討し ており,そのベースとなる高電力効率かつ命令制御可能な コアの設計やアーキテクチャ探索を行っている.本発表で は,提案するアクセラレータの全体構成とコアの内部構成・ 命令セットについて述べた後,マルチコア構成のアクセラ レータに対しスケーラビリティの評価を行った結果につい て報告する.

2. 畳込みニューラルネットワーク

ー般的に、CNN は畳込み層とプーリング層を交互に積 層したあと全結合層を3層ほどの積層する構成をとる.7 層のCNN であれば図1のようなネットワーク構成となる.

¹ 東京大学

² 慶應義塾大学

図17層畳込みニューラルネットワーク

畳込み層とプーリング層,全結合層における演算は式(1)~(5)のように定義される.

$$a_{n_o}[i,j] = \sum_{n_i} \sum_p \sum_q \omega_{n_i,n_o}[i,j]x[i+p,j+q] + b_{n_o} (1)$$

$$y_{n_o}[i,j] = f(a_{n_o}[i,j])$$
(2)

$$y[i,j] = \max_{p,q} (x[i+p,j+q])$$
(3)

$$a[i] = \sum_{j} \omega[i, j] x[j] + b_i \tag{4}$$

$$y[i] = f(a[i]) \tag{5}$$

 $f(\cdot)$ は活性化関数と呼ばれ、ReLU 関数 $f(x) = \max(0, x)$ や sigmoid 関数 $f(x) = 1/(1 + e^{-1})$ がよく用いられる.

ここで、畳込み層と全結合層の比較を行う.畳込み層は 227×227のRGB画像に11×11のフィルタをストライド5 で畳込み、8枚の出力マップを得る.また、全結合層は396 入力396出力である.16bit固定小数点形式を仮定した場 合、処理対象データはどちらも300kB程度であるにも関わ らず、積和演算回数を比較すると前者が2928200回で後者 が156816回である.従って、畳込み層の演算強度は9.30 で演算ボトルネックとなりやすく、全結合層の演算強度は 0.498でメモリボトルネックとなりやすい.なお、演算強 度は16bit固定小数点形式の処理対象データ1Byteあたり の積和演算回数・MAX演算回数と定義する.

3. アクセラレータのアーキテクチャ

3.1 全体構成

本研究では、マイクロコントローラと SIMD 型積和演算 器を主な構成要素とするコアを複数搭載したマルチコアア クセラレータを検討している.4コア構成のアクセラレー タを図2に示す.各コアは、命令メモリ (inst),ストリー ムバッファ (sbuf)、データメモリ (dmem),ルックアップ テーブル (lut)、データ出力用メモリ (omem) の5つのメモ リを持つ.基本メモリ構成としては別々のアドレス空間を 持つ分散メモリシステムであるが、CNN を始めとした多 層のニューラルネットワークを複数コアで実行する際、演 算結果をコア間で共有する必要があるため、出力用メモリ の omem はコア間で共有する.

図 2 4 コア構成のアクセラレータ

3.2 コアのアーキテクチャ

コアは回路規模の小さなマイクロコントローラと SIMD 型積和演算器から構成される.マイクロコントローラは 16bit 固定長の命令セットにより動作する.命令長が短い ために実装可能な命令の機能は単純なものに限られるが, 命令デコーダや制御回路も単純化されるため,小型で高電 力効率なコントローラとなっている.

一方で、ディープラーニング専用アクセラレータでは、 膨大な積和演算を効率よく実行できることが重要である. そこで、本研究のコアには後述する SIMD 型積和演算器と 独自のカスタム SIMD 算術命令を実装した.

メモリ構成

各コアが持つ5つのメモリ (inst, sbuf, dmem, lut, omem) は 32bit のアドレス空間に割りつけられており, load/store 命令によって全てのメモリとレジスタファイル間でデータ をやり取りできる. inst は命令メモリで, sbuf と dmem は 処理対象データ用メモリである. ただし, sbuf と dmem は データを直接 SIMD 型積和演算器に供給するため 64bit 幅 のデータバスを持つ. lut はニューラルネットワークの活 性化関数に利用し, omem は出力データ用である.

ディープラーニングアクセラレータの先行研究では演算 ユニットに入力用2つと出力用の3つのバッファが接続 された構成をとるものが多い.本研究も同様で,SIMD型 積和演算器とsbuf,dmem,omemが用意されている.これ は,ニューラルネットワークの主要な演算が学習済み重み パラメータと各層の入出力データの積和計算であるためで ある.ただし,先行研究では入力用の2つのバッファを学 習済み重みパラメータ用のバッファと入力用データ用の バッファとして用いるが[2],本研究のアクセラレータは 再利用性の低いストリームデータ用のバッファ(sbuf)と 再利用性の高いデータ用のバッファ(dmem)として用いる 点が異なる.sbuf 側のほうがデータ転送量が多くメモリボ トルネックの原因となりやすいため,そこで,ダブルバッ ファリングを行うことで演算処理と subf へのデータ転送 をオーバーラップさせ、実行時間の削減を図る.

以上のようなメモリ構成をとる目的は, 畳込み層と全結 合層のデータ再利用性に関する特性の違いに対応するため である. 畳込み層では学習済みデータの再利用性が高く各 層の入力データの再利用性が低いが, 全結合層では逆転し 各層の入力データの再利用性が高く学習済みデータの再利 用性が低いという違いがある.

マイクロコントローラ

提案アーキテクチャのマイクロコントローラはパイプライ ン4段のインオーダー実行で、MIPS に近い形式の16bit 固定長命令セットを解釈実行する.主要な役割はSIMD型 積和演算器の制御やループの制御、メモリへのload/store で、回路規模の削減・省電力化を図るため浮動小数点演算 器・浮動小数点レジスタファイルやその他複雑な制御回路 は搭載していない.レジスタファイルは 32bit16 本である が、そのうち4本をSIMD型積和演算器の演算結果が格 納される特殊レジスタに、1本をプログラムカウンタに割 り当ているため、汎用レジスタは11本である.演算器は 32bit 長で論理算術演算が可能である.現在の実装では命 令パイプライン化が十分ではないが、今後パイプライン化 された実装に拡張する予定である.

命令セットアーキテクチャ

本研究のアクセラレータは、ディープラーニングの演算自体は SIMD 型積和演算器を用いて行うが、汎用的な処理も 一部実行可能であり、様々なネットワーク構成に柔軟に対応できる。命令形式は表1に示した2種類で、論理・算術 演算、load/store 命令、分岐命令に加え、いくつかの命令 を追加している。具体的には、ダブルバッファの切り替え 制御命令や DMA 発行命令、SIMD 型積和演算器の制御命 令などである。

	表 1	命令形式			
	4bit	4 bit	4bit	4bit	
R-type	opcode	rd	rs	function	
I-type	opcode	rd	immediate		

特にマルチサイクルのカスタム SIMD 算術命令を定義 しており,ディープラーニングの積和演算を行う際の制御 オーバーヘッドを軽減する.具体的な制御オーバーヘッド として,処理対象データにアクセスするためのアドレス計 算や,ループの制御,条件分岐などの処理が挙げられる. 本研究のアクセラレータでは,これらの処理と SIMD 型 積和演算の動作シーケンスをハードウェアで実装しマルチ サイクルのカスタム SIMD 算術命令に集約している.こ れは,汎用命令セットでソフトウェア実装するのに比べ, CNN の識別高速化と消費電力削減の両方に効果がある.

SIMD 型積和演算器

図 3 SIMD 型積和演算器

SIMD 型積和演算器の基本構成を図3に示す.SIMD 型 積和演算器は16bit 長データを4並列で演算を行うことが でき,実行可能な演算はテーブルルックアップ付きの積和 演算とMAX 演算である.処理対象データはレジスタファ イルを介さずに,sbufとdmemから直接演算器に供給さ れ,データバスは64bit幅である.ルックアップテーブル (lut)はニューラルネットワークの活性化関数に利用する. ディープラーニングアクセラレータの先行研究では活性化 関数にReLU 関数のみをサポートするものもあるが,汎 用性の観点からルックアップテーブルによる実装を採用し た.また,SIMD 型積和演算器の演算結果は,積和演算や MAX 演算の場合はレジスタファイルの13番レジスタに自 動的に保存され,ルックアップテーブルの場合は11番レ ジスタに保存される.

積和演算の詳細な動作としては, sbuf と dmem から 16bit 固定小数点形式サイズ4のベクトルデータが SIMD 型積和 演算器に投入され,その内積内積演算結果が 13 番レジス タにアキュムレートされる.なお,4つの乗算器はマスク レジスタによって制御可能である.一方,MAX 演算の場 合は,sbuf から供給された 16bit 固定小数点形式データ4 つと現在の 13 番レジスタの値の MAX 演算結果を 13 番レ ジスタに保存する.こちらも sbuf から供給された 4 つの データに対しマスクレジスタによる制御が可能である.前 述のマルチサイクルのカスタム SIMD 算術命令は,積和演 算や MAX 演算を sbuf・dmem アドレスをインクリメント しながら指定回数連続実行する.

また,SIMD 型積和演算器は図4に示すように8bit 長 データ8並列に拡張する特殊な動作モードを持つ.具体的 には,図3のような4並列積和演算器が2基並列に搭載さ れている.sbuf 側は8bit 固定小数点形式に切り替え,サイ ズ8のベクトルデータとし,2基の4並列積和演算器に4 つずつ供給する.ただし,乗算器に入力直前に16bit 固定 小数点形式に拡張する.一方 dmem 側は16bit 固定小数点 形式サイズ4のベクトルデータのままだが,2個の4並列 積和演算器に同一データを供給する.

この動作モードの主目的は、全結合層のメモリボトル ネック軽減である.sbuf側のデータ転送量はdmem 側と比

図 4 SIMD 型積和演算器 特殊動作モード

べ非常に大きいため, sbuf 側を 8bit 固定小数点形式とする とデータ転送量が半減し, トータルのデータ転送時間はほ ぼ半減することが期待される.また, dmem 側は 16bit 固 定小数点形式のままで2個の4並列積和演算器に同一デー タを供給する必要があるが, dmem 側のデータは再利用性 が高いためこの問題は限定的である.以上のような仕組み により,実質的な演算強度が向上し,メモリボトルネック を軽減することができる.

4. 評価実験

4.1 評価アプリケーション

今回の評価に用いたアプリケーションは, ILSVRC[5] で 使用される ImageNet データセット 100 クラス分類問題を 行う7層 CNN (図 1) である.ネットワーク構成は入力側 から順に畳込み層 1 (conv1), プーリング層 1 (pool1), 畳込 み層 2 (conv2), プーリング層 2 (pool2), 全結合層 3 (fc3), 全結合層 4 (fc4), 全結合層 5 (fc5) で,入力層は 227 × 227 ピクセルの RGB 画像,出力層は 100 次元のベクトルとな る.7層 CNN の処理対象データサイズと演算強度,発行 命令数を表 2 に示す.データサイズは 16bit 固定小数点形 式を仮定しており,発行命令数は本研究の命令セットで実 装した場合のものである.

4.2 評価環境

評価環境として、データ転送時間を含めた7層 CNN の実 行時間を見積もるシミュレータを作成した.ただし、inst, lut のメモリサイズを 2kB, sbuf, dmem, omem のメモリ サイズを 64kB と仮定したため、7層 CNN を 161 個のタ スクに分割して複数コアで並列実行する.また、メインプ ロセッサの主記憶とコアのメモリ間のデータ転送における バンド幅とレイテンシは全コアのメモリで同一であると仮 定する.シミュレータのパラメータは、アクセラレータ動 作周波数、コア数、実行する命令列、処理対象データサイ ズ, DMA データ転送のバンド幅とレイテンシである. なお, DMAC が対処できる DMA リクエスト数は1つのみであるが, ブロードキャスト転送が可能である. 例えば全てのコアの dmem や lut に同一データを転送する場合に用いる. また, このシミュレータは sbuf におけるダブルバッファリング機能を考慮している.

7 層 CNN	Data Si	演算	発行	
の構成	(16bit fixed	強度	命令数	
入力	227x227	300kB		
	(RGB 画像)			
	学習済み	6kB		
畳込み層 1:	パラメータ		9.29	519552
conv1	出力	47kB]	
	55x55 8ch			
Pooling 層 1:	出力	300kB	0.518	70136
pool1	28x28 8ch			
畳込み層 2:	学習済み	3kB		
conv2	パラメータ		7.30	88836
	出力	9kB]	
	24x24 8ch			
Pooling 層 2:	出力	2kB	0.50	13176
pool2	$12 \mathrm{x} 12$ 8ch			
全結合層 3:	学習済み	2MB		
fc3	パラメータ		0.499	308
	出力 1024	2kB		
全結合層 4:	学習済み	2MB		
fc4	パラメータ		0.499	346
	出力 1024	2kB		
全結合層 5:	学習済み	200kB		
fc5	パラメータ		0.499	287
	出力 100	200B		

表 2 7 層畳込みニューラルネットワークの構成

4.3 評価結果

7層 CNN のシミュレーションを行い,本アクセラレータ のスケーラビリティを評価した.パラメータは DMA デー タ転送のバンド幅と実行コア数である.ただし,アクセ ラレータ動作周波数は 50MHz, DMA データ転送バンド 幅のレイテンシは固定値として 2usec を設定した. 横軸を DMA データ転送のバンド幅,縦軸を 7層 CNN の実行時 間として,各実行コア数評価した結果を図5 に示す.評価 結果から,スケーラビリティを得るには約 500MB/s 以上 の DMA データ転送バンド幅必要であること,8 コア以上 でスケーラビリティを得られていないことが分かった.

前者は, DMA データ転送バンド幅が低速の場合は, 7層 CNN 全体の実行時間が全結合層 (fc3, fc4, fc5) で律速して しまい, かつその全結合層がスケールできていないためで ある.一般的に,メモリボトルネックな fc3, fc4, fc5 は演算 ボトルネックな畳込み層 (conv1, conv2) よりもスケールし

図 5 スケーラビリティ評価

にくく, fc3, fc4, fc5 のスケールには DMA データ転送バン ド幅が 500MB/s 以上必要であることが今回のシミュレー ションから分かった.また,実行時間において支配的な演 算が全結合層から畳込み層に逆転する DMA データ転送バ ンド幅を調べたところ,こちらも約 500MB/s であった.

後者は、実装依存の問題であり、conv1の最大スレッド レベル並列度が8に制限されているためである.conv1は アクセラレータ実行時間に占める割合が高く、スケール した際に CNN 全体の実行時間に与える寄与が7層中最大 である.従って、conv1がスケールできない8コア以上で はスケーラビリティを得られなかった.今回の実装では、 conv1を48個のタスクに分割しているが同時に実行可能 なタスク数は最大8タスクまでとなっている.この制約は 出力マップ数8の conv1を出力マップ並列で実装したこと によるものであり、命令列のプログラミングを工夫するこ とで改善が可能である.

5. 考察

評価結果の解析のためシミュレータのログから各コアの 動作状況を調査した.図6はDMAデータ転送バンド幅 100MB/s,8コア構成で7層CNNを実行した際の各コア の動作状況である.横軸は経過時間[msec]で縦軸は各コア 番号を示している.各コアそれぞれに2つの積み上げ棒グ ラフが表示されているが、上側がコアの動作状態で下側が DMACによるデータ転送状況である.上側の積み上げ棒 グラフにおいて赤、青、グレーで表示されている区間が、 それぞれ実行状態、ライトバック状態、アイドル状態であ る.実行状態では、コアが命令を解釈実行し演算を行って いる.ライトバック状態は演算結果を主記憶にライトバッ クするためDMAデータ転送をリクエストし、完了を待っ ている状態である.コアは実行状態のあとほぼ毎回ライ

図 6 各コアの動作状況 (8 コア, Bw:100MB/s)

トバック状態に遷移するのだが,区間が短すぎるため図 6 では確認できない.また,下側の積み上げ棒グラフでは, DMAC がそのコアのメモリにデータ転送を行っている区 間を薄い赤,そうではない区間を灰色で表示している.

図6では37msecまでが畳込み層とプーリング層 (conv1, pool1, conv2, pool2) で, 37msec 以降が全結合層 (fc3, fc4, fc5) である. 図では全結合層が2コアで並列化されている ように見えるが、実際には互い違いになっており並列化で きていない. DMA データ転送バンド幅が 100MB/s 程度 の場合, 畳込み層は既に8コアにスケールしているのに対 し全結合層は全くスケールできていないがということが 分かった. そこで, 全結合層がスケールするのに必要な最 低バンド幅を調べたところ 500MB/s となった. 図7はで DMA データ転送バンド幅 500MB/s, 8 コア構成でシミュ レーションを行い、8コア中コア0~コア3の4コアを表 示している. 29msec 以降の全結合層が3コアまでスケー ルしていることが確認できる. 最後に, 16 コア構成で全結 合層が全てのコアにスケールするのに必要なバンド幅を調 べたところ, 10GB/s となった. このときのコアの稼働状 況 (図 8) を見ると、全結合層は 27msec から 29msec の区 間に該当し,並列化による恩恵がごく僅かである.

可視化の結果, 畳込み層と全結合層の並列化について次 のようなことが分かった.全結合層は単純な行列・ベクト ル積であるため,メモリ帯域さえあれば容易にスレッドレ ベル並列化を行うことができる.しかしながら,メモリボ トルネックでスケールには高速なメモリ帯域が必要な上, そのような高速なメモリ帯域下では畳込み層によって全体 の実行時間が律速しているため,全結合層の高速化は重要 ではない.それに対し,畳込み層は演算ボトルネックなた め低速なメモリ帯域でも十分にスケールし,高速なメモリ 帯域でも実行時間の大半を占めるため,畳込み層のスレッ ドレベル並列化は重要である.

以上の結果を踏まえ,本研究のアクセラレータに必要な

図7 各コアの動作状況 (8 コア, Bw:500MB/s)

図 8 各コアの動作状況 (16 コア, Bw:10GB/s)

DMA データ転送バンド幅は 1GB/s であることが分かっ た.図5から,さらにスレッドレベルで並列化することを 考えないのであれば,これ以上高速なバンド幅は必要ない ことは明らかである.また,命令列のプログラミングを工 夫した場合や conv1 の出力マップ数を増やした場合など8 コア以上でもスケーラビリティを得られるアプリケーショ ンで評価を行ったとしても,本評価の仮定のもとでは畳込 み層は 500MB/s 程度の DMA データ転送バンド幅で十分 にスケールするので,いずれにせよ 1GB/s 以上のバンド 幅は必要ないと言える.

6. まとめ

本稿では、高電力効率かつプログラマブルな動作が可能 なディープラーニング向けアクセラレータのアーキテク チャを検討した.特に、アクセラレータのベースとなる小 型かつ命令制御可能なマイクロコントローラとディープ ラーニングの積和演算高速化のための SIMD 型積和演算器 について述べた.

図9 チップレイアウト図

また、マルチコア構成でアクセラレータの性能を評価す るためシミュレータを作成し、スケーラビリティの評価 を行った.評価の結果、畳込み層が適切にスレッドレベル 並列化された実装であれば、本研究のアクセラレータは スケールアウトによる高速化が可能であり、必要な DMA データ転送バンド幅は 1GB/s であることが分かった.

なお、これまでの検討したアーキテクチャを参考に4コ ア構成のアクセラレータをLSIチップへ実装した(図9). 1チップ4コア×3チップの12コア構成となっており、コ ア間は共有バス、チップ間は磁界結合による3次元積層 で結合される.チップ面積は3mm×6mmでテクノロジは Renesas Electronics 65nm SOTB である.

今後の課題としては,設計した LSI チップでの消費電力 評価を行う.また,電力効率を評価基準とし,アクセラレー タ動作周波数やコア数,SIMD 長など複数のパラメータに 対する包括的なアーキテクチャ探索を行う予定である.

謝辞 また,本研究は JSPS 科研費基盤研究(S) 25220002 の助成によるものである.

参考文献

- Chen, Y.-H., Krishna, T., Emer, J. and Sze, V.: Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks, 2016 IEEE International Solid-State Circuits Conference (ISSCC), IEEE, pp. 262–263 (2016).
- [2] Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z., Sun, N. et al.: Dadiannao: A machine-learning supercomputer, *Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture*, IEEE Computer Society, pp. 609– 622 (2014).
- [3] Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A. and Dally, W. J.: EIE: efficient inference engine on compressed deep neural network, arXiv preprint arXiv:1602.01528 (2016).
- [4] Han, S., Mao, H. and Dally, W. J.: Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding, *CoRR*, *abs/1510.00149*, Vol. 2 (2015).
- [5] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M. et al.: Imagenet large scale visual recognition challenge, *International Journal of Computer Vision*, Vol. 115, No. 3, pp. 211–252 (2015).