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Abstract: Being one of the important variant of post-quantum cryptography, lattice based cryptography
has attracted many researches during the last decade. The proved hardness of the Learning With Errors
(LWE) problem, assuming the worst case intractability of classic lattice problems such as shortest vector
problem and closest vector problem, has made it standard building block in the recent design of lattice based
cryptosystem. In this manuscript, we report our implementation of the Bounded Distance Decoding (BDD)
approach for solving the search LWE problem. We implemented a parallel version of the pruned enumeration
method of the BDD strategy proposed by Liu and Nguyen. The current work aims at providing a thorough
understanding of this strategy.
In our implementation we use the embarrassingly parallel design so that the power of mutli-cores can be fully
utilized. We let each thread take a randomized basis and enumerate to find the solution independently in-
stead of parallelizing the enumeration algorithm itself. We also carefully design the randomization procedure
to make sure no collision occurs among threads. Other optimization includes fine-tuning the BKZ block size
and the enumeration bound and pruning coefficients.
The purpose of such experiments is to help understand the practical analysis on search LWE problem and
share advice on parameter selection for LWE based cryptosystems. We partially achieve this goal by solving
several instances in the TU Darmstadt LWE challenge website. Our current implementation can solve the
instance with dimension 60 and relative error rate 0.005 in about 16 days and the instance with dimension
40 and relative error rate 0.02 in about 38 days. To solve this instance we use 20 c4.8xlarge instances, each
having 36 cores with a 60 GB memory, on the Amazon EC2 platform.
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1. Introduction

Decades of development in the lattice-based cryptogra-

phy area has identified two important primitive hard prob-

lems, the Shortest Integer Solution (SIS) problem [1] and the

Learning With Errors (LWE) problem [30], to be standard

building blocks of modern lattice-based cryptosystems.

The reasons that SIS and LWE become popular in recent

development of lattice-based cryptography can be stated as

follows:

( 1 ) Perhaps one of the most important reasons is because

of their potential usage as post-quantum cryptography,

since all current cryptosystems in use today, such as

RSA and ElGamal or elliptic curve systems, are all

based on the integer factorization problem or discrete

logarithm problem which can be solved in probabilistic

polynomial time had a quantum computer been avail-

able [31].

( 2 ) Either SIS or LWE is simply described as a neat ques-

tion of solving some linear equation over a finite field.

Simple though the description is, these problems are

well related to some basic hard lattice problems, such
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as shortest vector Problems (SVP) and its variants,

Bounded Distance Decoding (BDD) problems, which

have been attracting researchers for decades while no

efficient (probabilistic polynomial) solutions are known

[29]. This is true even against a quantum computer,

i.e., no quantum algorithm has been found to efficiently

solve the hard lattice related problems.

( 3 ) One special property of the above-mentioned lattice

hard problems is that they enjoy a worst-case to

average-case reduction, which means that the difficulty

of a random instance of such problems is as hard as

the instances in the worst case [1]. Such a nice prop-

erty plays a key advantage of basing cryptosystems on

lattice problems since randomness lies in the heart of

modern cryptography.

( 4 ) Last but no least, SIS and especially LWE has turned

out to be an amazingly versatile basis for lattice-based

cryptographic constructions. Perhaps the most notice-

able of which is the realization of fully homomorphic

encryption [9], [17], [18], [32].

1.1 LWE problem

In this work, we focus on the LWE problem proposed

by Regev [30]. LWE has attracted more and more atten-
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tion since its proposal. Initially LWE problem was quan-

tumly reduced to the GAPSVP (the decision version of the

shortest vector problem) problem or SIVP (Shortest Inde-

pendent Vector Problem). Which means that LWE is con-

sidered hard if there are no algorithms can efficiently solve

the GAPSVP or SIVP using a quantum computer. Later,

the hardness reduction as been sharpened to accept a classic

reduction to these standard lattice problems [10].

LWE. Let n be a positive integer, denoting the dimension

of the lattice related with the LWE problem, q an odd prime,

and let D be an error distribution over the integer ring mod-

ulo q, Zq. Denote by s a fixed secret vector in Z
n
q (in this

manuscript we adopt the row vector conversation to be con-

sistent with software implementation) selected according to

the uniform distribution on its support. Let Ln,q,D be the

probability distribution on Z
n
q × Zq generated by choosing

a ∈ Z
n
q unifromly at random, choosing an error e according

to D and returning

(a, c) = (a, 〈a, s〉+ e)

in Z
n
q ×Zq, where 〈·, ·〉 denotes the inner product of two vec-

tors in Z
n
q . The search LWE problem is to find the secret

vector s given a fixed number of m samples from Ln,q,D. An

alternate version of the search LWE problem called decision

LWE problem finds more applications in lattice-based cryp-

tographic construction. The decision LWE problem is to

distinguish the LWE distribution from uniform distribution

over Zn
q × Zq.

1.2 Discrete Gaussian Distribution

We now talk about the error distribution D in the LWE

problem. In the general situation, any error distribution

with small variance is fine for the LWE problem to be hard.

However, in this work, same as many other previous works

regarding LWE we are only concerned with the discrete

Gaussian distribution over the ring Zq as error distribution.

Let x ∈ Z. The discrete Gaussian distribution over Z with

mean 0 and width parameter σ denoted by DZ,σ assigns to

each x ∈ Z the probability proportional to exp(−x2/2σ2).

The error distribution we consider for the LWE problem

is the discrete Gaussian distribution over Zq, denoted by

DZq,σ, by accumulating the value of the probability mass

function over all integers in each residue class mod q. In the

original proposal of Regev, the width parameter is associ-

ated with the moduli q as σ = αq√
2π

. With a slight abuse of

notation, we also denote the discrete Gaussian distribution

as DZq,αq. When the error distribution of an LWE instance

is DZq,αq, we express the LWE instance as Ln,q,α.

2. Preliminaries

2.1 Lattice

A lattice in R
m is a discrete additive subgroup generated

by a (non-unique) basis B = {b1, . . . ,bm}T . In another

way, we denote the lattice Λ(B) generated by B such that

Λ(B) = {x|x =
∑m

i=1 zibi}, where zi’s are integers. Note

that by our convetion, the vector bi in the basis matrix B

is its row vector. The rank of lattice Λ(B) is defined as the

rank of the basis matrix B . If the rank of Λ(B) equals

m, we call the lattice full rank. A fundamental notion lies

in various lattice problems is the successive minimal λk(Λ)

which is defined to be the smallest real number r such that

the lattice contains k linearly independent nonzero vectors

of Euclidean length at most r. Specifically, λ1(Λ) is the

length of the shortest nonzero vector of the lattice Λ.

The lattices we are interested in are a special type of

lattices called q-ary lattices which are lattices satisfying

qZm ⊂ Λ ⊂ Z
m. Fix positive integers n ≤ m ≤ q, where

n serves as the main security parameter, and q is an odd

prime. For any matrix A ∈ Z
m×n define the following two

lattice.

Λ⊥
q (A) = {x ∈ Z

m : xA = 0 mod q},

Λq(A) = {x ∈ Z
m : x = As mod q for some s ∈ Z

n
q }.

It is easy to check that both Λ⊥
q (A) and Λq(A) are q-ary

lattices [28]. Note that Λ⊥
q (A) and Λq(A) are dual to each

other up to scale. Also notice that the matrix A is not a

basis for these q-ary lattices. However, the lattice basis can

be easily calculated via linear algebra. We will detail on how

to compute the basis from A in subsequent section.

2.2 Lattice Reduction

As we have noticed in Section 2.1 that a lattice can be

generated from different bases. Property of the basis plays

a central role in the difficulty of various hard lattice prob-

lems. Informally, the more orthogonal the basis is, the easier

the corresponding lattice problems are. So many attempts

to solve hard lattice problems try to alter (often called re-

duce in the literature) the given basis in order to get basis

which generates the same lattice while at the same time

achieves the highest orthogonality possible. We adopt the

convention that the first vector b1 in a reduced basis has the

smallest length among the (reduced) basis vectors. After the

lattice reduction algorithm, we can use the vector b1 as an

approximation of the shortest vector. Since the determinate

of a lattice is invariant under lattice reduction, when the

basis get reduced the length of each basis vector decreases.

The common measurement of the quality of a lattice basis is

called Hermite factor δm defined as: ||b1|| = δmvol(Λ)1/m.

We also refer to δ as the root-Hermite factor. Smaller root-

Hermite factor usually implies a reduced basis with higher

quality.

Lattice reduction algorithms can be viewed as a case of

hierarchical of BKZ [33] based on the parameter blocksize k.

The case when k = 2 is called LLL reduction, which was in-

vented by Lenstra, Lenstra and Lovasz [25]. LLL reduction

is proven to run in polynomial time in the lattice dimension

and output a short vector which is within exponential of the

minimal length of a lattice Λ, i.e., λ1(Λ). When k = m, i.e.,

the full size of the basis, the output basis is HKZ reduced

[22] which implies solving the SVP. The situation when k lies

in between 2 and m is known as the BKZ-k reduction which
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is the most referenced reduction algorithm in practice. Chen

and Nguyen observed that the running time of BKZ reduc-

tion is mainly dominated by the root-Hermite factor δ and

is less affected by the dimension m. See Chen and Nguyen

[13] for a detailed analysis and their improvements over the

standard BKZ as a collection of optimization known as BKZ

2.0. See also Albrecht et al. [2] for a thorough comparison

of different estimation of the complexity of BKZ.

3. BDD Approach to Solve LWE Search

Problem

We consider the search version of the LWE problem in

this work. There are mainly three ways to solve the search

LWE problem.

( 1 ) BKW approach: Blum, Kalai and Wasserman pro-

posed BKW algorithm for the LPN (learning with par-

ity noise) problem. Latter this algorithm was used to

analyze the security of code-based cryptosystems. Since

LWE can be viewed as a generalization of LPN prob-

lem (which generalizes LPN by using more general noise

distribution instead of binary noise in LPN), BKW was

also adapted to solve LWE by Albrecht et al. [3].

( 2 ) Algebraic approach: Arora-Ge [7] proposed to set up a

system of algebraic equations over integers to describe

the LWE problem and solve the search problem by solv-

ing the equation system. Latter this method was im-

proved by using Grobner basis techniques [4].

( 3 ) BDD approach: This approach views the search LWE

problem as a decoding problem in a lattice. We will

explain this idea in more detail in the following.

Bounded Distance Decoding (BDD): Given m samples

(ai, ci) following LWE distribution Ln,q,D, we organize the

input into a matrix A ∈ Z
m×n
q whose rows constitute the

m samples of the vector ai, and a vector c ∈ Z
m
q whose

i-th element is ci from the i-th sample. Note c = As + e,

where e is the error vector which follows the distribution

Dn. When the error distribution of the LWE problem is

the discrete Gaussian distribution DZq,αq, we observe that

the length of e is relatively small since each of its dimension

is distributed according to the discrete Gaussian. Consider

the q-ary lattice

Λq(A) = {x ∈ Z
m : x = As mod q for some s ∈ Z

n
q },

induced by A, then the vector c is bounded in distance from

a vector v ∈ Λq(A). Find the vector v from the q-ary lattice

is called the BDD problem.

There are several ways to solve the BDD problem. Lind-

ner and Peikert[27] proposed a variant of Babai’s nearest

plane algorithm to solve the BDD problem. Bischof et al.

[12] and Kirshanova et al. [23] has implemented parallel

version of this algorithm and investigated its practical per-

formance. Liu and Nguyen [26] observed that Lindner and

Peickert nearest plane algorithm can be viewed as a form

of pruned enumeration with pruning strategy different from

normal pruning method to bound the projection length but

instead to bound the coefficients. Thus they propose to use

the lattice enumeration with GNR extreme pruning strategy

to accelerate the speed of finding the closest vector. This will

be the approach we use in our experimental study. Albrecht

et al. [6] propose another approach to reduce the BDD prob-

lem to unique SVP problem by the embedding technique of

Kannan [22].

4. Our Implementation

We choose to implement the Liu and Nguyen algorithm

to study its practical performance. This algorithm uses enu-

meration with extreme pruning to solve the BDD problem.

Given M samples {(ai, ci)}i=1,2,...,M from the LWE distri-

bution Ln,q,α we outline the algorithm steps as follows:

• Step 1: Choose an appropriate m number of samples

from the LWE samples which will be the dimension of

the q-ary lattice in consideration. Denote the subset of

LWE samples in matrix representation as As + e = c,

where A has size m × n, s is the n-dimension secret

vector we want to find, and e is the m-dimension error

vector chosen from the discrete Gaussian distribution

DZq,αq.

• Step 2: Compute the basis of the q-ary lattice Λq(A)

generated by A, denote it by B. Note that B is of size

m×m.

• Step 3: Randomize the basis B by multiplying a uni-

modular matrix U of size m×m. Denote the random-

ized basis as B′.

• Step 4: Use BKZ reduction algorithm to reduce the ba-

sis B′.

• Step 5: Compute the pruning coefficients and use

pruned enumeration to find the closest vector in the

lattice Λq(A) to the vector c using the BKZ reduced

basis B′.

• Step 6: If the closest vector v is found, solve the LWE

secret vector by s = A−1v, where A−1 is the inverse

of A. Otherwise, goto step (3).

We give detailed explanation of the choice we make re-

garding each step of the algorithm in subsequent subsec-

tions.

4.1 Choose Subdimension

In the typical setting of LWE problem, the number of

total samples M is bounded by a polynomial of the LWE

dimension n. When treating LWE as a lattice problem, one

important decision is how to choose the dimension of the

lattice. The dimension of the lattice equals the number of

samples we choose. How many of the total M samples do

we use to form the generating matrix A?

The number of samples (i.e., the dimension of the lattice)

should be chosen according to the following two considera-

tions:

( 1 ) It should not be too large, otherwise we will be dealing

with a lattice of large dimension.

( 2 ) It should not be too small either, for otherwise the sub

LWE problem may not have a unique solution.

The first reason seems quite natural. However, during our
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experiments we find that the dimension of the lattice does

not have a strong impact on the time complexity of solving

the LWE problem. For fixed LWE dimension n and rela-

tive error rate α, when we increase the number of samples

m we do not experience too much of a change in running

time. This behavior is what one would expect according

to the theory since the hardness of LWE depends on the

dimension n and the relative error rate α.

Sometimes a smaller subdimension may even lead to an

increased running time. This counter intuitive phenomenon

might happen because when the number of samples are two

small the corresponding sub LWE problem does not have a

unique solution. If we look at the equation As + e = c,

then for any choice of s we can find an error vector e sat-

isfying the above equation. However, the LWE problem re-

stricts the length of e. More precisely, it requires that each

element of e is chosen from the discrete Gaussian distri-

bution with small variant thus can not be too large. TU

Darmstat University has held a LWE challenge website*1

similar to the famous SVP challenge. According to Buch-

mann et al. [11], the acceptance criteria for the correct

answer of the LWE problem Ln,q,α with M samples is that

||e|| ≤ 2
√
Mαq. Based on this criteria, when we choose the

subdimension to be m, we would also expect to find a se-

cret vector s such that it leads to a error vector of length

less than 2
√
mαq. Following the argument of Buchmann

et al. [11] we calculate the probability that the sub LWE

problem has more than one solutions. For a chosen ma-

trix A of size m × n, let Λq(A) denote the q-ary lattice

generated by A. Recall that λ1(Λq(A)) is the norm of the

shortest non zero vector in Λq(A). Assume we have two

solutions for the secret vector s1 and s2 both satisfy the cri-

teria As1 + e1 = c = As2 + e2 and ei ≤ 2
√
mαq. Then by

triangle inequality we have ||A(s1 − s2)|| ≤ 4
√
mαq. Since

A(s1 − s2) is actually a vector in the q-ary lattice Λq(A),

the fact that the sub LWE problem has more than one so-

lutions implies that λ1(Λq(A)) ≤ 4
√
mαq. On the other

hand, Gaussian heuristic tells us that the expected length

of the shortest vector of Λq(A) is q1−
n

m

√

m
2πe . So in our

implementation we choose the subdimension m such that

the corresponding Gaussian heuristic q1−
n

m

√

m
2πe is larger

than 4
√
mαq.

4.2 Compute the Basis

This is easy linear algebra. Given a matrixA of sizem×n,

we want to find the matrix B which is the basis of the q-ary

lattice Λq(A) = {x ∈ Z
m : x = As mod q for some s ∈

Z
n
q }. Recall that we use the convention of row vector, so a

lattice vector generated by the basis B can be represented

by zB where z is a row vector. If we forget for a moment

that we are working on the modular ring Zq, then the basis

for Λq(A) is simply AT , the transpose of A since all lattice

vectors except for those in qZm can be expressed by an in-

teger linear combination of rows in matrix AT . To include

*1 https://www.latticechallenge.org/lwe challenge/challenge.php

qZm in order to make it q-ary lattice we further compute

the Hermite normal form of
[

A
T

qIm

]

to get the basis of the

q-ary lattice Λq(A). In other words, B = HNF(
[

A
T

qIm

]

),

where HNF(A) denotes the row Hermite normal form of a

matrix A removing all zero rows. Some explanations are as

follows. The lattice Λ(AT), which has AT as a basis con-

stitutes all lattice vector of Λq(A) except those belonging

to qZm. While qZm itself can be viewed as a lattice with

the (m dimensional) identity matrix scared by q as its basis.

Thus, we get Λq(A) = Λ(AT) ∪ Λ(qIm). The last step of

our computation relies on the following fact:

Fact 1. Given two lattice Λ(A) and Λ(B) of the same

dimension. Then the basis for the union of Λ(A) and Λ(B)

is HNF(
[

A

B

]

).

It is proven that with high probability the basis B has full

rank m (i.e., B is of size m×m). In our implementation we

use a script written in Sage [34] to compute the basis of the

q-ary lattice Λq(A).

4.3 Basis Randomization

Two matrices B and B′ generates the same lattice if and

only if B′ = UB for some unimodular matrix U. The ques-

tion of randomizing the lattice basis thus reduces to the

question of generating random unimodular matrices. There

are many ways to generate unimodular matrices, we choose

the following method to generate random unimodular ma-

trices:

( 1 ) Generate two random square matrices L and R, where

L is a lower triangular matrix with ±1 as its diagonal

elements and where R is a upper triangular matrix with

±1 as its diagonal elements. The non-diagonal elements

of both matrices are generated randomly uniformly from

an interval [−c, c] with c a small positive integer.

( 2 ) Set U = LR and output U as the randomly generated

unimodular matrix.

We choose this method to generate unimodular matrices

for two reasons:

( 1 ) This method is simple to implement.

( 2 ) When used in multi-thread program we can control the

collision of the random matrix in different threads.

We describe how to control the collision in different

threads. We assume, for simplicity and without loss of gen-

erality, that the diagonal elements of both L and R is set to

be 1. The following example lists possible constructs for the

lower triangle matrix L and the upper triangle matrix R.

In the examples, the symbol ‘x’ means we do not care what

its value is. The argument goes perfectly through even we

choose −1 for some of the diagonal elements of the matrices.

L =



















1 0 0 · · · 0 0

a2 1 0 · · · 0 0

a3 x 1 · · · 0 0

· · · · · · · · · · · · · · · · · ·
an−1 x · · · x 1 0

an x · · · · · · x 1


















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R =



















1 b2 b3 · · · bn−1 bn

0 1 x · · · x x

0 0 1 · · · x x

· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 1 x

0 0 · · · · · · 0 1



















U = LR =



















1 b2 b3 · · · bn−1 bn

a2 x x · · · x x

a3 x x · · · x x

· · · · · · · · · · · · · · · · · ·
an−1 x · · · x x x

an x · · · · · · x x



















From the example we can see that the first row and first col-

umn of the unimodular matrix U equals the first row of the

upper triangle matrix R and the first column of the lower

triangle matrix L, respectively. To make different threads

generate the unimodular matrices without collision we can

simply fix some elements of the first row of R and some

elements of the first column of L.

Readers might already see from the above example the

disadvantage of our method to generate unimodular matri-

ces: the distribution is not uniform! The top-left element of

U is always 1. However as we argue this is no big problem

since it is theoretically impossible to generate uniform uni-

modular matrices simply because there are infinite number

of unimodular matrices. One may insist on generating uni-

form unimodular matrices from a finite subgroup of the uni-

modular matrices, but as we show that our method already

has a large size of randomness so it is not necessary to insist

on uniformness. Since the non-diagonal elements of the tri-

angle matrices are generated from [−c, c] and for an n × n

matrix we have n(n − 1) such elements. And each element

has 2c+1 possible choices thus the total number of unimod-

ular matrices our method can generate is (2c + 1)n(n+1).

In our implementation we set c = 1 since the randomized

lattice basis will have larger entries compared to the origin

thus increases the burden of lattice reduction algorithm.

4.4 Basis Reduction

Since we use enumeration to solve the BDD problem, we

want to first reduce the lattice basis before applying enumer-

ation. BKZ is now the de-facto standard of lattice reduction

algorithm in cryptanalysis. We use the BKZ implementation

in FPLLL [5] library to perform BKZ reduction.

The quality of the reduced basis and the running time of

BKZ reduction algorithm highly depend on the block size

k. How to choose an appropriate block size k affects the

total running time of our LWE solver. This choice is also

related to the parallel strategy we will be using. Parallelism

is ubiquitous in today’s program design. We have multi-core

CPUs even in our laptops. It is natural to implement the

LWE solve algorithm in parallel. There are two apparent

strategies to us:

( 1 ) Use parallel implementation of enumeration algorithm

and parallel implementation of lattice reduction algo-

rithm.

( 2 ) Use sequential implementation of lattice reduction al-

gorithm and enumeration algorithm but instead launch

several threads to solve the BDD problem using differ-

ent randomized basis.

We choose the second design for its simplicity and its embar-

rassing parallelism. Although there are parallel implemen-

tations of lattice enumeration algorithms [15], [16], [21], [24],

we do not know any public available implementation of BKZ

reduction algorithm. Thus if we want to use parallel imple-

mentation of enumeration we might have to use a sequen-

tial implementation of BKZ reduction. Amdahl’s Law sets a

bound on the potential program speedup defined by the frac-

tion of code (p) that can be parallelized as speedup = 1
1−p .

When use the combination of BKZ reduction and enumera-

tion to solve the SVP or CVP problem, the common knowl-

edge it that when the running time of BKZ reduction part

and the enumeration part are roughly equal, the total run-

ning time is minimized. If we want optimal performance

then the fraction of parallelizable code would be about 1/2.

Then regardless of how many threads are used, the speedup

can be at most 2. We can circumvent this by using a small

block size for the BKZ reduction, plugging in the parallel

enumeration into the BKZ reduction, but those method are

either complicate or does not achieve optimal performance

gain.

In our implementation we use the embarrassingly parallel

design to let each thread work on a different randomized ba-

sis, thus there is no load balance issue. In order to achieve

best performance we carefully choose the BKZ block size so

that the BKZ reduction time is comparable to that of the

enumeration time.

4.5 Lattice Enumeration

We use extreme pruning [19] for lattice enumeration as

suggested by Liu and Nguyen [26]. Given a target vector

t, a lattice basis B = (b1, · · · ,bm) and a BDD radius R,

enumeration algorithm enumerates over all lattice vectors

v ∈ L such that ||v − t|| ≤ R and find the closest one to

solve the BDD problem. Gamma et al. [19] suggest using

extreme pruning to reduce the number of candidate vectors

for enumeration. They also suggest using numerical approx-

imation to generate optimal pruning coefficients by fixing

the successful probability and seeking for minimum over-

head. Aono [8] also described how to compute the optimal

pruning coefficients. We follow Aono’s approach to compute

the optimal pruning coefficients in our implementation.

The next point is to decide the BDD bound R. Accord-

ing to the acceptance criteria of the LWE challenge, the

requirement is that ||e|| ≤ 2
√
mαq for an LWE instance

Ln,q,α with m samples. Thus we can choose R = 2
√
mαq

as the BDD bound. However, according to our experiments

we find that 2
√
mαq is a little bit too pessimistic. We can

actually choose a smaller BDD bound R. A smaller BDD

bound R can dramatically reduce the running time of the

enumeration process. To approximate the BDD bound R
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(a) n = 40, α = 0.005, m = 100. (b) n = 50, α = 0.010, m = 120. (c) n = 60, α = 0.015, m = 140.

Fig. 1: Histograms of square length of e for different parameters.

we sampled from the according discrete Gaussian distribu-

tion and record the squared length of the error vector e. We

set squared BDD bound R2 as c·mα2q2 for some fixed con-

stant c. The choice of c is made such that ||e||2 ≤ c ·mα2q2

with overwhelming probability. From our sampling experi-

ments we decide that c = 1.3 is an appropriate choice. See

Fig. 1 for our experiment results.

5. Experimental Results

Our implementation is written in C++, using the library

FPLLL for BKZ reduction and lattice enumeration. Our

program is compiled using gcc 5.4.0 on a desktop running

Ubuntu 14.04 LTS. We test our LWE solver using the in-

stances from the LWE challenge website.

5.1 LWE Challenge

TU Darmstadt helds a LWE challenge project. The chal-

lenge provides LWE instances with different parameters.

The LWE challenge instance is identified by two parame-

ters: the LWE dimension n and the relative error rate α.

The other parameters of an LWE instance are set as follows:

- Moduli q is set as the next prime of n2;

- Number of samples is set as M = n2;

- Error distribution is set as the discrete Gaussian distri-

bution with width parameter σ = αq, i.e., the distribu-

tion DZq,σ.

See Fig.2 for an illustration.

5.2 Our Results

We use our implementation solved several instances from

the LWE Challenge website. Please refer to Table 1 for the

detailed recording of the LWE parameters, the block size

we used for BKZ and the running time for solving these

instances. All the instances except for the one with param-

eters (n = 40, α = 0.02) were run on a cluster consisting

of 20 c4.8xlarge instances, each having 36 cores with a 60

GB memory, on the Amazon EC2 platform. The instance

(n = 40, α = 0.02) was solved on a cluster consisting of 8

desktops with a 3.60 GHz Intel Core i7 processor with eight

cores and 32 GB 1600MHz DDR3 memory.

In the experiments we carefully choose the BKZ block size

k to ensure the BKZ reduction time is comparable with the

enumeration time so as to achieve the reduction on overall

Fig. 2: The LWE challenge. Each cell represents a different

LWE instance indexed by the dimension n and relative error

rate α. The green cells are unsolved instances and the red

ones represent the ones already solved.

running time. And our experiments indeed confirm the folk-

lore that when BKZ reduction time roughly equals that of

enumeration time the total running time achieves the min-

imal. The squared BDD bound R2 was set as 1.3 ·mα2q2

in all instances and succeeded for all. The successful prob-

ability in our pruning strategy is set to be 0.01. From the

results of our experiments we find that the relative error

rate α plays an important role in the hardness of the LWE

problem.

6. Future Work

In this preliminary report we just described our choice of

strategy to solve theBDD problem and details of our imple-

mentation and recorded the experiments of solving several

LWE challenge instances. There are plenty of areas we can

further explore.

• We choose the optimal BKZ block size k manually in

our experiment. This would be impossible for LWE

instances with large dimension and / or large relative

error rate. Thus it would be interesting to explore some

estimation of relation between the BKZ reduction time
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Table 1: Results on solving some instances from the LWE Challenge website
LWE parameters BKZ reduction

Enumeration time Total time
n α m k time
40 0.005 140 10 - - 0.2s
40 0.01 100 30 45 99 144s
40 0.015 120 28 2812s 1937 4749s
40 0.02 140 32 10.9d 27.1d 38d
45 0.005 100 18 4s 1s 5s
45 0.01 120 28 908s 706s 1614s
50 0.005 120 15 26s 22s 48s
55 0.005 140 25 1024s 752s 1776s
60 0.005 140 33 7d 9d 16d

and enumeration time and use some heuristics to decide

the optimal BKZ block size.

• Our experiments witnessed the fact that the subdimen-

sion does not affect the running time of our LWE solver

too much. We will do further experiments to investigate

the impact of different choice of subdimensions and un-

derstand the reason for this.

• Although we set the successful probability of the prun-

ing strategy to be 0.01, the pruning coefficients we get

result in higher successful probability. The impact of

this is that we do not need too many repetitions to find

the solution. Since we are using parallel running of the

LWE solver, we would expect the successful probabil-

ity to be rather low. Lower successful probability can

reduce the running time while we can simply add more

threads to compensate the low probability of success. In

fact our current environment of 20 c4.8xlarge Amazon

EC2 instances contains in total more than 700 threads,

while the average rounds needed to find the solution is

around 30. We can see that a large part of computing

resources is waisted. We can deal with this problem in

two ways: firstly, we can reduce the successful probabil-

ity for the pruning strategy; secondly, we can deploy a

two-level parallelism by using the first level to run the

LWE solver in parallel and using the second level to run

the parallel enumeration algorithm.
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