ブロック暗号 Midori64の特異な3階差分特性(Ⅱ)

高橋 勇介¹ 五十嵐 保隆¹ 金子 敏信¹

概要: Midori64 は Banik らが 2015 年に提案した秘密鍵長 128 ビットの SPN 型 64 ビットプロック暗号ア ルゴリズムである.高階差分攻撃は Lai が提案した暗号攻撃手法である.暗号化関数のブール多項式の代 数次数に着目した攻撃法であり,共通鍵暗号アルゴリズム全般に広く適用できる攻撃法である.本稿では, この攻撃で利用できる複数種類の特異な3階差分特性の発見とその理論解析を報告する.

キーワード:ブロック暗号,Midori64,高階差分攻撃,ブール多項式

The particular third-order differential characteristics of Midori64 block $\operatorname{cipher}(\mathbf{II})$

YUSUKE TAKAHASHI¹ YASUTAKA IGARASHI¹ TOSHINOBU KANEKO¹

Abstract: Midori64 proposed by Banik et al. in 2015 is an SPN-type block cipher with 128-bit secret key. The higher-order differential characteristics of the boolean polynomial of encryption function can be exploited for cryptanalysis. In this paper, we show a variety of the particular third-order differential characteristics of Midori64 block cipher, and theoretically analyze the characteristics.

Keywords: Block Cipher, Midori64, Higher-order differential attack, Boolean polynomial

1. まえがき

Midori64 は Banik らが 2015 年に提案した秘密鍵長 128 ビットの SPN 型 64 ビットプロック暗号アルゴリズムであ る.高階差分攻撃は Lai が提案した暗号攻撃手法である. 暗号化関数のプール多項式の代数次数に着目した攻撃法で あり,共通鍵暗号アルゴリズム全般に広く適用できる攻撃 法である.本稿では,この攻撃で利用できる複数種類の特 異な3階差分特性の発見とその理論解析を報告する.尚, 本稿で特異とは,一般的には,高階差分値が不定となる箇 所で不定とならずに,(高階差分値)=0,つまり,バランス 特性が出現することを意味している.

2. Midori64 のデータ撹拌部

図 1 に 10 段構成の Midori64 のデータ撹拌部を示す. *R* 関数 9 個と *S* 関数 1 個で構成されている. *K*₀, *K*₁ はそれ

東京理科大学大学院 Tokyo University of Science ぞれ次式で表される 64 ビットの鍵であり , $K_2=K_0\oplus K_1$ である .

$$K_{i} = k_{0}^{i} \parallel k_{1}^{i} \parallel \dots \parallel k_{15}^{i}, (i = 0, 1, 2),$$
(1)
$$k_{i}^{i} \in \{0, 1\}^{4}, (j = 0, 1, ..., 15).$$

 $x \parallel y$ は 2 つのデータ $x \ge y$ の連結を表す. RC_i は i 段目 のラウンド定数を表すが,詳細は重要ではないので省略す る.図 2 にラウンド関数 R を示す.その構成要素は 3 層か ら成り,1 つ目は 16 並列の 4 ビット入出力 S-box から成 る S 層であり,2 つ目は,4 ビット単位のデータの入れ替 え処理である SC 層であり,3 つ目は,要素の値が4 ビッ トである次式で示される 4×4 行列 M の 4 並列から成る M 層である.行列 $M \ge$,その逆行列 M^{-1} を次式に示す.

$$M = M^{-1} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$
 (2)

S-box は次数 3 の全単射の非線形関数である.式 (3) から 式 (6) に代数式展開を示す. $x_i \in S$ -box の入力, $y_i \in H$ 力 とし, $x_3, y_3 \in H$ 上位ビットとし, $x_0, y_0 \in H$ 下位ビット とする.

$$y_{3} = x_{0}x_{1}x_{3} \oplus x_{1}x_{2}x_{3} \oplus x_{0}x_{1} \oplus x_{1}x_{3} \oplus x_{2}x_{3} \oplus 1, (3)$$

$$y_{2} = x_{0}x_{1}x_{2} \oplus x_{0}x_{1}x_{3} \oplus x_{1}x_{2}x_{3} \oplus x_{0}x_{3} \oplus x_{0} \oplus x_{3} \oplus 1,$$

$$(4)$$

$$y_{1} = x_{0}x_{2} \oplus x_{0}x_{3} \oplus x_{2}x_{3} \oplus x_{0} \oplus x_{2}, \qquad (5)$$

$$y_{0} = x_{0}x_{1}x_{2} \oplus x_{0}x_{1}x_{3} \oplus x_{1}x_{2}x_{3} \oplus x_{0}x_{2} \oplus x_{0}x_{3} \oplus x_{1}.$$

(6)

SC 層と行列 *M* は線形関数である.図1の*S* 関数の構造 は図2において SC 層と M 層を削除した S 層のみの構造 となっている.

図 1 10 段構成の Midori64 のデータ撹拌部

Fig. 2 Round function R.

3. 高階差分

本節では図3の一般的な暗号回路モデルを例にして高階 差分の定義を示し,高階差分の性質のうち,本稿に関係す る事項及びその性質を利用した攻撃方程式について一般的 に述べる.高階差分の詳細な性質に関しては文献[1]を参 照されたい.

3.1 定義

図 3 の E_1, E_2 はそれぞれ暗号化関数の構成要素を表し, $K_1 \in GF(2)^p, K_2 \in GF(2)^q$ はそれぞれ p ビット, q ビット の暗号化鍵を表す. $P = (p_1, p_2, ..., p_n) \ge \Delta P \in GF(2)^n$ は それぞれ n ビットの平文と平文差分を表す. $H \in GF(2)^m$ は m ビットの E_1 出力を表す. $C(P \oplus \Delta P) \in GF(2)^l$ は

平文 $(P \oplus \Delta P)$ に対応する l ビットの出力暗号文を表す. $V^{(i)}$ は $GF(2)^n$ の i 次元部分空間を表す. $V^{(i)}$ に関する $E_1(P; K_1)$ の i 階差分 $\Delta^{(i)}E_1(P; K_1)$ は次式で定義される.

$$\Delta^{(i)}E_1(P;K_1) \equiv \sum_{\Delta P \in V^{(i)}}^{\oplus} E_1(P \oplus \Delta P;K_1).$$
(7)

ここで \sum^{\oplus} は XOR による総和を表す.

3.2 性質

今, $E_1(P; K_1)$ の Pに関するブール代数次数が $N(\leq n)$ ならば,次式のように N 階差分 $\Delta^{(N)}E_1(P; K_1)$, (N + 1)階差分 $\Delta^{(N+1)}E_1(P; K_1)$ はそれぞれ $P \ge K_1$ に依存せずに,定数,ゼロになる性質をもつ.

$$\Delta^{(N)}E_1(P;K_1) = const,\tag{8}$$

$$\Delta^{(N+1)} E_1(P; K_1) = 0.$$
(9)

3.3 飽和特性

N ビットデータ X の集合 $\{X_j | X_j \in \{0,1\}^N, 0 \le j \le 2^N - 1\}$ の性質の表記として次に挙げる表記を用いる.

Constant(C):
$$\forall_{i,k}; X_i = X_k$$

All(A) : $\forall_{i,k}; i \neq k \to X_i \neq X_k$
Balance-0(B) : $\sum_i^{\oplus} X_i = 0$
Balance-1(B) : $\sum_i^{\oplus} X_i = 1$
Unknown(U): 不定値

Uのみは攻撃に利用できない特性であるが,それ以外の4つの特性は攻撃に利用できる.

4. Midori64 の3階差分特性

4.1 差分の入力パターン

入力平文 64 ビットの左端の最上位 4 ビット (x₃, x₂, x₁, x₀)に着目し,3 階差分の全ての入力パター ン,つまり3次元部分空間を次式に従って考える.

$$\begin{pmatrix} x_3 \\ x_2 \\ x_1 \\ x_0 \end{pmatrix} = \vec{V} \begin{pmatrix} t_2 \\ t_1 \\ t_0 \end{pmatrix}.$$
 (10)

ここで, $\vec{V} = (\vec{v_i}, \vec{v_j}, \vec{v_k})$ であり, $\vec{v_i}, \vec{v_j}, \vec{v_k}$ は互いに独 立である GF(2)上の4次元縦ベクトルを表す. $(t_2, t_1, t_0)^t$ は, $(0, 0, 0)^t$ から $(1, 1, 1)^t$ までの全8通りの値を取る3次 元ベクトルである. $()^t$ は行列の転置を表す. $(\vec{v_i}, \vec{v_j}, \vec{v_k})$ の候補として次に示す15個のベクトルが存在する.

$$\vec{v_1} = (0, 0, 0, 1)^t,$$
 (11)
 $\vec{v_2} = (0, 0, 1, 0)^t,$ (12)

$$\vec{v_3} = (0, 0, 1, 1)^t,$$
 (13)

$$\vec{v_4} = (0, 1, 0, 0)^t, \tag{14}$$

$$\vec{v_5} = (0, 1, 0, 1)^t,$$
 (15)

$$\vec{v_6} = (0, 1, 1, 0)^t, \tag{16}$$

$$\vec{v_7} = (0, 1, 1, 1)^t, \tag{17}$$

$$\vec{v_8} = (1, 0, 0, 0)^t, \tag{18}$$

$$\vec{v_9} = (1, 0, 0, 1)^t, \tag{19}$$

$$\vec{v_{10}} = (1, 0, 1, 0)^t, \tag{20}$$

$$\vec{v_{11}} = (1, 0, 1, 1)^t, \tag{21}$$

$$v_{12}^{\prime} = (1, 1, 0, 0)^t,$$
 (22)
 $v_{13}^{\prime} = (1, 1, 0, 1)^t,$ (23)

$$\vec{v_{14}} = (1, 1, 1, 0)^t, \tag{24}$$

 $\vec{v_{15}} = (1, 1, 1, 1)^t.$ (25)

実際には互いに異なる 3 次元部分空間を与える V は次 に示す 15 通りである.

$$\vec{V} = \begin{pmatrix} * & * & * \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
(26)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & * & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
(27)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & * \\ 0 & 0 & 1 \end{pmatrix},$$
(28)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$
(29)

ここで,*印は0または1のどちらの値も取ることがで きることを表す.従って,式(25),(26),(27),(28)はそれ ぞれ8通り,4通り,2通り,1通りの計15通りとなってい る.これら 15 通りの \vec{V} とそれに対応する (x_3, x_2, x_1, x_0) の集合を (例えば (1,0,1,1)を B と表記し, 16 進数としてまとめて表記している) 表 1 に示す.

表 1 4 次元空間における 3 階差分の入力パターン

 Table 1 Input patterns of the 3rd-order differential in 4dimensional space.

$(ec{v_i},ec{v_j},ec{v_k})$	(x_3, x_2, x_1, x_0) の集合
$(ec{v_4},ec{v_2},ec{v_1})$	$\{0, 1, 2, 3, 4, 5, 6, 7\}$
$(ec{v_4},ec{v_2},ec{v_9})$	$\{0, 9, 2, B, 4, D, 6, F\}$
$(ec{v_4}, ec{v_{10}}, ec{v_9})$	$\{0, 9, A, 3, 4, D, E, 7\}$
$(ec{v_{12}}, ec{v_2}, ec{v_9})$	$\{0, 9, 2, B, C, 5, E, 7\}$
$(ec{v_4},ec{v_{10}},ec{v_1})$	$\{0, 1, A, B, 4, 5, E, F\}$
$(ec{v_{12}}, ec{v_{10}}, ec{v_1})$	$\{0, 1, A, B, C, D, 6, 7\}$
$(ec{v_{12}},ec{v_2},ec{v_1})$	$\{0, 1, 2, 3, C, D, E, F\}$
$(ec{v_{12}}, ec{v_{10}}, ec{v_9})$	$\{0, 9, A, 3, C, 5, 6, F\}$
$(ec{v_8},ec{v_2},ec{v_1})$	$\{0, 1, 2, 3, 8, 9, A, B\}$
$(ec{v_8},ec{v_2},ec{v_5})$	$\{0, 5, 2, 7, 8, D, A, F\}$
$(ec{v_8},ec{v_6},ec{v_1})$	$\{0, 1, 6, 7, 8, 9, E, F\}$
$(ec{v_8},ec{v_6},ec{v_5})$	$\{0, 5, 6, 3, 8, D, E, B\}$
$(ec{v_8},ec{v_4},ec{v_1})$	$\{0, 1, 4, 5, 8, 9, C, D\}$
$(ec{v_8},ec{v_4},ec{v_3})$	$\{0, 3, 4, 7, 8, B, C, F\}$
$(ec{v_8},ec{v_4},ec{v_2})$	$\{0, 2, 4, 6, 8, A, C, E\}$

4.2 3 階差分の出力結果

表1の15通りの3階差分の入力に対する,各段の飽和 特性を表2から表16に示す.これは鍵と平文の基準値を ランダムに20000回設定した時のシミュレーション結果で ある.C,B,Uはそれぞれ4ビット分の特性をまとめて 表している.さらに, B_x^n はB特性を持つビットをnビッ ト,x特性を持つビットを(4-n)ビット含む4ビットの 特性を表す.

表 2 $\vec{V} = (\vec{v_4}, \vec{v_2}, \vec{v_1})$ の3階差分特性

Table 2 The third-order differential characteristics of Midori64 with $\vec{V} = (\vec{v_4}, \vec{v_2}, \vec{v_1})$.

出現位置	$ec{V}=(ec{v_4},ec{v_2},ec{v_1})$ の特性
入力	$(B_C^3 CCC CCCC CCCC CCCC)$
1段目出力	$(CB_{\overline{B}}^{2}B_{\overline{B}}^{2}B_{\overline{B}}^{2}CCCCCCCCCCCC)$
2 段目出力	$(\operatorname{CCCC} B_{U}^{1} B_{U}^{1} B_{U}^{1} C B_{U}^{1} C B_{U}^{1} B_{U}^{1} B_{U}^{1} B_{U}^{1} B_{U}^{1} C B_{U}^{1})$

表 3 $ec{V}=(ec{v_4},ec{v_2},ec{v_9})$ の3階差分特性

Table 3 The third-order differential characteristics of Midori
64 with $\vec{V} = (\vec{v_4}, \vec{v_2}, \vec{v_9}).$

出現位置	$ec{V}=(ec{v_4},ec{v_2},ec{v_9})$ の特性
入力	(BCCC CCCC CCCC CCCC)
1段目出力	$(CB_{\overline{B}}^{3}B_{\overline{B}}^{3}B_{\overline{B}}^{3}CCCCCCCCCCCCC)$
2 段目出力	(CCCC UUUC UCUU UUCU)
3段目出力	$(B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1})$

表 4 $\vec{V} = (\vec{v_4}, \vec{v_{10}}, \vec{v_9})$ の3階差分特性

Table 4 The third-order differential characteristics of Midori64with $\vec{V} = (\vec{v_4}, \vec{v_{10}}, \vec{v_9}).$

出現位置	$ec{V}=(ec{v_4},ec{v_{10}},ec{v_9})$ の特性
入力	(BCCC CCCC CCCC CCCC)
1段目出力	$(CB_{\overline{B}}^{3}B_{\overline{B}}^{3}B_{\overline{B}}^{3}CCCCCCCCCCC)$
2 段目出力	(CCCC UUUC UCUU UUCU)

表 5 $\vec{V} = (\vec{v_{12}}, \vec{v_2}, \vec{v_9})$ の3階差分特性

Table 5 The third-order differential characteristics of Midori
64 with $\vec{V} = (v_{12}^2, v_2^2, v_9^2).$

出現位置	$ec{V} = (ec{v_{12}}, ec{v_2}, ec{v_9})$ の特性
入力	(BCCC CCCC CCCC CCCC)
1段目出力	$(CB_{\overline{B}}^{2}B_{\overline{B}}^{2}B_{\overline{B}}^{2}CCCCCCCCCCC)$
2 段目出力	(CCCC UUUC UCUU UUCU)

表 6 $\vec{V} = (\vec{v_4}, \vec{v_{10}}, \vec{v_1})$ の3階差分特性

Table 6 The third-order differential characteristics of Midori64with $\vec{V} = (\vec{v_4}, \vec{v_{10}}, \vec{v_1}).$

出現位置	$ec{V}=(ec{v_4},ec{v_{10}},ec{v_1})$ の特性
入力	(BCCC CCCC CCCC CCCC)
1段目出力	$(CB_{\overline{B}}^{2}B_{\overline{B}}^{2}B_{\overline{B}}^{2}CCCCCCCCCCCC)$
2 段目出力	(CCCC UUUC UCUU UUCU)

表 7 $\vec{V} = (\vec{v_{12}}, \vec{v_{10}}, \vec{v_1})$ の3階差分特性

Table 7 The third-order differential characteristics of Midori64with $\vec{V} = (\vec{v_{12}}, \vec{v_{10}}, \vec{v_1}).$

出現位置	$ec{V} = (ec{v_{12}}, ec{v_{10}}, ec{v_1})$ の特性
入力	(BCCC CCCC CCCC CCCC)
1 段目出力	$(CB_{\overline{B}}^{3}B_{\overline{B}}^{3}B_{\overline{B}}^{3}CCCCCCCCCCC)$
2段目出力	(CCCC UUUC UCUU UUCU)

表 8 $\vec{V} = (\vec{v_{12}}, \vec{v_2}, \vec{v_1})$ の3階差分特性

Table 8 The third-order differential characteristics of Midori64with $\vec{V} = (\vec{v_{12}}, \vec{v_2}, \vec{v_1}).$

出現位置	$ec{V}=(ec{v_{12}},ec{v_2},ec{v_1})$ の特性
入力	(BCCC CCCC CCCC CCCC)
1段目出力	$(CB_{\overline{B}}^{3}B_{\overline{B}}^{3}B_{\overline{B}}^{3}CCCCCCCCCCCCC)$
2 段目出力	(CCCC UUUC UCUU UUCU)
3段目出力	$(B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U}B^{1}_{U})$

表 9 $\vec{V} = (\vec{v_{12}}, \vec{v_{10}}, \vec{v_9})$ の3階差分特性

Table 9 The third-order differential characteristics of Midori
64 with $\vec{V}=(\vec{v_{12}},\vec{v_{10}},\vec{v_9}).$

出現位置	$ec{V} = (ec{v_{12}}, ec{v_{10}}, ec{v_9})$ の特性
入力	(BCCC CCCC CCCC CCCC)
1段目出力	$(CB_{\overline{B}}^{2}B_{\overline{B}}^{2}B_{\overline{B}}^{2}CCCCCCCCCCCC)$
2 段目出力	$(\operatorname{CCCC} B^1_U B^1_U B^1_U C B^1_U C B^1_U B^1_U B^1_U B^1_U C B^1_U)$

表 10 $\vec{V} = (\vec{v_8}, \vec{v_2}, \vec{v_1})$ の3階差分特性

Table 10 The third-order differential characteristics of Midori64 with $\vec{V} = (\vec{v_8}, \vec{v_2}, \vec{v_1})$.

出現位置	$ec{V}=(ec{v_8},ec{v_2},ec{v_1})$ の特性
入力	$(B_C^3 CCC CCCC CCCC CCCC)$
1段目出力	$(CB_{\overline{B}}^{1}B_{\overline{B}}^{1}B_{\overline{B}}^{1}CCCCCCCCCCC)$
2 段目出力	$(\operatorname{CCCC} B_{\mathrm{U}}^2 B_{\mathrm{U}}^2 B_{\mathrm{U}}^2 C B_{\mathrm{U}}^2 C B_{\mathrm{U}}^2 B_{\mathrm{U}}^2 B_{\mathrm{U}}^2 B_{\mathrm{U}}^2 C B_{\mathrm{U}}^2)$

表 11 $\vec{V} = (\vec{v_8}, \vec{v_2}, \vec{v_5})$ の3階差分特性

```
Table 11The third-order differential characteristics of Mi-<br/>dori64 with \vec{V} = (\vec{v_8}, \vec{v_2}, \vec{v_5}).
```

出現位置	$ec{V}=(ec{v_8},ec{v_2},ec{v_5})$ の特性
入力	(BCCC CCCC CCCC CCCC)
1段目出力	(CBBB CCCC CCCC CCCC)
2 段目出力	$(\operatorname{CCCC} \operatorname{B}^1_{\operatorname{U}} \operatorname{B}^1_{\operatorname{U}} \operatorname{B}^1_{\operatorname{U}} \operatorname{C} \operatorname{B}^1_{\operatorname{U}} \operatorname{C} \operatorname{B}^1_{\operatorname{U}} \operatorname{B}^1_{\operatorname{U}} \operatorname{B}^1_{\operatorname{U}} \operatorname{B}^1_{\operatorname{U}} \operatorname{C} \operatorname{B}^1_{\operatorname{U}})$
3段目出力	$(B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1}B_{U}^{1})$

表 12 $\vec{V} = (\vec{v_8}, \vec{v_6}, \vec{v_1})$ の3階差分特性

Table 12 The third-order differential characteristics of Midori64 with $\vec{V} = (\vec{v_8}, \vec{v_6}, \vec{v_1})$.

出現位置	$ec{V}=(ec{v_8},ec{v_6},ec{v_1})$ の特性
入力	(BCCC CCCC CCCC CCCC)
1段目出力	$(CB_{\overline{B}}^{1}B_{\overline{B}}^{1}B_{\overline{B}}^{1}B_{\overline{B}}^{1}CCCCCCCCCCCC)$
2 段目出力	$\left(\operatorname{CCCC} B_{U}^{2} B_{U}^{2} B_{U}^{2} C B_{U}^{2} C B_{U}^{2} B_{U}^{2} B_{U}^{2} B_{U}^{2} C B_{U}^{2} \right)$

表 13 $\vec{V} = (\vec{v_8}, \vec{v_6}, \vec{v_5})$ の3階差分特性

Table 13The third-order differential characteristics of Midori64 with $\vec{V} = (\vec{v_8}, \vec{v_6}, \vec{v_5}).$

出現位置	$ec{V}=(ec{v_8},ec{v_6},ec{v_5})$ の特性
入力	(BCCC CCCC CCCC CCCC)
1段目出力	(CBBB CCCC CCCC CCCC)
2 段目出力	$(\operatorname{CCCC} B_U^2 B_U^2 B_U^2 C B_U^2 C B_U^2 B_U^2 B_U^2 B_U^2 C B_U^2)$

表 14 $\vec{V} = (\vec{v_8}, \vec{v_4}, \vec{v_1})$ の3階差分特性

Table 14 The third-order differential characteristics of Midori64 with $\vec{V} = (\vec{v_8}, \vec{v_4}, \vec{v_1})$.

出現位置	$ec{V}=(ec{v_8},ec{v_4},ec{v_1})$ の特性
入力	$(B_C^3 CCC CCCC CCCC CCCC)$
1段目出力	(CBBB CCCC CCCC CCCC)
2 段目出力	$(\operatorname{CCCC} B_{\mathrm{U}}^3 B_{\mathrm{U}}^3 B_{\mathrm{U}}^3 C B_{\mathrm{U}}^3 C B_{\mathrm{U}}^3 B_{\mathrm{U}}^3 B_{\mathrm{U}}^3 B_{\mathrm{U}}^3 B_{\mathrm{U}}^3 C B_{\mathrm{U}}^3)$
3段目出力	(UUUU UUUU UUUU UUUU)
4段目出力	$(\mathrm{B}^1_\mathrm{U}\mathrm{U}\mathrm{U}\mathrm{U}\mathrm{U}\mathrm{U}\mathrm{U}\mathrm{U}\mathrm{U}\mathrm{U}$

表 15 $\vec{V} = (\vec{v_8}, \vec{v_4}, \vec{v_3})$ の3階差分特性

Table 15 The third-order differential characteristics of Mi-
dori64 with $\vec{V} = (\vec{v_8}, \vec{v_4}, \vec{v_3}).$

出現位置	$ec{V}=(ec{v_8},ec{v_4},ec{v_3})$ の特性
入力	(BCCC CCCC CCCC CCCC)
1段目出力	$(CB_{\overline{B}}^{1}B_{\overline{B}}^{1}B_{\overline{B}}^{1}CCCCCCCCCCCC)$
2 段目出力	$\left(\operatorname{CCCC} B_{U}^{2} B_{U}^{2} B_{U}^{2} C B_{U}^{2} C B_{U}^{2} B_{U}^{2} B_{U}^{2} B_{U}^{2} B_{U}^{2} C B_{U}^{2}\right)$

表 16 $\vec{V} = (\vec{v_8}, \vec{v_4}, \vec{v_2})$ の3階差分特性

Table 16The third-order differential characteristics of Mi-
dori64 with $\vec{V} = (\vec{v_8}, \vec{v_4}, \vec{v_2}).$

出現位置	$ec{V}=(ec{v_8},ec{v_4},ec{v_2})$ の特性
入力	$(B^3_CCCCCCCCCCCCCC)$
1段目出力	$(CB_{\overline{B}}^{1}B_{\overline{B}}^{1}B_{\overline{B}}^{1}CCCCCCCCCCCC)$
2 段目出力	$(\operatorname{CCCC} B_{\mathrm{U}}^2 B_{\mathrm{U}}^2 B_{\mathrm{U}}^2 C B_{\mathrm{U}}^2 C B_{\mathrm{U}}^2 B_{\mathrm{U}}^2 B_{\mathrm{U}}^2 B_{\mathrm{U}}^2 B_{\mathrm{U}}^2 C B_{\mathrm{U}}^2)$

4.3 S-box 入出力における特異な3階差分特性の伝播

表 2 から表 16 より, S-box の入力に対して,一般とは異 なる特異な S-box 出力特性を観測した.その特異な特性を まとめて詳細な 1 ビット単位で表 17 に示す. $(\vec{v_i}, \vec{v_j}, \vec{v_k})^r$ は $(\vec{v_i}, \vec{v_j}, \vec{v_k})$ を用いた時の r 段目の S-box の入出力特性を 表している.例えば,通番 1 では 2 段目の S-box の入出力 特性を表している.

表 17 Midori64 の S-box の特異な 3 階差分特性

 Table 17
 The particular third-order differential characteristics of S-box of Midori64.

通番	\vec{V}	入力特性	出力特性
1	$(\vec{v_4}, \vec{v_2}, \vec{v_1})^2, (\vec{v_{12}}, \vec{v_{10}}, \vec{v_9})^2$	$(B\overline{B}B\overline{B})$	(BUUU)
2	$(ec{v_8}, ec{v_4}, ec{v_1})^2$	(BBBB)	(UBBB)
3	$(\vec{v_4}, \vec{v_2}, \vec{v_9})^3, (\vec{v_{12}}, \vec{v_2}, \vec{v_1})^3,$	(UUUU)	(UUBU)
	$(ec{v_8}, ec{v_4}, ec{v_1})^4$		
4	$(ec{v_8}, ec{v_6}, ec{v_5})^2$	(BBBB)	(BUBU)
5	$(\vec{v_8}, \vec{v_2}, \vec{v_1})^2, (\vec{v_8}, \vec{v_6}, \vec{v_1})^2$	$(\overline{B}\overline{B}B\overline{B}\overline{B})$	(UBBU)
6	$(ec{v_8}, ec{v_2}, ec{v_5})^2$	(BBBB)	(UUBU)
7	$(ec{v_8}, ec{v_4}, ec{v_1})^2$	(BBCB)	(UBBB)
8	$(\vec{v_8}, \vec{v_4}, \vec{v_3})^2, (\vec{v_8}, \vec{v_4}, \vec{v_2})^2$	$(\overline{B}\overline{B}B\overline{B}\overline{B})$	(UUBB)
9	$(ec{v_8}, ec{v_2}, ec{v_5})^3$	(UUBU)	(UUBU)

今までの一般的な高階差分特性では,S-boxの入力部に 1ビットでもA特性にはなっていないB特性(つまり,A 特性には含まれないB特性)やB特性,U特性が出現した 場合,その出力部の特性は全てUであり,U以外の特性は 出現しなかった.今回は表17に示すように,一般とは異 なる特異な3階差分特性が観測された.例えば,通番3で は,入力4ビット全てがU特性であるにも関わらず,その 出力の内1ビットについてはB特性が出現している.

5. 特異な3階差分の経路モデル

表 17 に示した特異な特性を理論的に検証するには図 4 に示した経路モデルにおける $X^i = (x_3^i, x_2^i, x_1^i, x_0^i)$, $Y^{i} = (y_{3}^{i}, y_{2}^{i}, y_{1}^{i}, y_{0}^{i})$ のブール多項式を解析し,3次項 $t_{2}t_{1}t_{0}$ の係数を導出すれば十分である.例えば表17の通番1は 実際に図4の X^{2}, Y^{2} の特性に対応し,通番9は X^{3}, Y^{3} の 特性に対応している.Pは平文64ビットの最上位4ビット 未す.Jは4ビットの段鍵を表し,K, L, Mは4ビット の段鍵と差分の影響しないパスからの定数を加算した結果 を表す.

$$I = (j_3, j_2, j_1, j_0), (30)$$

 $K = (k_3, k_2, k_1, k_0), (31)$

$$L = (l_3, l_2, l_1, l_0), (32)$$

$$M = (m_3, m_2, m_1, m_0), (33)$$

とすると, x_j^i, y_j^i は入力変数 t_2, t_1, t_0 の3元,鍵変数 16 元の計 19元の多項式として表現できる.図4の X^i と Y^i の関係は式 (3)から (6)で与えられる.

図 4 特異な3階差分の経路モデル

 x_i^i, y_i^i の多項式を解析し,その中の3次項 $t_2 t_1 t_0$ の係数 を表 18 から表 31 にまとめて示す. $A^k_{i,j}$ は鍵変数と定数か ら成る *i* 元 *j* 次多項式で,*k* は通し番号である.表 18 か ら表 31 の中で 2 つの $A_{i,j}^{k_1}, A_{i,j}^{k_2}$ があるとき , $k_1 = k_2$ の場 合は同一のi元j次多項式を表し, $k_1 \neq k_2$ の時は異なる i 元 j 次多項式を表している.表 17 と表 18 から表 31 を 比べると分かることは,表17で特性がCやBとなってい るビットについては, そのビットのブール多項式の t₂t₁t₀ の係数が表 18 から表 31 ではゼロとなっている.これは N = 2 について式(9)が成立していることを示しており, 計算機実験と理論解析の結果が一致していることを示して いる.表17で特性が Bとなっているビットについては, そのビットのブール多項式の t₂t₁t₀ の係数が表 18 から 31 では1となっている.これは, N = 2 について式(8)が成 立していることを示しており,計算機実験と理論解析の結 果が一致していることを示している.また,表17で特性が Uとなっているビットについては、そのビットの $t_2t_1t_0$ の 係数が鍵変数と定数の多項式になっている.これは,鍵や 平文の基準値の選び方によって, $t_2t_1t_0$ の係数が0となっ たり1となったりして,これに応じてその3階差分値も0 となったり,1となったりして不定と成ることを表してい る.従って,これについても計算機実験と理論解析の結果 が一致していることが分かる.

- 表 23 S-box 入出力ビットにおける 3 次項 $t_2t_1t_0$ の係数 (表 17 中 の通番 3, $(\vec{v_8}, \vec{v_4}, \vec{v_1})^4$ に対応) Table 23 The coefficients of the 3rd-degree term $t_2t_1t_0$ of in-
- put and output bits of S-box corresponding to Table 17, #3, $(\vec{v_8}, \vec{v_4}, \vec{v_1})^4$.

x_3^4	x_2^4	x_1^4	x_0^4	y_3^4	y_2^4	y_1^4	y_0^4
$A_{6,3}^{17}$	$A_{6,3}^{17}$	$A_{4,2}^{18}$	$A_{6,3}^{17}$	$A^{19}_{10,5}$	$A^{20}_{10,4}$	0	$A^{21}_{10,4}$

- 表 24 S-box 入出力ビットにおける 3 次項 $t_2t_1t_0$ の係数 (表 17 中 の通番 4, ($\vec{v_8}, \vec{v_6}, \vec{v_5}$)² に対応)
 - **Table 24** The coefficients of the 3rd-degree term $t_2t_1t_0$ of input and output bits of S-box corresponding to Table $17, \#4, (\vec{v_8}, \vec{v_6}, \vec{v_5})^2$.

x_3^2	x_{2}^{2}	x_1^2	x_0^2	y_3^2	y_2^2	y_1^2	y_0^2
0	0	0	0	0	$A_{2,1}^{22}$	0	$A_{2,1}^{22}$

- 表 25 S-box 入出力ビットにおける 3 次項 $t_2t_1t_0$ の係数 (表 17 中 の通番 5, $(\vec{v_8}, \vec{v_2}, \vec{v_1})^2$ に対応)
- **Table 25** The coefficients of the 3rd-degree term $t_2t_1t_0$ of input and output bits of S-box corresponding to Table 17, #5, $(\vec{v_8}, \vec{v_2}, \vec{v_1})^2$.

x_{3}^{2}	x_{2}^{2}	x_1^2	x_0^2	y_3^2	y_2^2	y_1^2	y_0^2
1	1	0	1	$A^{23}_{3,2}$	0	0	$A_{2,1}^{24}$

- 表 26 S-box 入出力ビットにおける 3 次項 t₂t₁t₀ の係数 (表 17 中 の通番 5, ($\vec{v_8}, \vec{v_6}, \vec{v_1}$)² に対応)
- **Table 26** The coefficients of the 3rd-degree term $t_2t_1t_0$ of input and output bits of S-box corresponding to Table 17, #5, $(\vec{v_8}, \vec{v_6}, \vec{v_1})^2$.

x_{3}^{2}	x_2^2	x_1^2	x_0^2	y_3^2	y_2^2	y_1^2	y_0^2
1	1	0	1	$A^{25}_{3,2}$	0	0	$A_{2,1}^{26}$

- 表 **27** S-box 入出力ビットにおける 3 次項 $t_2t_1t_0$ の係数 (表 17 中 の通番 6, $(\vec{v_8}, \vec{v_2}, \vec{v_5})^2$ に対応)
- **Table 27** The coefficients of the 3rd-degree term $t_2t_1t_0$ of input and output bits of S-box corresponding to Table $17, \#6, (\vec{v_8}, \vec{v_2}, \vec{v_5})^2$.

x_3^2	x_{2}^{2}	x_1^2	x_0^2	y_3^2	y_2^2	y_1^2	y_0^2
0	0	0	0	$A_{2,1}^{27}$	$A_{2,1}^{27}$	0	$A_{2,1}^{27}$

- 表 28 S-box 入出力ビットにおける 3 次項 $t_2 t_1 t_0$ の係数 (表 17 中 の通番 7, $(\vec{v_8}, \vec{v_4}, \vec{v_1})^2$ に対応)
- Table 28The coefficients of the 3rd-degree term $t_2t_1t_0$ of input and output bits of S-box corresponding to Table $17, \#7, (\vec{v_8}, \vec{v_4}, \vec{v_1})^2.$

x_{3}^{2}	x_{2}^{2}	x_1^2	x_{0}^{2}	y_3^2	y_2^2	y_1^2	y_0^2
0	0	0	0	$A_{2,1}^{28}$	0	0	0

- 表 18 S-box 入出力ビットにおける 3 次項 t₂t₁t₀ の係数 (表 17 中 の通番 1, (*v*₄, *v*₂, *v*₁)² に対応)
- **Table 18** The coefficients of the 3rd-degree term $t_2t_1t_0$ of input and output bits of S-box corresponding to Table $17, \#1, (\vec{v_4}, \vec{v_2}, \vec{v_1})^2.$

x_{3}^{2}	x_{2}^{2}	x_1^2	x_0^2	y_3^2	y_2^2	y_1^2	y_0^2
0	1	0	1	0	$A^{0}_{3,2}$	$A_{2,1}^1$	$A_{3,2}^2$

- 表 **19** S-box 入出力ビットにおける 3 次項 t₂t₁t₀ の係数 (表 17 中 の通番 1, (v₁₂, v₁₀, v₉)² に対応)
- **Table 19** The coefficients of the 3rd-degree term $t_2t_1t_0$ of input and output bits of S-box corresponding to Table $17, \#1, (v_{12}, v_{10}, v_9)^2$.

x_{3}^{2}	x_{2}^{2}	x_1^2	x_{0}^{2}	y_3^2	y_2^2	y_1^2	y_0^2
0	1	0	1	0	$A^{3}_{3,2}$	$A_{2,1}^4$	$A_{3,2}^5$

- 表 20 S-box 入出力ビットにおける 3 次項 $t_2t_1t_0$ の係数 (表 17 中 の通番 2, $(\vec{v_8}, \vec{v_4}, \vec{v_1})^2$ に対応)
- **Table 20** The coefficients of the 3rd-degree term $t_2t_1t_0$ of input and output bits of S-box corresponding to Table $17, \#2, (\vec{v_8}, \vec{v_4}, \vec{v_1})^2$.

x_{3}^{2}	x_{2}^{2}	x_1^2	x_{0}^{2}	y_3^2	y_2^2	y_1^2	y_0^2
0	0	0	0	$A_{2,1}^{6}$	0	0	0

- 表 **21** S-box 入出力ビットにおける 3 次項 $t_2t_1t_0$ の係数 (表 17 中 の通番 3, $(\vec{v_4}, \vec{v_2}, \vec{v_9})^3$ に対応)
- **Table 21** The coefficients of the 3rd-degree term $t_2t_1t_0$ of input and output bits of S-box corresponding to Table $17, \#3, (\vec{v_4}, \vec{v_2}, \vec{v_9})^3.$

x_3^3	x_{2}^{3}	x_1^3	x_0^3	y_3^3	y_2^3	y_1^3	y_0^3
$A_{3,2}^{7}$	$A_{3,2}^{7}$	$A_{2,1}^{8}$	$A_{3,2}^{7}$	$A_{7,4}^{9}$	$A_{7,3}^{10}$	0	$A^{11}_{7,3}$

表 22 S-box 入出力ビットにおける 3 次項 t₂t₁t₀ の係数 (表 17 中 の通番 3, (v₁₂, v₂, v₁)³ に対応)

Table 22 The coefficients of the 3rd-degree term $t_2t_1t_0$ of input and output bits of S-box corresponding to Table $17, \#3, (v_{12}^2, v_2^2, v_1^2)^3$.

x_{3}^{3}	x_{2}^{3}	x_1^3	x_0^3	y_3^3	y_2^3	y_1^3	y_0^3
$A^{12}_{3,2}$	$A^{12}_{3,2}$	$A_{2,1}^{13}$	$A^{12}_{3,2}$	$A^{14}_{7,4}$	$A_{7,3}^{15}$	0	$A_{7,3}^{16}$

- 表 29 S-box 入出力ビットにおける 3 次項 $t_2 t_1 t_0$ の係数 (表 17 中 の通番 8, $(\vec{v_8}, \vec{v_4}, \vec{v_3})^2$ に対応)
- **Table 29** The coefficients of the 3rd-degree term $t_2t_1t_0$ of input and output bits of S-box corresponding to Table $17, \#8, (\vec{v_3}, \vec{v_4}, \vec{v_3})^2$.

x_{3}^{2}	x_{2}^{2}	x_1^2	x_0^2	y_3^2	y_2^2	y_1^2	y_0^2
1	1	0	1	$A_{3,2}^{29}$	$A_{2,1}^{30}$	0	0

- 表 **30** S-box 入出力ビットにおける 3 次項 $t_2t_1t_0$ の係数 (表 17 中 の通番 8, $(\vec{v_8}, \vec{v_4}, \vec{v_2})^2$ に対応)
- **Table 30** The coefficients of the 3rd-degree term $t_2t_1t_0$ of input and output bits of S-box corresponding to Table 17, #8, $(\vec{v_s}, \vec{v_4}, \vec{v_2})^2$.

x_{3}^{2}	x_{2}^{2}	x_1^2	x_0^2	y_3^2	y_2^2	y_1^2	y_0^2
1	1	0	1	$A^{31}_{3,2}$	$A^{32}_{2,1}$	0	0

- 表 **31** S-box 入出力ビットにおける 3 次項 $t_2 t_1 t_0$ の係数 (表 17 中 の通番 9, $(\vec{v_8}, \vec{v_4}, \vec{v_5})^3$ に対応)
- **Table 31** The coefficients of the 3rd-degree term $t_2t_1t_0$ of input and output bits of S-box corresponding to Table 17, #9, $(\vec{v_s}, \vec{v_4}, \vec{v_5})^3$.

x_{3}^{3}	x_{2}^{3}	x_1^3	x_0^3	y_3^3	y_2^3	y_1^3	y_0^3
$A^{33}_{2,1}$	$A^{33}_{2,1}$	0	$A^{33}_{2,1}$	$A^{34}_{5,3}$	$A^{35}_{3,2}$	0	$A^{36}_{3,2}$

6. 結論

計算機実験により得られた Midori64 の特異な3 階差分 特性をブール多項式を用いて解析し理論的に示した.

参考文献

- X.Lai "Higher Order Derivatives and Differential Cryptanalysis", Communications and Cryptography, pp.227– 233, 1994
- [2] J.Daemen, L.R.Knudsen, and V.Rijmen, "The block cipher SQUARE", FSE '97, LNCS1267, pp.149–165, Springer–Verlag, 1997.
- N.Ferguson, J.Kelsey et al., "Improved Cryptanalysis of Rijndael", Lecture Notes in Computer Science, vol.1978, pp.136–141, Springer, 2001
- [4] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni, "Midori : A Block Cipher for Low Energy", ASIACRYPT2015, Part II, LNCS 9453, pp.411–436, 2015