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Abstract: Privacy-preserving data mining technologies have been studied extensively, and as a general ap-
proach, du Pin Calmon and Fawaz have proposed a data distortion mechanism based on a statistical inference
attack framework. This theory has been extended by Erdogdu et al. to time-series data and been applied to a
reference power usage dataset. However, their theory assumes both power usage data and sensitive appliance
state information are available when computing the privacy-preserving mechanism, which is impractical in
typical smart-meter systems. We propose in this paper a privacy-utility tradeoff mechanism for the smart-
meter systems in which sensitive information is not directly observable. We apply a linear Gaussian model
to the system and thereby reduce the problem of obtaining unobservable information to that of learning the
system parameters. Experimental results show that the proposed mechanism works effectively; i.e. it prevents
usage analysis of sensitive appliances while at the same time preserving that of non-sensitive appliances.
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1. Introduction

1.1 Background

The proliferation of personal devices capable of Inter-

net connectivity has been promoting brand-new applications

and services. Examples include healthcare advice service

based on the user’s activity data captured by fitness track-

ing devices, navigation services based on the GPS data from

the user’s smart phone, and demand response services based

on the power consumption data of household smart-meters.

Such new services will definitely enrich our everyday life.

At the same time, however, these services will collect

users’ personal data intentionally or unintentionally, which

may in some cases violate their privacy [16]. In a well-known

case, a retail company identified a teenage girl as pregnant

based on her shopping habits [5], which can be thought of

as illegal acquisition of sensitive information. As for smart-

meter data, which is the primary target of the paper, it is

noted that analyzing them may lead to behavioral inferences

of individuals [13].

These privacy concerns in the era of Internet of Things

have triggered re-examination of privacy regulation around

the world. The Japanese Diet passed amendments to the

Personal Information Protection Act in 2015. The White

House released the Consumer Privacy Bill of Rights Act of

2015. The EU Parliament passed the General Data Protec-
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tion Regulation (GDPR) in 2016. In the GDPR especially, it

is noted explicitly that “natural persons should have control

of their own personal data.” This requires service providers

to treat users’ personal data solicitously according to the

demands of each individual.

Balancing between the utility of services and the privacy

of individuals is therefore important for the success of per-

sonalized services, and various kinds of privacy-preserving

data mining technologies have been proposed accordingly.

1.2 Related Work

The most prominent technology is k-anonymity [15], [17]

and its derivatives such as ℓ-diversity [12] and t-closeness

[11]. Their primary goal is to convert an aggregation of per-

sonal data into a non-personal (anonymous) dataset while

preserving information as much as possible. Although their

privacy metrics are intuitive and easy to evaluate, it is diffi-

cult or almost impossible to protect users’ privacy according

to the detailed demands of each individual. Indeed, their

basic strategy is to anonymize individuals by bundling simi-

lar records into indistinguishable bunches via generalization

and omission of data. Demands of individuals therefore are

not taken into account.

Differential privacy [6] is in another line of research. Un-

like k-anonymity and its derivatives, differential privacy de-

fines the privacy metrics based on a rigorous mathematical

framework. The privacy definition of differential privacy is

such that an adversary querying the database, which con-

tains personal data of many individuals, should not be able
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to determine whether the data record of any specific indi-

vidual is even in the database. Anonymity is their primary

concern and accommodating users’ specific privacy demands

is therefore almost outside of their scope.

The most relevant work to ours is the consideration

of privacy within a statistical inference attack framework

[4], [7], [8], [14]. In this framework, privacy is modeled as

the amount of information obtained about the sensitive data

when observing the released data. It is therefore possible to

evaluate privacy on an individual basis by modeling the sys-

tem with an appropriate definition of the sensitive and useful

data. The primary goal of this framework is to find an opti-

mal balance between privacy of an individual and utility of

the service, and the problem of finding an optimal balance

is formalized as an optimization problem where the objec-

tive function and constraint functions represent the privacy

and utility. A solution of the optimization problem gives an

optimal privacy mapping which distorts the useful data to

obtain privacy while still proving utility.

The theoretical aspect of this framework is proposed and

analyzed by du Pin Calmon and Fawaz [4]. Salamatian et

al. applied the theory to a Census dataset and TV rating

dataset, and showed that it is indeed possible to reduce the

revelation of political affiliation while enabling TV program

recommendation services [14]. Erdogdu et al. extended the

theory to time-series datasets and applied the extended the-

ory to smart-meter data [7], [8]. They showed that it is

possible to modify power data to conceal the usage of a sen-

sitive appliance while still allowing detection of the usage of

a useful appliance, where the useful and sensitive appliances

in their experiments were the washer-dryer and microwave,

respectively.

Although Erdogdu et al. reveal the results of experiments,

they do not exhibit the details of the experiments. More-

over, they considered only the case where both the smart-

meter data and usage data of the sensitive appliances are

directly observable. However, in actual use cases, such as

ordinary smart-meter systems, individual appliance usage

data may not be directly observable. Therefore, it is de-

sirable to achieve the optimal privacy mapping even in the

case where usage of sensitive appliances is not available.

1.3 Contribution

We propose in this paper a privacy-utility tradeoff mech-

anism for the smart-meter systems in which appliance usage

is unobservable. In order to complement the lack of informa-

tion needed for the tradeoff computation, we apply a linear

Gaussian model to the system and thereby reduce the prob-

lem of determining an unknown system model to that of

learning the model parameters such as the mean power con-

sumption of each appliance and the transition probabilities

of appliance states. These system parameters are, in some

cases, available without conducting supervised learning on

each household, because the mean power is often listed on a

specification document of the appliance and the transition

probabilities can be simulated. Therefore, our mechanism

is considered to be practical. Additionally, we extend the

theory to the case where the privacy metric is defined by a

mixture of continuous and discrete random variables.

In order to show the practicality of our theory, we conduct

several experiments of applying the proposed mechanism to

the power usage data of an actual household. We collected

power usage data for nine days, and we also manually col-

lected the ground truth appliance usage for the same period

to compute the system parameters. Optimal privacy-utility

tradeoffs are computed for two use cases, and the raw power

data is distorted according to the optimized mechanism. We

evaluate the privacy and utility aspects by examining degra-

dation of appliance usage inference performance. It is shown

quantitatively that our mechanism is reasonable and effec-

tive, especially when high-power appliances such as the oven

toaster are designated as sensitive. We elaborate in this pa-

per the steps we conducted, the parameters we computed

and the inference results we obtained in detail, so that in-

terested researchers can follow our work.

1.4 Organization of the Paper

The rest of the paper is organized as follows. Section 2

introduces our notations and several useful facts. Our the-

oretical analysis and proposition is given in Section 3, and

experimental results and discussions are described in Section

4. Section 5 concludes the paper with future directions.

2. Preliminaries

In this section, we give notations used throughout the pa-

per and present an information-theoretic definition that we

utilize.

Suppose X ∈ X is a discrete random variable and Y ∈ Y
is a continuous random variable, where X and Y are some

(possibly infinite) sets. We use capital PX(x) for the proba-

bility mass function of X and small pY (y) for the probabil-

ity density function of Y . EY [f(Y )] denotes the expected

value of function f(Y ), i.e. EY [f(Y )] =
∫
Y pY (y)f(y)dy.

N (µ, σ2) denotes the Gaussian distribution with mean µ

and variance σ2. pY |X=x ∼ N (µ, σ2) denotes that given

the condition that X = x, Y distributes according to the

Gaussian distribution with mean µ and variance σ2.

As in [1], the mutual information of a discrete random

variable X and continuous random variable Y is defined as

I(X;Y ) =
∑
x∈X

PX(x)

∫
Y
pY |X(y|x) log

pY |X(y|x)
pY (y)

dy.

We use this type of mutual information for our privacy met-

ric in Section 3.

3. A Proposed Privacy-Utility Tradeoff

Mechanism

This section describes the theoretical aspects of our

privacy-utility tradeoff mechanism. We first define in Sec-

tion 3.1 the goal of our tradeoff mechanism in an abstract

way. In Section 3.2, we turn the problem of pursuing the

abstract goal into a formal optimization problem by model-
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ing the tradeoff situation with the rigorous privacy and dis-

tortion metrics. The optimization problem contains an un-

known probability distribution for the system model, which

we assume has linear Gaussian form in Section 3.3. Section

3.4 modifies the optimization problem a bit to accommodate

discrete power usage data.

3.1 The Goal of the Privacy-Utility Tradeoff

We consider a situation where a privacy-conscious user

U releases the (possibly distorted) smart-meter data to a

service provider P in the prospect of receiving some useful

service(s). The primary goal of P is to recover the appli-

ance usage from the released smart-meter data, so that it

can provide some utility to U . The primary concern of U is

that P may recover the usage of the appliances that U con-

siders sensitive. The privacy-utility tradeoff we consider in

this paper is therefore to retain the non-sensitive appliance

usage analysis as much as possible while at the same time

preventing the usage analysis of the sensitive appliances that

U designates.

This goal is exemplified by the following application. Sup-

pose U is an elderly person living alone and P is a security

company providing a remote monitoring service. P moni-

tors U ’s state by extracting the appliance usage data from

the smart-meter data of U ’s household. For example, if P
extracts information that a microwave is used in the morn-

ing, then P will understand that U is in the normal state.

Here, U may think that a dryer should not be detected be-

cause it tells when U took a bath. In this case, the dryer

is considered as a sensitive appliance while other appliances

including a microwave are non-sensitive.

3.2 Formalization of the Problem

In this section, we formalize the privacy-utility tradeoff

problem given in Section 3.1 in a rigorous way.

3.2.1 Notation

Suppose there are M appliances named 1, 2, . . . ,M in U ’s
household, and out of them U designates M∗(< M) appli-

ances as sensitive. For instance, U may have 17 appliances as

shown in Table 1, and among them U may designate tele-

vision as sensitive. Without loss of generality, we assume

appliances 1, 2, . . . ,M∗ are designated as sensitive and ap-

pliances M∗ + 1,M∗ + 2, . . . ,M are non-sensitive.

Let X = (X∗, X̄) be a vector of discrete random

variables representing the appliance states, where X∗ =

(X1, X2, . . . , XM∗) are discrete random variables of the sen-

sitive appliance states and X̄ = (XM∗+1, XM∗+2, . . . , XM )

are those of the non-sensitive appliance states.

Appliance m takes Km states; i.e. Xm ∈ Xm =

{xm,1, xm,2, . . . , xm,Km
}. For example, a dryer may take

one of three states: X = {STRONG,WEAK,OFF}. X takes

one of X = X1 ×X2 × · · · × XM states.

Let Y ∈ Y ⊆ R be a continuous random variable repre-

senting the observed smart-meter data and Z ∈ Z ⊆ R rep-

resent the distorted data. Our goal is to find the distortion

distribution pZ|Y that attains the optimal privacy-utility

tradeoff.

3.2.2 Definitions of Privacy and Utility

The privacy metric we consider in this paper is as follows.

Definition 1 (Privacy metric). The privacy metric is the

mutual information of sensitive appliance statesX∗ and dis-

torted smart-meter data Z; i.e.,

I(X∗;Z)

=
∑

x∗∈X∗

PX∗(x∗)

∫
Z
pZ|X∗(z|x∗) log

pZ|X∗(z|x∗)

pZ(z)
dz.

(1)

The mutual information I(X∗;Z) represents the quantity

of information one can obtain about X∗ from the observed

Z. It is therefore used extensively in the literature as a pri-

vacy metric [4], [7], [8], [14]. Note however that X∗ is a

vector of discrete random variables while Z is a continuous

random variable, which is different from the situation con-

sidered in the literature where all the random variables were

discrete. We therefore extended the theory.

Utility is measured by the following distortion metric.

Definition 2 (Distortion metric). Let d : Y × Z → R+

be some distortion function*1. The distortion metric is the

expectation of d(Y,Z); i.e.,

EY,Z [d(Y,Z)] =

∫∫
Y×Z

pZ|Y (z|y)pY (y)d(y, z)dydz.

(2)

The lower the distortion is, the better the utility should

be, intuitively.

However, the distortion metric in Definition 2 may ap-

pear slightly different from what we should deal with in

this paper. Indeed, the ideal distortion metric would be

the one that directly captures the degradation of the results

of appliance usage analysis. However, the outcome of the

appliance usage analysis depends heavily on the algorithms

used for the analysis and therefore it is infeasible to estimate

the degradation in general. Also, empirically the distortion

metric in Definition 2 is effective, as shown in Section 4.

3.2.3 The Privacy-Utility Tradeoff Problem

Suppose for now that the joint distribution pX∗,Y is al-

ready known. Then, it is easy to see that given pX∗,Y , a

distortion function d and a distortion constraint δ, the pri-

vacy mapping pZ|Y that minimizes the privacy information

leakage can be found by solving the following optimization

problem:

inf
pZ|Y

I(X∗;Z)

subject to EY,Z [d(Y,Z)] ≤ δ.
(3)

Indeed, as we assume that pX∗,Y is already known, we can

actually compute both the objective function (Equation 1)

and constraint function (Equation 2), and therefore we can

solve the optimization problem in theory.

We additionally note here that Equation 3 is a convex

*1 Examples of distortion function include the L1 norm, L2 norm
and more generally Lp norm.
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optimization problem. This is because, as with [4], the

objective function and the constraint function are convex

functions of the optimization variables pZ|X∗ , pZ and pZ|Y .

Convex optimization has several desirable properties. From

an analytical viewpoint, it is assured that any local mini-

mum is a global minimum and finding a global minimum

is therefore reduced to finding a local minimum [2]. From

a practical viewpoint, efficient algorithms such as interior-

point methods have been proposed, and software libraries

are available [3].

The issue that needs to be resolved is that pX∗,Y must

be known. However, with data collected by smart-meter

systems, we may not directly know pX∗,Y and therefore we

cannot compute Equation 1 and Equation 2. In the follow-

ing section, we present an assumed Gaussian model.

3.3 Gaussian Model Assumption

In this section, we present the assumed model for the dis-

tribution pX∗,Y and show that the optimization problem

(Equation 3) is solvable.

First, observe that from the law of total probability,

pX∗,Y (x∗, y) =
∑
x̄∈X̄

pX∗,X̄,Y (x∗, x̄, y) (4)

=
∑
x̄∈X̄

pX,Y (x, y) (5)

=
∑
x̄∈X̄

PX(x)pY |X(y|x). (6)

Now, computing pX∗,Y (x∗, y) boils down to computing

PX(x) and pY |X(y|x).
3.3.1 Modeling and Parameters

In order to compute pY |X(y|x), we apply a linear Gaus-

sian model. Let Y0 be a random variable of the background

noise and Ym be that of the emission of appliance m. Then

Y = Y0 +

M∑
m=1

Ym, (7)

pY0
∼ N (µ0, σ

2
0), (8)

pYm|Xm=xm,k
∼ N (µm,k, σ

2
m,k), (9)

where µ0 and σ2
0 are the mean and variance of the Gaussian

distribution of the background noise, and µm,k and σ2
m,k

are those of appliance m in state k. Then, according to the

standard probability theory,

pY |X=x ∼ N

(
µ0 +

M∑
m=1

µm,k, σ2
0 +

M∑
m=1

σ2
m,k

)
. (10)

Equation 10 implies computing pY |X is now reduced to ob-

taining the parameters Θ = {µ0, σ
2
0 , {µm,k, σ

2
m,k}}. These

parameters can be obtained either from the specification

documents or reference models of the appliances, or by doing

preliminary training activities.

Assuming that the variance of the total power data Y

is independent of states of the appliances, Equation 10 can

further be simplified as

pY |X=x ∼ N

(
µ0 +

M∑
m=1

µm,k, σ2

)
, (11)

where σ2 is the variance of Y . In this case, computing

pY |X can be reduced to obtaining the parameters Θ′ =

{µ0, {µm,k}, σ2}. We use this simplified model in Section

4.

PX(x) can also be obtained from the reference models of

the appliances or by doing preliminary training activities.

3.3.2 Solvability

Here we demonstrate that the optimization problem

(Equation 3) is solvable, by showing that both objective

function (Equation 1) and constraint function (Equation 2)

are functions of the optimization variable pZ|Y and known

distributions, given Θ′ and PX .

We start with Equation 1. As X → Y → Z forms the

Markov chain, pZ|X∗(z|x∗) in Equation 1 can be written as

pZ|X∗(z|x∗) =

∫
Y
pZ|Y (z|y)pY |X∗(y|x∗)dy. (12)

Here,

pY |X∗(y|x∗) =
∑
x̄∈X̄

pY,X̄|X∗(y, x̄|x∗)

=
∑
x̄∈X̄

pY |X∗,X̄(y|x∗, x̄)PX̄|X∗(x̄|x∗)

=
∑
x̄∈X̄

pY |X(y|x)PX̄|X∗(x̄|x∗)

and assuming pX̄|X∗ = pX̄ , i.e., the non-sensitive appli-

ances behave independently from the sensitive appliances

(or more broadly all the appliances behave independently

from each other),

pY |X∗(y|x∗) =
∑
x̄∈X̄

pY |X(y|x)pX̄(x̄). (13)

Substituting Equation 13 into Equation 12, we obtain

pZ|X∗(z|x∗) =

∫
Y
pZ|Y (z|y)

∑
x̄∈X̄

pY |X(y|x)PX̄(x̄)dy

=
∑
x̄∈X̄

PX̄(x̄)

∫
Y
pZ|Y (z|y)pY |X(y|x)dy.

(14)

Also, pZ(z) in Equation 1 can be written as

pZ(z) =

∫
Y
pZ|Y (z|y)pY (y)dy

=
∑
x∈X

∫
Y
pZ|Y (z|y)pY |X(y|x)PX(x)dy

=
∑
x∈X

PX(x)

∫
Y
pZ|Y (z|y)pY |X(y|x)dy. (15)

Combining Equation 14 and Equation 15 with Equation 1,

we can confirm that the objective function (Equation 1) is

computable.

The constraint function (Equation 2) is also computable

because pY (y) in Equation 2 can be written as

pY (y) =
∑
x∈X

pY |X(y|x)PX(x).
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3.4 Modification to Discrete Power Data

Until now we have considered the case where the smart-

meter data and distorted data are continuous. In practical

situations, however, it is possible that the smart-meter data

is quantized to discrete levels. Indeed, as we describe in

detail in Section 4, we use discrete power data in our exper-

iment that has been quantized to a resolution of 7 Watts.

It is therefore required to modify the optimization problem

(Equation 3) to accommodate such cases. We describe in

this section the discretized version of the optimization prob-

lem.

Let Ỹ ∈ Ỹ be a discrete random variable represent-

ing the quantized smart-meter data and Z̃ ∈ Z̃ represent

the distorted data, where Ỹ and Z̃ are finite sets. Let

d : Ỹ × Z̃ → R+ be some distortion function. Then the

optimization problem in Equation 3 becomes

min
pZ̃|Ỹ

I(X∗; Z̃)

subject to EỸ ,Z̃ [d(Ỹ , Z̃)] ≤ δ,
(16)

where

I(X∗; Z̃)

=
∑

x∗∈X∗

∑
z̃∈Z̃

PX (x∗)PZ̃|X∗(z̃|x∗) log
PZ̃|X∗(z̃|x∗)

PZ̃(z̃)

(17)

and

EỸ ,Z̃ [d(Ỹ , Z̃)] =
∑
ỹ∈Ỹ

∑
z̃∈Z̃

PZ̃|Ỹ (z̃|ỹ)PỸ (ỹ)d(ỹ, z̃). (18)

4. Experiments on Household Power Us-

age Data

This section exhibits our experimental results of applying

the proposed mechanism to the power usage data of an ac-

tual household. We give an overview of our experiments in

Section 4.1, and we show in Section 4.2 the electric power

meter and the home appliances that we used for the experi-

ments. Section 4.3 shows the datasets and parameters that

we obtained in the experiments. The optimization prob-

lem is solved and the privacy mapping is applied in Section

4.4. Section 4.5 evaluates the privacy and utility aspects of

our mechanism quantitatively, and the implications of the

results are discussed in Section 4.6.

4.1 Overview

Our goal is to examine whether the theory we propose in

Section 3 is effective in an actual situation (i.e. in natural

daily life), not in an artificial environment or in a special

circumstance. To this end, we collected the power usage

data of an actual household using a commercially available

power meter device for nine days. As our proposed theory

requires estimation of Θ′ and PX for the assumed model

distribution, we also manually collected the ground truth

of the appliance usage in the household for the same nine

Table 1 Appliances used in the target household and the param-
eters obtained from the supervised learning. µm,ON is
the estimated mean power of appliance m. am and bm
are the estimated transition probabilities of transiting
from OFF to ON and from ON to OFF, respectively.

m Appliance µm,ON am bm
0 background

+ refrigerator 103.44
1 bathroom light 12.73 0.000404 0.0219
2 dryer 380.02 0.000159 0.667
3 electric heater 350.37 0.000161 0.0148
4 entrance light 90.90 0.000318 0.222
5 kitchen light 175.63 0.00257 0.0321
6 kotatsu 168.77 0.000652 0.0246
7 laundry machine 57.00 0.00408 0.0142
8 lavatory light 51.95 0.00408 0.505
9 living room light 84.69 0.00194 0.00544

10 microwave 1115.80 0.000159 0.333
11 oven toaster 1133.40 0.000957 0.245
12 personal computer 111.85 0.000663 0.0152
13 reading room light 72.24 0.00219 0.0366
14 rice steamer 323.62 0.000322 0.0230
15 television 123.16 0.00366 0.00335
16 vacuum cleaner 1057.90 0.000159 0.182
17 washstand light 34.89 0.000637 0.216

σ2 = 5436.5

days, and then applied a supervised learning algorithm to

estimate those parameters.

Then, we considered two use cases: 1) oven toaster is

designated as sensitive; and 2) television is designated as

sensitive. For each case, we chose an appropriate distortion

constraint δ by trial-and-error, and with Θ′, PX and δ, we

solved the convex optimization problem (Equation 16) and

obtained a privacy mapping PZ̃|Ỹ . We then distorted the

power usage data according to PZ̃|Ỹ , and obtained distorted

power usage data. In order to evaluate the privacy and util-

ity of our mechanism in line with the goal given in Section

3.1, we applied an inference algorithm to the distorted data

to infer the appliance usage of the sensitive and non-sensitive

appliances, and compared the performance with that of the

original data.

4.2 Devices

The electric power meter we used is the OWL +USB*2

which records the electric power used in a household every

minute. This power meter is attached to the circuit-breaker

of the target household, and the total power usage of the

household is recorded. Due to limitation of the A/D con-

verter used in the power meter, the resolution of the power

recorded is 7 Watts.

The appliances in the target household are listed in Ta-

ble 1. As Table 1 shows, a total of 17 appliances are

present*3.

4.3 Datasets and Parameters

4.3.1 Power Usage and Appliance Usage Datasets

We collected the power usage data for nine days. Samples

*2 http://www.theowl.com/index.php/energy-monitors/

standalone-monitors/owl-usb/
*3 Strictly speaking, the number of appliances used in the house-

hold is 18 because a refrigerator is also used. However, it was
always ON throughout the data collection and therefore we re-
garded it as a part of the background noise.
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Fig. 1 Samples of the power usage data

Fig. 2 Histogram of the power usage data

Table 2 An excerpt from the ground truth of the appliance usage

Day Time m Appliance Operation
1 3:20 12 personal computer ON

3:20 13 reading room light ON
4:16 8 lavatory light ON
4:17 8 lavatory light OFF

.

.
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.
.
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.

.

.
.
.
.

9 4:33 13 reading room light ON
.
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.
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.

.
23:18 9 living room light OFF
23:20 15 television OFF

are shown in Fig. 1 and the histogram is shown in Fig. 2.

The minimum power is 35 Watt, the maximum power is

2093 Watt and the average power is 232.78 Watt.

We also collected manually the ground truth of the ap-

pliance usage in the target household. Table 2 shows an

excerpt from the ground truth.

4.3.2 Model Parameters

In order to obtain the model parameters Θ′ and PX from

the power usage data and the ground truth, we used a su-

pervised learning algorithm.

For simplicity, we employed a couple of simplification

techniques. First, we modeled the hidden states of the ap-

pliances with the factorial hidden Markov model (FHMM)

[9]. FHMM is novel in that it assumes the hidden states

are factorized into multiple independent states and thereby

reduces the computational complexity of learning and infer-

ence. This assumption is reasonable in our situation and

therefore we used this model to simplify the computation of

Θ′ = {µ0, {µm,k}, σ2}.
Second, we assumed each appliance has only two possible

states: Xm = {ON,OFF} for all m ∈ {1, 2, . . . ,M = 17}.
This two-state assumption simplifies the computation of

PX . Note here that since we have assumed all the appli-

ances behave independently from each other, we can com-

pute PX(x) as the product of probability of each appliance;

i.e. PX(x) =
∏M

m=1 PXm
(xm). We also assume that the

appliance state Markov chains have already converged to

the steady-state, that is, the initial state distributions are

equal to the steady-state distributions implied by the transi-

tion distributions. Thus, each PXm
(xm) is stationary across

time and can be computed from the transition probabilities

of the appliance states. Let am be the transition probabil-

ity of appliance m from OFF to ON and bm be that of the

opposite direction (ON to OFF). Then,

PXm
(ON) =

am
am + bm

, PXm
(OFF) =

bm
am + bm

. (19)

Hence, PX can be computed by {am, bm}. In addition, we

assumed that µm,OFF = 0 for all m.

We used all of the nine day data of power usage and

appliance usage for the supervised learning, and obtained

Θ′ = {µ0, {µm,ON}, σ2} and {am, bm}. The results are

shown in Table 1.

4.4 Optimization and Distortion

As we explained in Section 4.1, we considered the follow-

ing two use cases:

Case 1 Oven toaster (m = 11) is designated as sensitive,

Case 2 Television (m = 15) is designated as sensitive.

For each case, we solved the convex optimization problem

and obtained a privacy mapping PZ̃|Ỹ . Then we distorted

the raw power data according to each PZ̃|Ỹ .

Let Ỹ and Z̃ be the discrete random variables defined

in Section 3.4, and let Ỹ and Z̃ be a finite set of possi-

ble values of Ỹ and Z̃, respectively. The size of these sets

affects computational complexity of the optimization prob-

lem; concretely, the computational complexity is O(|Ỹ||Z̃|).
We defined Ỹ = Z̃ = {0, 7, 14, 21, . . . , 2093}. The distortion
metric we used is the L1 distance d(ỹ, z̃) = |ỹ − z̃|. Then,

for each of the two use cases, we solved the optimization

problem using the convex optimization software CVX*4 and

obtained a privacy mapping PZ̃|Ỹ . We used δ = 6 for Case

1 and δ = 72 for Case 2. A graphical representation of PZ̃|Ỹ
is shown in Fig. 3 and Fig. 4.

Then we distorted the power usage data according to

PZ̃|Ỹ (z̃|ỹ). A sample of the raw and distorted power us-

age data is shown in Fig. 5 and Fig. 6.

4.5 Evaluation of Privacy and Utility

This section evaluates both the privacy and utility as-

pects of the distorted power usage data. Since our goal of

the privacy-utility tradeoff is to retain the usage analysis

of the non-sensitive appliance while preventing that of the

sensitive appliances, we evaluate them by measuring how

the appliance usage analysis degrades. We therefore apply

an inference algorithm to the raw data and the distorted

data (both Case 1 and 2) to infer the hidden states of the

appliances, and evaluate the detection rates.

*4 http://cvxr.com/cvx/
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Fig. 3 A graphic representation of the privacy mapping PZ̃|Ỹ
(sensitive appliance is oven toaster and δ = 6). Pure
white represents 0, pure black represents 1, and values in
between 0 and 1 are represented by shades of grey. This
picture therefore tells that PZ̃|Ỹ is almost identical to an
identity matrix when 0 ≤ Y ≤ 910 but becomes weird
when Y > 910.
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Fig. 4 A graphic representation of the privacy mapping PZ̃|Ỹ
(sensitive appliance is television and δ = 72)
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Fig. 5 A sample of the raw and distorted power usage data (sen-
sitive appliance is oven toaster and δ = 6)

We again model the hidden states with FHMM accompa-

nied by the parameters we obtained in the supervised learn-

ing, and infer the hidden states using an approximate infer-

ence algorithm called the completely factorized variational

approximation (CFVA) [9]. For this binary (ON and OFF)

classification, the CFVA algorithm provides marginal pos-
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Fig. 6 A sample of the raw and distorted power usage data (sen-
sitive appliance is television and δ = 72)

Table 3 AUC values of the ROC curves (Fig. 7, Fig. 8 and Fig. 9)

AUC
m Appliance raw oven toaster television

(Fig. 7) (Fig. 8) (Fig. 9)
3 electric heater 0.904 0.902 0.889

11 oven toaster 0.969 0.551 0.969
12 personal computer 0.787 0.783 0.648
15 television 0.914 0.913 0.459

terior likelihoods which we can threshold at custom values

to obtain a receiver operating characteristic (ROC) curve in

order to evaluate the inference performance across different

tradeoffs between true positive and false positive rates. We

can also compute the area under the curve (AUC) which

quantifies the inference performance across this tradeoff in

a single number. We perform and compare this evaluation

between the raw data and the distorted data.

Fig. 7 shows the ROC curve of the inference results of

several appliances, where the analysis was performed on the

raw dataset. The AUC values are evaluated and shown in

Table 3. As the AUC values tell, the states of the oven

toaster are inferred almost correctly, the states of the elec-

tric heater and television are inferred with high accuracy,

and the states of the personal computer are inferred with

marginal accuracy.

Fig. 8 gives ROC curves of the inference results with the

distorted data for Case 1. The inference performance for the

oven toaster is degraded severely while the inference perfor-

mance for the other appliances are preserved, as desired.

Fig. 9 gives ROC curves of the inference results with the

distorted data for Case 2. The inference performance for

the television is degraded severely. The inference perfor-

mance for the oven toaster and electric heater are preserved

almost completely. The inference performance for the per-

sonal computer is degraded to some extent, but still enables

meaningful inference.

4.6 Discussion

As we have shown in Section 4.5, the distortion works

highly effectively for the case where the sensitive appliance

is oven toaster. This may be due to the fact that the oven

toaster is realistically modeled with only two states: {ON,

OFF}, and therefore our simplified model fit well. More-

over, the consumed power is as high as 1kW, which enables

us to compute an optimal privacy mapping PZ̃|Ỹ that at-
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Fig. 7 ROC curves of the results of inference with raw data
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Fig. 8 ROC curves of the results of inference with distorted data
(sensitive appliance is oven toaster and δ = 6)
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Fig. 9 ROC curves of the results of inference with distorted data
(sensitive appliance is television and δ = 72)

tains both small mutual information and small distortion

such as δ = 6. Note that 1kW or higher power consump-

tion occurs rarely, as Fig. 2 shows, and thus the distortion

of higher power values does not affect other low-power ap-

pliances.

On the other hand, for the case where the sensitive ap-

pliance is the television, the distortion renders inference of

the sensitive appliance almost impossible but at the same

time makes inference of the personal computer degraded to

some extent. This stems from the fact that the television

consumes a relatively low power of 123W and thus distor-

tion of middle power values would affect other middle-power

appliances including the personal computer.

We should note that we assumed a Gaussian FHMM and

used the CFVA approximation for inference. Other infer-

ence algorithms such as neural networks may bring other

conclusion [10].

5. Conclusion

We proposed in this paper a privacy-utility tradeoff mech-

anism which accommodates the situation where sensitive

appliance usage is not observable. We formalized the trade-

off as a convex optimization problem that we show can be

solved. We then exhibited experimental results on smart-

meter data and showed that the proposed mechanism is

practical.

Future work will be to extend this theory to the case where

the service provider uses other inference algorithms such as

neural networks.
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