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Abstract: Contingency tables are the most prevalent forms of statistical data, especially in the context of epi-
demiology and sample surveys. In this paper, we present a one-round secure protocol for privately conducting
contingency tables with suppression. We operate in a multi-party outsourcing setting where an analyst wishes
to obtain the contingency table from data collected from several data contributors. The computation of con-
tingency tables and suppression are outsourced to a public server. Our protocol requires one round interaction
between the analyst and the cloud server, that is, the analyst sends a query to the cloud and then the cloud
responses the analyst with the suppressed contingency table. We assume the server behaves semi-honestly
and then the security of our protocol follows even in the presence of a malicious analyst. We implement the
protocol and demonstrate that we can evaluate the contingency table with thousands of data in 8 minutes.
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1. Introduction
Organizations such as research institutions, governmen-

tal agencies， and hospitals collect various person-specific
data for research purposes. Using aggregated data from
different sources can deliver better insights and lead to
more precise analyses. For example, health information ex-
change networks such as NHIN [15], Common Well [5], and
GaHIN [11] have been built for enhancing public health.

Nowadays, data analyses are straightforward and substan-
tial if data are collected and stored in a centralized location,
e.g., a third-party cloud server. However, this computation
outsourcing raises concerns about the privacy of person-level
sensitive information since data is stored in external, off-
premise servers. In particular, in the context of medical data,
sensitive patient records require to be kept confidential. Also,
even we can prevent the cloud server from learning the pri-
vate data, person-level information leakage might occur even
from the analysis results. In particular in analyses that re-
lease aggregate statistics about the population.

In this work, we consider a particular aggregate statistic
and aim to develop an efficient protocol for evaluating the
statistic in a privacy-preserving way. Specifically, we exam-
ine contingency tables with suppression. A two-dimensional
contingency table is a matrix over two categorical attributes.
For each cell in the matrix, the table reports an aggregate
value which represents the total number of individuals with a
pair of attribute values (e.g., female and teacher) in the popu-
lation. Despite their simple structure, contingency tables are
the most prevalent forms of statistical data, especially in the
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context of epidemiology and sample surveys.
From data of N categorical attributes, we can derive
O(N2) contingency tables. However, it is usually hard to tell
which of the contingency tables should be conducted since
it depends on the type of applications. Once a new require
for contingency tables comes up, the categorical data might
should be re-uploaded to the cloud. This hinders the flexi-
bility of outsourcing since data providers need to be standby
and can not go offline. We can also require the data providers
to upload all the O(N2) combinations of categorical data so
that once the data submission is finished, the data providers
can go offline at any time. But this requires quadratically
many storage spaces.

Intuitively, small values represent rare individuals in the
population. In other words, we can consider that smaller ag-
gregate values in the contingency table are at higher risk of
information leakage than that of larger values. Similar to
the K-anonymity [19], suppression is a common method for
enforcing the privacy of rare individuals in the population.
There are some strategies and methodologies [12], [13] for
the contingency table suppression. Specifically, we consider
a simple practice in this work: zero-out values in the contin-
gency tables which are less than a small threshold T .

The zero-out strategy naturally requires us to compare the
aggregate values of the contingency table with the threshold
T in a private manner. This comparison operation is usually
implemented with interactive primitives such as the Yao’s
garbled circuit [21]. In this work, we develop a particular
one-round protocol tailored for secure outsourcing the con-
tingency table evaluation with suppression, using a fully ho-
momorphic encryption (FHE) scheme. Our protocol requires
only one data submission and linearly many storage spaces.
Related Work. This problem of privately evaluating contin-
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gency tables falls into the general area of privacy-preserving
computation of statistics. During the last ten years, consider-
able effort has been made to developing privacy-preserving
computations. One general approach is based on Yao’s gar-
bled circuits [6], [16], [21], where one party generates a gar-
bled circuit representing the function they want to conduct
and the other party evaluates the circuit. In our setting, it
does not suffice to use a garbled circuit simply since we con-
sider more than two parties involve in the computation.

The other general approach leverages homomorphic en-
cryption [1], [2], [3], [14], [20]. Several studies that realize
private outsourcing of descriptive and predictive statistics us-
ing FHE have been reported. Authors of [14] suggest to out-
source mean and standard deviation privately. In [20], the
authors introduced to evaluate the co-variance from FHE en-
crypted data. The private contingency table evaluation with
suppression can be derived from the private data query sys-
tem [1]. However, it might be impractical since [1] requires
multiplicative depth of O(n) to perform the threshold test,
where n is the number of data. We do not know of any exist-
ing practical implementation of a private contingency table
evaluation protocol that also achieves suppression.
Our Contribution. First, we describe a secure one-round
protocol for outsourcing the contingency table evaluation
with suppression to a semi-honest cloud. This semi-honest
model is well-suited for the cloud-based applications where
we consider the cloud server is trying to offer a good service,
and thus, is not motivated to give nonsensical output to the
service users. Moreover, our protocol works in a one-round
interaction pattern that is, once the encrypted data are sub-
mitted to the server, the server can independently perform
the contingency table evaluation and suppression on the ci-
phertexts. No more interaction with the server is necessary
before receiving the final result. The one-round interaction
pattern enables us to apply our protocol to a useful three-
party setting (discuss later in Section 2.3). Additionally, our
protocol requires only linearly many storage spaces. We give
a formal simulation-based proof of security of our protocol
in the real-world/ideal-word paradigm [9].

Our protocol leverages a homomorphic encryption scheme
and the homomorphic multiplication depth of our protocol is
independent of the number of data. To show the practical-
ity of our protocols, we implement our protocol using open-
sourced libraries. We conduct experiments with over 4000
data points and with contingency table size up to 120. Our
protocol can complete within 8 minutes for privately evalu-
ating a contingency table with suppression in such scale of
data. This work provides the first practical implementation
of a private contingency table evaluation with the suppres-
sion functionality.

2. Preliminaries
We begin by introducing the notations used in this pa-

per. For an integer D > 0, we write [D] to denote the set

of positive integers {0, 1, . . . , D − 1}. We write x
$← D

to denote that x is sampled uniformly at random from D.

ind(cip) ind(cip) ind(cip)
element-wise multi. ind(ciq) ind(ciq)

contribute to λ00 λ11 λ02 λ10 λ01 λ12

Fig. 1 One multiplication gives 2 × 3 combinations of attributes of
cip ∈ Cp and ciq ∈ Cq where |Cp| = 2 and |Cq | = 3.

Let dc be the number of categorical attributes. We write
Cj

def
= {sj0, . . . , s

j
|Cj |−1} to denote the domain of the jth

categorical attribute. For instance, if Cj is gender, then sj0
can denote male, meanwhile, sj1 indicates female. We write

C def
= C1× · · · × Cdc

to denote the join domain of dc categor-
ical attributes. We use bold symbols e.g. u to denote vectors
and the ith element of u is denoted as ui.

For the ring of integers modulo t, we write Zt. Let Zt[X]

be the ring of polynomials modulo t. Let P be a predicate.
We use 1{P(x)} to indicate the indicator function for the
predicate P , that is 1{P(x)} = 1 if and only if P(x) is true,
and 0 otherwise.

2.1 Cryptographic Primitives
In this section, we give a brief overview of the crypto-

graphic primitives that we use in our protocol.
Fully Homomorphic Encryption. In this paper, we use
the Ring Learning-With-Error (RLWE) variant of [4], and
its open-sourced implementation, i.e., HElib [17]. The mes-
sage space of the RLWE variant of [4] is given as a quotient
ring At

def
= Zt[X]/Φm(X) where t is a prime number and

the Φm(X) is the mth cyclotomic polynomial. By applying
the Chinese-Remainder-Theorem (CRT), we can obtain an
isomorphism At

∼= Ztd ⊗ · · · ⊗ Ztd︸ ︷︷ ︸
ℓ copies

where ℓ × d = ϕ(m)

and ϕ(·) is the Euler function. We designate the procedure
E : Zℓ

t → At using the isomorphism as CRT packing. We
refer to [18] for details about the CRT packing.

We denote the ciphertext of FHE with J·K. In addition, we
write JuK and JvK to respectively denote JE(u)K and JE(v)K
where integer vectors u,v ∈ Zℓ

t . For a vector whose length
is less than ℓ, we append with 0s. The RLWE variant of [4]
is an FHE scheme, as shown in the following equations.

Dec(JuK⊕ JvK) = u+ v mod t

Dec(JuK⊙ JvK) = u ∗ v mod t,

where Dec(·) is the decryption function and operators⊕ and
⊙ respectively denote the homomorphic addition and multi-
plication. The multiplication ∗ is performed element-wisely,
that is, the jth element of u ∗ v is ujvj . We can also op-
erate plaintext-ciphertext additions and multiplications, e.g.,JuK⊙ E(v) homomorphically computes u ∗ v.

Besides the addition and multiplication, we can homomor-
phically rotate the encrypted vectors with a given offset b:
Dec(JuK ≫ b) = ũ where uj = ũj+b mod ℓ for all posi-
tions 0 ≤ j < ℓ. In addition, the rotation in the opposite
direction JuK≪ b is also well-defined and available in [17].

2.2 Contingency Table
We view a contingency table for the pth and qth categorical

attributes CT : Cn × Z2 → Z|Cp|×|Cq| as implementing a

－1049－



Fig. 2 Outsource the conduction of contingency tables to a cloud
server.

function on n categorical data. Evaluation of a contingency
table corresponds to counting combinations (spu, sqv) for all
possible (u, v) pairs. We write λuv to denote the counting of
the combination (spu, sqv). For instance, one categorical data
c = [· · · , sp2, · · · , s

q
3, · · · ] contributes to the counting λ23

by 1.
Encoding. To encrypt a categorical value spj , we use an
indicator encoding ind which is defined as ind : Cp →
{0, 1}|Cp|. More specifically, ind takes as input a value spj
and outputs a vector which all elements of 0 except the jth

element, which is set to 1. We convert categorical values to
integer vectors using ind then we can apply the CRT packing
and encrypt the categorical attributes, i.e., Jind(spj )K.
Contingency Table Evaluation. We can obtain the contin-
gency table by element-wise multiplications and rotations of
vectors due to the indicator encoding. Let cip ∈ Cp and
ciq ∈ Cq be two categorical values. The first element of
ind(cip) ∗ ind(ciq) is 1 if and only if cip = sp0 and ciq = sq0.
Similarly, the first element of (ind(cip) ≪ 2) ∗ ind(ciq)
is 1 when cip = sp2 and ciq = sq0. Generally, we need
O(max{|Cp|, |Cq|}) multiplications and rotations to evaluate
the contingency table of attributes Cp and Cq .

To reduce the number of element-wise multiplications, we
introduce a “Chinese-Remainder-Theorem” trick. We repeat
the ind(cip) for |Cq| times and repeat the ind(ciq) for |Cp|
times. We take the element-wise multiplication of the two
self-repeat vectors and let the product vector be µ. If |Cq|
and |Cp| are co-prime, then µ contains all counting in the
contingency table *1. An example of this trick is given in
Fig. 1. From the remark 1, we can identify λuv from µ.
Remark 1. For a (u, v) pair, the counting λuv is given by
µx, where x ≡ u mod |Cp| and x ≡ v mod |Cq|.
Suppression. To suppress a contingency table, we compare
all the counting in the table with a given threshold T ∈ Z+.
For counting λuv < T , we suppress them by setting the
value of λuv = 0 while we do nothing to counting that
λuv ≥ T . The threshold T can be decided by data con-
tributors in advance.

2.3 Security Model
In our work, we consider three stakeholders, an analyst,

*1 We can use this trick, even the co-prime constraint is not satisfied.
To do so, we append some 0s to ind(cip) or ind(ciq), making the
length of them are co-prime.

data contributors, and a cloud server (Fig. 2). An analyst is an
entity that wishes to conduct contingency tables. Data con-
tributors, e.g., hospitals, are entities that provide private data
for the contingency table conduction. The cloud server pro-
vides computation power and storage, for analysts and data
contributors.

In our setting, the data contributors encrypt their data us-
ing a key that generated by the analyst, and they submit the
ciphertexts to the cloud server. When the data submission
is finished, the data contributors can go offline at any time
since they do not involve in the further computation. The an-
alyst queries the cloud and asks for a contingency table by
designating two attributes. The cloud privately computes the
contingency table on the encrypted data that collected from
data contributors and responses the analyst with the compu-
tation result. In the end, the analyst decrypts and obtains the
contingency table.

We design a two-party protocol that runs on the cloud
server and the analyst. For private contingency table evalua-
tion with suppression, we express this functionality F as the
mapping ({ci}n, (p, q)) 7→ (−, CT ({ci}n, p, q, T )), where
{ci}n is the collection of categorical data of n data contrib-
utors, and (p, q) is the targeting attributes that designated by
the analyst. We use ‘–’ to indicate that at the end of the pro-
tocol execution, the cloud server learns nothing while the
analyst obtains the suppressed contingency table CT of at-
tributes Cp and Cq .

The security definition we leverage in this paper follows
the real-world/ideal-world paradigm of [9]. In next sec-
tion, we present a one-round protocol to compute the con-
tingency table with suppression. By saying one-round, we
mean that our protocol needs one round of interaction be-
tween the cloud server and the analyst: the analyst sends
the query and then the cloud server responses the cipher-
texts it has computed. From that ciphertexts, the analyst
can learn the suppressed contingency table. We prove that
our protocol securely computes the functionality F and give
the simulation-based proof in Appendix. In our work, we
assume that the data contributors and cloud server behave
semi-honestly, which means they follow the protocol specifi-
cation but may try to learn additional information. Since our
protocol works in the one-round pattern, the analyst is not
required to be semi-honest.

3. One-round and Secure Contingency Ta-
ble Evaluation with Suppression

In this section, we detail our one-round protocol for se-
curely outsourcing the computation of contingency tables
with suppression to a public cloud server.

3.1 Building Blocks
We describe two building blocks used in our construction:

a procedure for repeating encrypted integer vectors, and a
greater-than protocol for comparing two encrypted integers.
REPEAT Procedure. As described in Section 2.3, to evalu-
ate a contingency table, we need to repeat ind-encoded vec-
tors. More precisely, we need to homomorphically repeat the
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first |Cp| elements of ind(cip) for |Cq| times. We introduce
the procedure REPEAT(JuK, k, R) which repeats the first k
elements of JuK for R times as follows.

1. JũK def
= J0K.

2. R = (bρ · · · b1b0)2 where bρ is the most significant bit.
3. For 0 ≤ i ≤ ρ

3.1 If bi is 1 then JũK← JũK≫ k; JũK← JũK⊕ JuK
3.2 JuK← JuK⊕ (JuK≫ k)

3.3 k ← k × 2

4. return JũK
The procedure is very simple, and it requires O(logR) ho-
momorphic rotations and homomorphic additions. Two re-
quirements are needed to make sure the procedure work cor-
rectly: Elements of u after the kth position are 0; and the
CRT packing offers enough spaces i.e., k ×R ≤ ℓ.
Batch Greater-than Protocol. To achieve suppression, we
need comparisons on encrypted integers. We newly instan-
tiate a variant of the greater-than (GT) protocol from [10],
specially for the suppression of the contingency table.

The protocol of [10] bases on the idea that for one pair
of integers a, b ∈ [D], we have a ≥ b ⇔ ∃w ∈ [D] →
a − b − w = 0. Our batch greater-than (bGT) protocol
(Alg. 1) uses the REPEAT procedure and the CRT packing to
conduct the comparison of θ pairs of integers in a batch man-
ner. The invocation of REPEAT makes sure that for all j, we
can homomorphically conduct aj − bj − w simultaneously.

The α(j) def
= θ·α+j makes sure that no collision between the

θ comparisons. We now prove the security of our protocol.
Theorem 1. The protocol in Alg. 1 securely computes the
functionality (a, b) 7→ 1{aj ≥ bj} for 0 ≤ j < θ.

Proof. Without loss of generality, we show that the differ-
ence |aj − bj | is not revealed by our bGT protocol. We

let β(j) def
= [βj , . . . , β(D−1)θ+j ]. We have that β(j) con-

tains one 0 if and only if aj ≥ bj and non-zero elements of
β(j) reveal |aj − bj |. To hide these information, we choose

a random vector rj
$← (Zt/{0})D and homomorphically

compute the ciphertext of rj ∗ β(j). If β(j)α ̸= 0, then
rjαβ(j)α is uniform over Zt/{0} because t is a prime num-
ber. Since β(j)α = aj − bj − wα, we need to use unpre-
dictable value of wα to prevent leakage of |aj − bj |. The
random permutation πj enables us to do so.

Our bGT protocol leverages the CRT packing for private
comparisons. When the CRT packing does not offer enough
space i.e. ℓ < θ ·D, we can not pack a (θ ·D)-length vector
into one ciphertext. Fortunately, we can use multiple cipher-
texts to address this issue. In this case, the bGT generates
⌈(θ ·D)/ℓ⌉ ciphertexts.

3.2 Secure Contingency Table Evaluation with Sup-
pression in One-round interaction

Our protocol for privately evaluating a contingency table
with suppression within one round of interaction is given in
Alg. 2. The protocol is secure under the assumption with
a semantically secure FHE scheme, a secure channel (e.g.
Transport Layer Security) and a collusion-free server. We

Algorithm 1 Batch greater-than protocol.
• Input: JaK and JbK where a, b ∈ [D]θ for D, θ ∈ Z+.
• Output: JγK where |γ| = θ ·D.
• One can learn, for 0 ≤ j < θ,

1{aj ≥ bj} = 1{0 ∈ {γj , γθ+j , . . . , γ(D−1)θ+j}}.

1: Compute JãK← REPEAT(JaK, θ,D); Jb̃K← REPEAT(JbK, θ,D)

2: Generate random permutations πj : [D]→ [D] for 0 ≤ j < θ.
3: Compute a θ ·D length vector w in which wα(j) ← πj(α). Here

α(j)
def
= θ · α+ j, for α ∈ [D] and 0 ≤ j < θ.

4: Compute JβK← JãK− Jb̃K− E(w).

5: Compute JγK← JβK⊗ E(r) where r
$← (Zt/{0})θ·D .

6: Output JγK.

make the following assumptions about our setting.
• The suppression threshold T ∈ Z+ is decided by the

data contributors in advance.
• The ith data contributor’s data consists of dc categorical

data ci
def
= (ci1, . . . , cidc

) where cij ∈ Cj is the value
of the jth categorical attribute. The data collection of n
data contributors is denoted as {ci}n.

• Data contributors already have the encryption key pk
that is generated by the analyst.

• Data contributors encrypt their data using pk and send
the ciphertexts to the server using the secure channel.

In the first part of the protocol (from Step 1 to Step 4), the
server homomorphically repeats the encrypted vectors and
performs the multiplications and additions. The server then
obtains JµK which is the ciphertext that encrypts all counting
of the contingency table.

In the second part of the protocol, the server hides the
counting of the contingency table with a random vector δ.
In Step 6, the server invokes the bath greater-than protocol
to compare the first Σ elements of µ with the suppression
threshold. After that, the server derives a vector r from δ

and adds r to the output of the bGT in Step 7. That enables
the analyst to learn the counting whose values are above the
suppression threshold but also hides the suppressed counting
from the analyst.

We now show that the protocol is correct.
Lemma 1. If the data contributors, the server and the ana-
lyst follow the protocol in Alg. 2, then at the end of the pro-
tocol, the analyst learns CT ({ci}n, p, q, T ).

Proof. By using the co-prime numbers k1 and k2 in the RE-
PEAT procedure, the Eq. 1 gives JµK which is the ciphertext
of the counting of the contingency table. For suppression, we
use a blinding factor δ and add it to µ. To learn the counting
λuv , the analyst needs to figure out δx where x is decided
according to the Remark 1. Whenever the analyst gets δx, he
knows λuv = µ′

x − δx.
If λuv ≥ T holds, γ(x) contains one and only one 0 due

to the specification of our bGT protocol. In this case, let the
j be the position such that γ(x)j = 0. Then the analyst can
identify the blinding factor as δx since γ′(x)j = γ(x)j +δx.

In the opposite case, to prevent the analyst learning δ di-
rectly through γ′−γ, we multiply a non-zero random vector
r∗ to γ. If γ(x)j = 0 then γ∗(x)j = 0 still holds. The ana-
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Algorithm 2 Secure contingency table protocol with suppression.
Let (pk, sk) be the encryption-decryption key-pair for the FHE scheme [4]. The analyst holds the decryption key sk.
• The ith data contributor input: ctxtji

def
= Jind(cij)K for 1 ≤ j ≤ dc.

• Analyst input: the targeting attributes p and q.
• Analyst output: CT ({ci}n, p, q, T ).

1: Server: Check the validity of p and q, if p, q < 1 or p, q > dc or p = q, it aborts the protocol and replies with ⊥.
2: Find k1, k2 where k1 ≥ |Cp|, k2 ≥ |Cq | and gcd(k1, k2) = 1. (Designate Σ

def
= k1k2)

3: Compute the following ciphertexts using the Alg. 1.

c̃txt
p

i ← REPEAT(ctxtpi , k1, k2)

c̃txt
q

i ← REPEAT(ctxtqi , k2, k1)

4: Compute the contingency table with homomorphic multiplications and homomorphic additions

JµK←∑
i

c̃txt
p

i ⊙ c̃txt
q

i . (1)

5: Compute JγK← bGT(JµK, T ). ▷ Batch compare the first k1k2 elements of n with the threshold T
6: Sample δ

$← ZΣ
t and compute Jµ′K← JµK⊕ E(δ). ▷ Hide the counting of the contingency table

7: Compute Jγ′K← JγK⊕ E(r) where the length of r is nΣ and elements of r satisfies ▷ Hide the blinding factor δ

rxn+x′ = δx for all 0 ≤ x, x′ < Σ.

8: Compute Jγ∗K← JγK⊙ E(r∗) where r∗ $← (Zt/{0})nΣ. ▷ Prevent the blinding factor being learnt from γ − γ′

9: Response to the analyst with ciphertexts Jµ′K, Jγ′K, and Jγ∗K.
10: Analyst: Decrypt Jµ′K, Jγ′K and Jγ∗K.
11: For each pair of u and v that 0 ≤ u < |Cq |, 0 ≤ v < |Cp|

( 1 ) Find the 0 ≤ x < Σ such that x ≡ u mod k1 and x ≡ v mod k2. ▷ According to the Remark 1
( 2 ) Test whether 0 ∈ γ∗(x). If so, designate the position of the 0 as j, then output the counting λuv = µ′

x−γ′(x)j . Otherwise, i.e. 0 /∈ γ∗(x)

then output the counting λuv = 0. Here γ∗(x)
def
= [γ∗

x, γ
∗
Σ+x . . . γ∗

(n−1)Σ+x
].

lyst can still learn counting λuv ≥ T while he can not know
λuv ≤ T . The suppression is achieved.

We now prove that this protocol is secure against semi-
honest adversaries.
Theorem 2. If the data contributors and cloud server behave
semi-honestly and the cloud server does not collude with the
analyst, the protocol in Alg. 2 securely compute the function-
ality ({ci}n, p, q, T ) 7→ (−, CT ({ci}n, p, q, T )).

We give a simulation-based proof in Appendix.
Asymptotic Analysis. We briefly describe the asymptotic
performance of the Alg. 2. Let n be the number of data con-
tributors, dc be the number of categorical attributes, Σ def

=

k1k2 be the size of the contingency table, ℓ be the maximum
length that the CRT packing can handle at once. Consider
the data contributor’s computation. Each data contributor
encrypts O(dc) ciphertexts and uploads them to the cloud
server.

On the server side, operating the REPEAT requires
O(n log Σ) homomorphic rotations and additions. Comput-
ing Eq. 1 requires O(n) homomorphic multiplications and
additions. The bGT protocol in Step 6 generates O(⌈(Σ ·
n)/ℓ⌉) ciphertexts which costsO(⌈(Σ·n)/ℓ⌉) homomorphic
subtractions and plaintext-ciphertext multiplications. Thus,
in Step 7, it costsO(⌈(Σ · n)/ℓ⌉) homomorphic additions to
hide the blinding factor.

On the analyst side, the analyst needs to decrypt O(⌈(Σ ·
n)/ℓ⌉) ciphertexts. The communication cost between the an-
alyst the cloud server is O(⌈(Σ · n)/ℓ⌉) ciphertexts.

4. Experiments
Our implementation was written in C++ and we used HE-

lib [17] for the RLWE variant of [4]. We compile our pro-
gram using g++ 4.8.2 on Ubuntu 14.04. We run our im-
plementation on a physical machine with 12 2.60GHz Xeon
CPU E5-4627 v3 processors and 1TB of RAM. We leverage
parallelism to accelerate the computation: 36 threads were
used on the server side, and 4 threads were used on the ana-
lyst side. We consider that the analyst usually can not offer
too many cores for parallelism. We code the parallel program
using the native stand thread library of C++ 11.

4.1 Parameters of HElib
The parameters of HElib include several variables, and we

focus on three of them, i.e., m, t, and L and other parame-
ters of HElib were set by default. Here t and m determine
the message space of FHE, i.e. At; and the parameters L and
m together determine the security level of the FHE. We use
L and m that provide at least 80-bit security. For the relation
between the security level, L, and m, we refer to the design
documentation of HElib [17].

To achieve the best performance, we need to choose the
parameters of the HElib appropriately. We determine these
parameters base on three concerns.
( 1 ) provide the desired security level
( 2 ) offer sufficient spaces of the CRT packing, i.e. ℓ
( 3 ) operate the homomorphic rotation efficiently
In our experiments we used parameters that m = 16384,
t = 8191, and L = 10 which provide at least 80-bit secu-
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Fig. 3 Running performances on conduction, blinding and decryption. Figure (e) shows the work-
loads on the server side and the analyst side. (Numbers are the average of 4 runs)

rity level and ℓ = 4096. The homomorphic rotation on this
message space At is efficient because we can find a good
generator of this space. From the implementation aspect, we
choose m and t so that*2

PAlgebra::numOfGens() == 1

&& PAlgebra::SameOrd(0) == true

We refer [7], [8], [17] for the homomorphic rotation.
The performance numbers of FHE on these parameters are

summarized as follows (average of 10 runs).
• homomorphic addition: 0.005 sec
• homomorphic multiplication: 0.242 sec
• rotation: 0.153 sec
• plaintext-ciphertext addition: 0.018 sec
• plaintext-ciphertext multiplication: 0.025 sec
• encryption: 0.089 sec
• decryption: 0.025 sec

4.2 Experimental Results
In our benchmarks, we measure the server conduction

(Step 2 to Step 5), server computation of blinding (Step 6 to
Step 7), communication bandwidth between the server and
analyst, and analyst decryption (Step 9 to Step 10). Remind
that we used 36 parallels for the computation on the server
side while used only 4 parallels on the analyst side.

To better understand the scalability of our protocol, we
performed some experiments on randomly generated cate-
gorical data with different domain sizes. The number of data
n = 500, 1000, 2000 and 4000. The size of contingency
table Σ = 15, 30 and 120. We consider to compute contin-
gency tables with several hundred counting is sufficient for
real applications. The suppression threshold does not affect
*2 PAlgebra is a C++ class in HElib.

the running performance. Thus we use a fixed value. The
execution time was measured in unit of second, and the com-
munication was measured in the unit of the megabyte (MB).
The benchmarks are shown in Fig. 3. To demonstrate the
workload on both sides, we give Fig. 3(e).

4.3 Discussion
The benchmarks follow our asymptotic analysis. For ex-

ample, the conduction time, i.e. Fig.3(a), grows linearly with
the number of data that is the running time (Σ = 120) in-
creases from 200s to 400s as n grows from 2000 to 4000. We
can see that the gaps between each line are different, which
confirm us that the blinding, decryption and communication
cost grow linearly with the contingency table sizes Σ while
the conduction cost increases logarithmically with Σ.

From the Fig.3(e), we can see that about 95% of the work-
load were performed on the server side, which satisfies our
motivation of outsourcing computation to the cloud server.
However, the workload of the analyst increases as the num-
ber of data grows, since he needs to decrypt more ciphertexts.
Remind that we only used 4 parallels on analyst side, the de-
cryption time can be easily reduced with more cores.

One improvement we can do is to decide a tight domain
size for counting of the contingency table. In the current con-
struction, we use the domain size as [0, n] since the count-
ing will never exceed the total number of data. However,
this loose domain size leads to the linear complexity of n

in blinding, decryption and communication. Of course, this
cost can be reduced by choosing a larger ℓ.

5. Conclusion
In this work, we present a one-round protocol for pri-

vately evaluating the contingency table with suppression.
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Our protocol is the first construction of private contingency
table evaluation with suppression functionality. Our protocol
works in a one-round interaction pattern . Thus we require
the data contributors and the cloud server to behave semi-
honestly. To some extent (we need to assume collusion-free
servers), our protocol is secure against malicious analysts.
Our results show that our protocol can conduct the evalua-
tion of contingency table with a size of 120 from 4000 data
within 8 minutes and about 95% of workload are performed
by the cloud server. Even the performance of our protocol
might seem passable; we conclude that our protocol has its
merits and can work properly for some thousands of data.
Also, the one-round interaction pattern of our protocol al-
lows us to extend the protocol to other computation models.

For the current construction, we might not be able to re-
duce the execution time significantly, except leveraging the
parallelism. To accelerate the execution of the conduction
phase is one of our future work, and we hope to compare our
protocol with the garbled circuit implementations.
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Appendix

A.1 Security Proof
Proof of Theorem 2. We prove security against the semi-
honest analyst. Let A be the semi-honest analyst in the real
protocol. We construct a semi-honest simulator S in the ideal
world as follows:
( 1 ) At the beginning of the protocol, S obtains the input

p and q, the number of data n, the size of the con-
tingency table Σ, and the suppressed contingency table
CT ({ci}n, p, q, T ).

( 2 ) Start runningA on input p and q. Let pk be the analyst’s
public key.

( 3 ) Arrange the counting λuv in CT ({ci}n, p, q, T ) to get
µ ∈ ZΣ according to the Remark 1.

( 4 ) Sample δ̂
$← ZΣ

t and compute µ̂′ ← µ+ δ̂

( 5 ) Sample γ̂ $← (Zt/{0})nΣ. For each µx of µ, if µx > 0

then set γ̂j = 0 where j is randomly chosen from
{x,Σ + x, . . . , (n− 1)Σ + x}.

( 6 ) Compute γ̂′ ← γ̂ + r, where rxn+x′ = δ̂x for
0 ≤ x, x′ < Σ.

( 7 ) Compute γ̂∗ ← γ̂ ∗ r∗, where r∗ $← (Zt/{0})nΣ.
( 8 ) WhenA sends query, check the validity of the query in-

put. If the query is valid, reply with ciphertexts Jµ̂′K,Jγ̂′K and Jγ̂∗K. Otherwise, reply with ⊥.
The view of the A in the real execution comprises three

parts: µ′, γ∗ and γ′. Since the contingency table evalua-
tion is deterministic, to show the security of our protocol,
it sufficient to show that the view that S simulates for A is
computationally indistinguishable from the view of A in the
real execution.

In the real execution, µ′ distributes uniformly over ZΣ
t due

to the uniform randomness δ. It is easy to see that the simu-
lated µ̂′ also distributes the same with µ′ because δ̂ is chosen
uniformly at random from ZΣ

t . Thereby µ′ ≈c µ̂′.
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Next, consider the distribution of γ∗ in the real protocol.
γ∗ is generated by multiplying a non-zero random vector to
the output of the bGT protocol. According to Theorem 1, if
the counting µx < T then γ∗(x) distributes uniformly over
(Zt/{0})n. Otherwise, γ∗(x) contains one and only one 0

whose position also distributes uniformly. But this is pre-
cisely the same distribution from which S samples the γ̂∗.
Thereby we have γ∗ ≈c γ̂∗. Finally, it is easy to see that the
distribution of γ′ is an uniform distribution over ZnΣ

t since
we just add an uniform randomness δ to γ. Since S uses the
same distribution of randomness δ̂, we have γ′ ≈c γ̂′.

It is oblivious to see that the distributions of µ′ and γ∗ are
independent and distributions of γ∗ and γ′ are independent
since independent randomness are used. We survey the inde-
pendence between the distribution of µ′ and that of γ′. γ′

can be seen as the sum of two random vectors. One is from
the bGT protocol, and the other is δ. Since the randomness
used in the bGT protocol is independent with δ, we have γ′

is independent with µ′. Consequently, we have these three
components independent with each other. To conclude, we
have

{
µ′,γ∗,γ′} ≈c

{
µ̂′, γ̂∗, γ̂′}. So the view S sim-

ulates for A is computationally indistinguishable from the
view A gets in the real execution; security follows.
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