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Abstract: Mobile app store is an important component of mobile ecosystem such as the Google Play Store. It is
convenient for mobile users to gain information such as ratings/reviews (called user-generated content (UGC)) and the
number of app downloads, category (called Metadata) from mobile app store. The populartiy of mobile app store is
leading to a rapidly growing number of security and privacy problems. i.e., a miscreant may promote many malicious
apps with fake ratings/reviews in a very short period of time in order to attract more victims to download/install a
malicious app. To address these issues, we developed a system called PADetective that identifys miscreants who are
likely to be performing promotional attacks. We collected a large-scale dataset of approximately 20 M unique users, 1
M apps and 57 M reviews from real world and demonstrated that PADetective system is able to achieve a high detec-
tion accuracy as 95.4% with a false-positive rate of 8%. We then conducted a large-scale analysis based on real world
dataset and found that our system can be applied to detect malware that has not been discovered by anti-virus checkers.
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1. Introduction
One of the key success factors of the widespread of smartphone

today is attributed to the core of its ecosystem – mobile app store.
Mobile app stores, such as Google Play or Apple App Store, play
a vital role in distributing apps to end users in an efficient and
usable way. The mobile app stores provide various information
about apps; i.e., descriptions, preview screenshots, number of in-
stalls, names of developers, categories of apps, etc. In addition,
many of mobile app stores are composed of reputation system,
i.e., user can post their ratings or reviews of apps. These infor-
mation is useful for an user to determine whether he/she wants to
install an app.

Reputation systems generally have been widely studied in var-
ious domains. To ensure the reliability of a reputation system, it
is essential to cope with various noises imposed to the system.
Such noises include spam and fake opinion, which we focus on in
this work. The motivation to post a fake opinion is that by posting
such fake opinions a lot, one can take control of the reputation for
an item. For instance, by expressing positive/negative opinions
about an item, one can promote/demote it. Several works have
attempted to detect fake opinions in various domains [1], [2], [3].
Xie et al. [4], [5] reported that mobile app stores are also suffering
from the same problem as the domains mentioned above.

Given the nature of reputation systems, we employ the follow-
ing threat model, which we call the promotional attack (PA) threat
model. First, a miscreant publishes a malicious or a potentially
harmful app on an app store. The miscreant then posts several
good ratings or reviews using different IDs to promote the app.
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After the app is promoted, several users may install it without
realizing that it is a bad app. This leads to our first research ques-
tion:

Is the threat of PA in the mobile app store real?

To answer this research question, this study employed a large-
scale measurement study using 1 M apps collected from the of-
ficial Android app store. We first collected 57 M reviews posted
by 14 M users for all the apps. We then identified and extracted
malicious apps using multiple anti-virus checkers. Finally, we ex-
tracted users who posted reviews or ratings to at least three apps
classified as malicious. This procedure revealed that at least 723
users were associated with PA for 10,845 malicious apps in our
dataset, verifying that the security threat of PA in the mobile app
stores is real. The next question we wanted to ask was:

Can we characterize PA in the wild?

Answering the above question was not straightforward for two
reasons. First, because anti-virus checkers have imperfect de-
tection rates, this study may miss some malicious apps. Sec-
ond, some users may post reviews to not only malicious apps
but also benign apps as a means of evasion. To address this is-
sue, we developed a system called PADetective, which learns the
features of known promotional attackers and then automatically
detects unknown promotional attackers based on the learned fea-
tures. To address “promotion”, we need to identify false reputa-
tion by measuring the trustworthiness of user ratings. To this end,
we leveraged the TRUE-REPUTATION algorithm [1], which is
an algorithm to adjust a reputation based on the confidence of
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Fig. 1 Overview of the PADetective System.

customer ratings. Another challenge we addressed was to quan-
tify the similarity of user reviews. As users can express the
same opinion using different words and expressions, e.g., “nice
app”and “good app”, we need to measure the similarity of reviews
in semantic level. To address this issue, we leveraged a state-of-
the-art NLP technique called Paragraph vector [6], which works
on top of the deep learning. Paragraph vector is an unsupervised
algorithm that enables us to extract similar reviews in semantic
level.

We tested the detection accuracy of the system using the 723
promotional attackers we extracted manually and found that the
detection accuracy was 95.4% with a false positive rate of 8%.
We then applied PADetective to an unlabeled set of 57 M reviews
written by 20 M users for 1 M apps to characterize the prevalence
of threats in the wild. We found that of the 2.6 M of review-
ers, 289 K of them were flagged as potential promotion attackers.
These reviewers posted reviews to 136 K of apps, which included
21 K of malicious apps. Among the top-1K reviewers who were
flagged as promotional attackers with high confidence, 136 re-
viewers posted reviews only for malicious apps, and another 113
reviewers posted reviews for apps where more than half of apps
were detected as malicious. Our analysis also found that PADe-
tective can contribute to the detection of previously unknown ma-
licious apps.

The chief contributions of this work can be summarized as fol-
lows.
• To characterize PA in the wild, we developed a system called

PADetective that learns the features of known promotional
attackers and automatically detects new promotional attack-
ers with an accuracy of 95.4%.

• We applied several state-of-the-art techniques that can ex-
tract meaningful information from complex and subtle UGC
and metadata.

• Through an extensive analysis of 57 M reviews posted by 15
M users for 1 M apps, we verified that the security threat of
PA is real.

• We found that the PADetective system can be used to iden-
tify potentially malicious apps before they were submitted to
public online virus checkers.

To the best of our knowledge, this is the first measurement
study of promotional attackers in mobile app store. As our system
can be used to discover malicious apps before they are detected
by popular online anti-virus checkers, it can serve as an effective
assistive tool for market operators and malware analysts. We be-

lieve that our approach sheds a new light on the analysis of UGC
and metadata of app stores as a complementary channel to find
malicious apps.

The remainder of this paper is organized as follows. We de-
scribe the high-level overview and details of the PADetective in
Section 2. A performance evaluation of the PADetective is given
in Section 3. In Section 4, we study the promotional attackers
in the wild, by applying PADetective to a market-scale measure-
ment data. Section 5 discusses the limitation and future work of
our system . Section 6 summarizes the related work and compare
them with ours. Finally, conclusions are presented in Section 7.

2. PADetective system
This section presents the architecture of the PADetective sys-

tem. We describe in detail its four core components: data collec-
tion, data preprocessing, feature extraction, and detection.

2.1 Dataset
Data collection We describe how we gathered large-scare

dataset from real world and what kind of statistics we collect
from the dataset. We obtained UGC and metadata for approxi-
mately a million of apps from the official app store in November
2015. We first created a list of apps to be crawled. For this,
we made use of the list of package names provided with Play-
Drone [7]. Next, we collected metadata for each app. Collecting
metadata is straightforward because they are static data. We ac-
cessed to the app description page by searching package name
in the google play and employs our HTML parser to extract all
the metadata presented in page. We then collected UGC for each
app. Collecting UGC needs to address dynamic data, i.e., UGC is
provided with the asynchronous communication interface. That
means we need to communicate with server in order to gain each
page of UGC. We developed a UGC crawler using the review
collection API [8] provided by Google Play Store. If we send a
HTTP request configuring package name and the number of page
as parameter, we will receive a JSON file from HTTP response.
As an effort to collect UGCs for a large number of apps, while
following the acceptable use policy of the API, we deployed our
crawler on 100 of servers each assigned different Global IP ad-
dresses. We note that The maximum number of reviews for each
app was 4, 500, because the Google Play review collection ser-
vice only allows the 4, 500 most recent reviews to be crawled for
any app. The implications of this limitation will be discussed in
Section 5.
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Table 1 Description of UGC and metadata

Type Item Description
Reviewer name The name ID of each reviewer

User-generated content Rating The score attached to each app by reviewer. The range of score is from 1 to 5
Post time the date of review creation
Review the comment text written by reviewer
The number of download The count of app downloaded by Mobile user, i.e. 1,000-5,000, 10,000+

Metadata Category The cluster name of apps with similar function, i.e. Entertainment, communication,Sports
Creator The name of an individual or a company who create the app

1 2 3 4 5
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Fig. 3 Histogram for the number of reviews in each app

Data Statistics The statistics for the UGC and metadata we
collected are presented in Table 1. We utilized all this informa-
tion for feature extraction, the details of which will be presented
in Section 2.3. We crawled a large-scale dataset of 20,211,517
unique users, 1,058,259 apps, and 57,868,301 reviews. Figure 2
presents the statistics for our collected rating data. The rating
scale used in the Google Play Store ranges from 1 to 5. Over
55% of ratings are 5 stars, indicating that the reviewer has had
an outstanding experience with the app. The tendency of giving
high ratings hinders the detection of a PA behavior. Therefore, it
is a challenging task to distinguish promotional attacker behavior
from legitimate reviewers who are actually satisfied with an app.
Figure 3 shows the statistics of the number of apps reviewed per
reviewer. As shown in the figure, most reviewers tend to evaluate
less than 3 apps due to the offline data collection method we used.
The number of apps reviewed per reviewer will probably exceed
2 over time.

2.2 Data Preprocessing
Before creating the feature vector for the classifier, noisy and

meaningless data must be removed. We implemented the follow-
ing procedure to clean up the UGC, particularly the reviews.

Step1: Remove all reviews written under the default reviewer
name “A Google User”. as we cannot extract string features from
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Fig. 4 Histogram for the number of apps reviewed by each reviewer

the default reviewer name. The limitation introduced by this step
is discussed in Section 5

Step2: Extract the reviewers who have commented on at least
three apps. The limitation introduced by this step is discussed in
Section 5

Step3: Remove reviews written in languages other than En-
glish.

Step4: Split all sentences into words.
Step5: Transform all letters into lowercase.
Step6: Remove all stop words such as “is”,“am”,“the”.
Step7: Consolidate variant forms of a word into a common

form.(word stemming) e.g., convert “runing”to “run.”
Step8: Correct the misspelling English words for all the re-

views.
From Step 3 to Step 8, we implemented natural language pro-

cessing based on NLTK [9] and TextBlob [10]. NLTK is a
widely used Python library for natural language processing, and
TextBlob was developed on the basis of NLTK for simplifying
text processing. TextBlob enables us to easily implement lan-
guage detection and spelling correction in the data preprocessing
stage as well as sentiment analysis during the feature extraction
stage. After data preprocessing, our dataset for feature extraction
included 2, 606, 791 reviewers.

2.3 Feature Extraction
We extracted a total of 15 features from the UGC and meta-

data. Herein, we describe how we extracted these novel features
in terms of the type of data.
2.3.1 Post Time

Day Intervals PAs are likely to launch a rating promotion at-
tack within a short day interval. According to previous work [5]
reviewers hired by app promotion web services tend to complete
their review promotion missions within 120 days. Given this
background, we calculated the day intervals between the earliest
and latest post time for each reviewer.

Entropy PAs are likely to write reviews within the same
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Table 2 Examples of similarity score computed with the trained Paragraph
vector model.

word1 word2 similarity score
adware malware 0.88
ads spam 0.64
camera permission 0.74
hack access 0.71
internet location 0.62
good nice 0.60

day. To measure the proportion of same-day reviews, we
apply the information entropy defined as follows: H(X) =
−∑n

i=1 P(xi) log P(xi), where xi is the frequency of same-day re-
views and n is the number of apps reviewed by each reviewer. If
all the reviews are posted on the same day, the entropy of the post
time will be 0.
2.3.2 Review

Bi-gram Matching Posting similar reviews is also characteris-
tic of PAs. The detection of similar reviews is more difficult than
that of other corpus. One reason for this difficulty is the use of
made-up words to express strong feelings, such as“goooooood”
and“ coooooool.”Made-up words cannot be modified by the
current spelling correction algorithm, which is designed to cor-
rect misspelled words and not intentionally created words. To
address this problem, we converted each word into a bi-gram bag
of words and calculated the average of cosine similarity score
of each pair of reviews evaluated by each reviewer. We set the
threshold of cosine similarity as 0.9

Semantic similarity As mentioned in Section 1, reviewers
usually use different words and expressions to express their same
thoughts. To identify similar words, we applied the Paragraph
Vector algorithm [6], which represents each document by a dense
vector that is trained by stochastic gradient descent and back-
propagation to predict the similarity of words in the document.
Paragraph Vector is designed in a distributed way such that it can
train a large quantity of unlabeled data in a very short time. Para-
graph Vector is implemented in the Python library gensim [11].
We leveraged our large-scale dataset of 57, 868, 301 reviews to
build our predictive model. Using this approach, the training of
the predicted model was completed quickly, after approximately
1 hour. We considered the average of the similarity scores pre-
dicted from the trained model for each pair of reviews as our fea-
ture. Table 2 presents examples of the similarity scores computed
with the trained Paragraph Vector model. It is clear that the model
is able to infer correlations between not only different words with
the same purpose but also security-related similarity words with-
out using the labeled data. Note that although we used words to
demonstrate the effectiveness of the approach, we actually apply
the algorithm to the entire review texts.

Sentiment Analysis PAs tend to write positive reviews to pro-
mote apps for monetary benefit or to infect other users with mali-
cious apps. We used TextBlob [10] to conduct a sentiment analy-
sis of all the reviews posted by each reviewer. The sentiment anal-
ysis of TextBlob was implemented by a supervised learning naive
Bayes classifier that is trained on the labeled movie reviews pro-
vided by NLTK. The bag of words approach was used for feature
vector creation. The accuracy of the sentiment analysis classi-
fier is between 80% and 90%. In our case, both the training data

Table 3 Example of score predicted by sentiment analysis classifier

Sentence The score of sentiment analysis
That is my opinion 0.0
Awesome game. 0.3
Nice graphics and I love it. 0.55
Very bad game. -0.65
I hate all the covers I’m
here to look for the songs
made by the artist not covers. -0.8

and predicted data were different types of reviews with similar
characteristics. Therefore, the sentiment analysis classifier could
achieve a high prediction accuracy of 90% for our review data.
We used the average score for each pair of reviews predicted by
the sentiment analysis classifier as our feature. Table 3 shows an
example of the scores predicted by the sentiment analysis classi-
fier.

The average length of all the reviews Fake reviews injected
by PAs are likely to be short. We calculated the average length of
all the reviews written by each reviewer as our feature.
2.3.3 Rating

True Reputation Algorithm As previous works [4], [5] have
shown, PAs usually give high ratings to their target apps; these
attacks are thus called rating promotion attacks. In official app
stores, mobile users select apps using the average of all the rat-
ings for each app as a reference. This type of metric is ex-
tremely vulnerable to rating promotion and/or demotion attacks.
As a defense against these attacks, the TRUE-REPUTATION al-
gorithm [1] calculates the true reputation score rm of each app,
which can replace the average of all the ratings as a metric. In
our study, to identify a promotional attacker behavior related to
rating promotion/demotion attacks, we computed our feature as∑n

i=1(ri−rmi)
n , where n is the number of apps reviewed by each re-

viewer.
Average ratings PAs tend to only post reviews with high rat-

ings. We computed the average of all the ratings posted by each
reviewer as our feature. When a promotional attacker behavior
occurs, the average of all ratings is close to 5.

Coefficient of variation of ratings For the same reason men-
tioned above, we calculated the coefficient of variation of all the
ratings posted by each reviewer to measure their distribution. The
coefficient of variation is the ratio of the standard deviation to the
mean. If a reviewer posts identical ratings, the coefficient of vari-
ation will be 0.
2.3.4 The number of Installs

Average number of installs As the number of installs is one of
the metrics when an user reviews an app, we include this metrics
to characterize the feature of an app. We calculated the average
number of installs for each app as a feature.

Coefficient of variation of the number of installs For the
same reason mentioned above, to measure the distribution if in-
stalls, we calculated the coefficient of variation of the number of
installs for each app. If a reviewer posts reviews to apps with the
same number of installs, the coefficient of variation will be 0.
2.3.5 Developer and Category

Entropy It is natural that PAs are more likely to promote apps
produced by the same developer because the targeted malicious
apps should be associated with each other. We applied entropy as
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described earlier to measure the degree to which the developer is
the same. If the reviewer posts on apps with the same developer,
the entropy of the developer will be 0.
2.3.6 Reviewer name

Length of reviewer name Legitimate reviewers usually
choose their own name as the reviewer name, whereas the re-
viewer names of PAs are likely to be unusually short or long.
Thus, we computed the length of the reviewer name as our fea-
ture.

Number of digits and symbols in reviewer name The re-
viewer names of PAs are often randomly generated by a spammer
tool and are therefore likely to contain digits and symbols such as
“!”, “*”, “@.”To this end, we calculated the number of digits and
symbols in the reviewer name as our feature.

2.4 Detection model
We built our detection model based on the machine-learning

algorithm implemented in the Python library scikit-learn [12].
Scikit-learn is a simple and efficient tool designed for data min-
ing and data analysis. Considering the performance of each ma-
chine learning method, we adopted standard supervised learning
methods, i.e., support vector machine (SVM), k-nearest neigh-
bor (KNN), random forest, decision tree, adaBoost, and Gradi-
entBoosting. To determine the best machine-learning algorithm
and parameters, we leveraged our labeled dataset to test all the
selected models using classifiers and parameters. The detailed
model selection process and its results are presented in Section 3.
Finally, we applied the best detection model to perform a large-
scale analysis of our real-world dataset.

3. Performance Evaluation
In this section, we evaluate the accuracy of PADetective sys-

tem. We first present how we made the labeled dataset, i.e., the
ground truth. We then describe the flow of evaluating the detec-
tion models. Finally, we demonstrate the accuracy of the PADe-
tective system, using the labeled dataset.

3.1 Training set
We first generate training set, which can be used as the ground

truth. We define a PA as a reviewer who posts reviews only to ma-
licious apps. Similarly, we define a legitimate reviewer as a user
who posts reviews only to benign apps. To determine whether
an app is malicious or not, we utilized the outputs of VirusTo-
tal [13]. VirusTotal is a free online service that can be applied
to identify malicious files and URLs. When a user submits an
app as a query, VirusTotal verifies the potential maliciousness
of this app using different antivirus software and scan services.
With regard to the verification of mobile apps, VirusTotal usu-
ally classifies malicious apps into two categories: malware and
adware. In our study, considering that PAs most likely evaluate
both malware and adware apps, we did not distinguish between
these categories. With this approach and additional manual in-
spection, we were able to extract 723 of PAs. We also extracted
legitimate users and randomly sampled 1,000 of them. The rea-
son why we randomly sampled legitimate users is to make a good
balance between the two classes when we train our classifiers.

3.2 Evaluation Method
To ensure that a selected model can identify unknown PAs, we

randomly divided the labeled data in a 70%/30% manner. 70% of
labeled data is used to optimize each machine learning model and
select the best model among them. For optimizing the machine
learning algorithms, we used the 10-fold cross-validation and grid
search. After we select the best model, we check its performance
using the rest of 30% of labeled data as test set. Since we did not
use this test set for optimizing/selecting the model, the prediction
results for it can be thought as test for the unknown data.

To measure the accuracy, we used three common metrics:
false positive rate (FPR), false negative rate (FNR) and accuracy
(ACC), which are computed as FPR = FP

FP+T N , FNR = FN
T P+FN ,

and ACC = T P+T N
T P+T N+FP+FN , respectively, where TP is true positive,

FP is false positive, TN is true negative and FN is false negative.

Table 4 Accuracy of classification on training set. Means and standard de-
viations are calculated from 10-times 10-fold CV tests for each
machine learning algorithm.

Machine learning 
Algorithm	

ACC	 FPR	 FNR	
mean std mean std mean std 

SVM 0.661 0.041 0.059 0.072 0.372 0.048 
RandomForest 0.933 0.014 0.083 0.033 0.053 0.036 

KNN 0.894 0.020 0.162 0.027 0.050 0.022 
DecisionTrees 0.902 0.020 0.091 0.035 0.100 0.033 

AdaBoost 0.918 0.022 0.100 0.030 0.066 0.034 
GradientBoosting 0.961 0.016 0.063 0.028 0.020 0.035 

Table 5 Evaluation of accuracy using test set. Note that we did not use test
set to train the classifier.

Machine learning 
Algorithm	 ACC	 FPR	 FNR	

GradientBoosting 0.954 0.080 0.011 

3.3 Evalutaion Result
Table 4 presents the classification accuracy achieved using

each machine learning algorithm. Most of the machine learning
algorithms predicted the PAs with high accuracy and a low false
negative rate, proving that our features can improve the accuracy
of numerous machine-learning algorithms. Of the eight machine-
learning algorithms we tested, GradientBoosting achieved the
highest accuracy (96.1%) with the lowest false positive and false
negative rates. The standard deviations of the accuracy, false pos-
itive rate, and false negative rate of GradientBoosting are low,
indicating that GradientBoosting can identify PAs effectively and
without bias. We used a grid search to determine the best parame-
ter for GradientBoosting, finding that the optimal number of trees
is 200. Based on these results, we selected GradientBoosting as
our detection model.

To better understand the sources of false negative rate and false
positive rate of our system, we conducted error analysis with
manual inspection. We found that our system failed to identify
PAs who posted reviews in a long period of time, such as two
years. On the other hand, our system wrongly flagged the legiti-
mate reviewers whose behavior was similar to a PA, e.g., their re-
views seemed to be fake, but the apps reviewed were not detected
by the VirusTotal. We note that using the online virus checkers
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Table 6 Statistics of detected PAs and apps. “–” indicates that we were not able to perform the evaluation
due to the lack of resources.

# reviewers # apps # malicious apps # apps deleted by app store
All observed reviewers 2,605,068 234,139 32,367 –
Potential PAs 289,000 135,989 20,906 –
Detected PAs with high confidence 1,000 2,904 486 148

0 5 10 15 20
Number of reviews submitted by each PA

101

102
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F

Fig. 5 Distribution of the number of apps reviewed by each PA.

could be one of the sources of false detection.
Finally, using the optimized GradientBoosting algorithm, we

test its accuracy using the test set. Table 5 shows the results. We
can see that the accuracy is good for the unknown set, indicating
the classification scheme is robust. In the next section, we will
use this classification model to study the PAs in the large-scale
data.

4. Promtional attacks in the wild
4.1 Large-scale Measurement

Using PADetective, we conducted a large-scale analysis of
real-world data that had been collected from the Google Play
Store. Using the labeled reviewers, i.e., 1,000 legitimate review-
ers and 723 PAs, as training set, PADetective extracted 289, 000
of potential PAs from the 2,605,068 of reviewers. Table 6 sum-
marizes the number of reviewers/apps detected with PADetective.
The number of unique malicious apps reviewed by the potential
PAs were 20,906, accounting for approximately 65% of the mali-
cious apps reviewed by some users. It is somewhat surprising that
many of malicious apps having reviews were associated with the
potential promotional attackers. Note that majority of malicious
apps detected with VirusTotal had no user reviews. Next, we look
at the top 1,000 reviewers detected as PAs with high confidence,
which were obtained from the output of the classifier; i.e., we
ranked the reviewers in descending order by the probability of
being a PA. The top 1,000 reviewers posted reviews for 2, 904
of apps, which include 486 of malicious apps and 148 of apps
deleted by the app store for some reasons, e.g., malware or po-
tentially harmful apps. Of the 1,000 PAs, 136 reviewers (13.6%)
posted reviews only for malicious apps or the deleted apps. We
found that other detected reviewers posted reviews not only for
malicious apps, but also for apps that were not detected by the
VirusTotal. We leave checking the code of those undetected apps
for our future work.

Figure 5 plots the cumulative distribution (CDF) of number
of reviews submitted by each potential PA. While there are few
potential PAs that submitted reviews for many apps, majority of
the potential PAs submitted reviews on three apps, which was the

0 2 4 6 8 10
Fraction of apps for each category (%)
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TOOLS
GAME_CASUAL
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GAME_ARCADE

LIFESTYLE
BOOKS_AND_REFERENCE

MUSIC_AND_AUDIO
PRODUCTIVITY

Fig. 6 Top-10 categories of apps reviewed by the detected PAs.
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Fig. 7 Number of installs for apps reviewed by the detected PAs.

threshold we set as a minimum number of apps reviewed by each
PA. We conjecture that this fact reflects the fact that PAs do not
submit many reviews, using a same account name so that bogus
reviews are not detected.

Next, we investigated the categories of apps reviewed by PAs.
Figure 6 presents the results. Three out of ten categories (approx-
imately 15% in total) are related to game, which was the primary
target of the promotion attacks. We also observe that the cate-
gories of targeted apps span across various categories. To study
the impact of apps promoted by the PAs, we analyzed the num-
ber of installs for apps reviewed by the detected PAs. Figure 7
presents the results. We see majority of of apps reviewed by the
PAs had rather less number of installs. This observation indicates
that PAs tend to target apps with moderate popularity.

Finally, we investigate whether detecting PAs can be used to
discover malicious apps. Namely, we compared the time at which
the PAs posted reviews on malicious apps and the time when the
malicious app was first submitted to VirusTotal. If all the post
times are earlier than the first submission times, then our PA de-
tection scheme has the potential to identify new, previously un-
known malicious apps soon after publication. For this study, We
used the top 241 of detected PAs who reviewed only for mali-
cious apps. We found that of the 241 of detected PAs, 72 of them
reviewed malicious apps before the malicious apps were checked
by the VirusTotal. Of the all apps reviewed by these 72 PAs, 217
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Table 7 A set of apps reviewed by a detected PA.

App Name Reviews Ratings

True
Reputation

Score Post Time Category Developer Downloads
VirusTotal
Detection

com.wb.atones Great. Application 5 3.71 2013.12.20 MUSIC AND AUDIO Navjot Singh 10, 000+ ANDR.RevMob.A
com.wb.bankpo Great app for.

Preparing banking
exams.

5 4.05 2013.12.20 EDUCATION Navjot Singh 5, 000+ Android.RevMobAD.A

com.wb.bhangra Great boliyan 5 2.85 2013.12.20 MUSIC AND AUDIO Navjot Singh 10, 000+ ANDR.RevMob.A.Gen
com.wb.dbreed Great dogs. Name 5 3.88 2013.12.20 EDUCATION Navjot Singh 1, 000+ Android.RevMobAD.A
com.wb.htones Awesome horror

tones.
5 3.07 2013.12.20 MUSIC AND AUDIO Navjot Singh 10, 000+ ANDR.RevMob.A

com.wb.piczzle Piczzle app great
application. It is a
awesome app

5 4.54 2013.12.20 GAME PUZZLE Navjot Singh 500+ Tro jan.AndroidOS .
Generic.A

com.wb.sukhmani Waheguru wahe-
guru

5 4.34 2013.12.20 EDUCATION Navjot Singh 10, 000+ Tro jan.AndroidOS .
Generic.A

Table 8 A set of apps reviewed by a detected PA.

App Name Reviews Ratings Post Time Category Developer Downloads
VirusTotal
Detection

First submission date
on VirusTotal

com.ArabicAlphabets
.memory.mathes

Nice 5 2014.02.03 GAME PUZZLE GameLab 5, 000+ AndroidOS/GenBl.
F33291AF!Olympus

2014.08.03

com.electricity.billinf
o.free

Nice 5 2014.02.03 ENTERTAINMENT GameLab 5, 000+ AndroidOS/GenPua.
14444BDA!Olympus

2014.07.30

com.siminfo.gsm.free Good 5 2014.02.03 ENTERTAINMENT GameLab 5, 000+ AndroidOS/GenPua.
A0CB31EE!Olympus

2014.07.30

of apps were detected as malicious by the VirusTotal. We also
note that other apps reviewed by the PAs can be used to pick up
suspicious apps that need to be inspected.

In summary, the PADetective system detected 289 K of review-
ers as potential PAs. The detected potential PAs posted reviews to
136 K of apps, which included 21 K of malicious apps. Among the
top-1K reviewers who were flagged as promotional attackers with
high confidence, 136 reviewers posted reviews only for malicious
apps, and another 113 reviewers posted reviews for apps where
more than half of apps were detected as malicious. Our analysis
also found that PADetective can be used to detect malicious apps
early in the app publication process.

4.2 Case Study
Herein, we present two examples of PAs as a case study to

demonstrate the effectiveness of our PADetective system.
Promotional attackers in the wild Table 7 presents the exam-

ple of a PA detected by our PAdetective system. This PA gave
high ratings and posted similar positive reviews to seven mali-
cious apps on the same day. These malicious apps belonged to
different category, were not very popular, and were created by the
same developer. Moreover, the average of difference between the
true reputation scores and ratings was larger than 1.0, which in-
dicates the reviewer attempted to promote all the malicious apps
using high ratings. This finding clearly illustrates our assumption
that the PA really exists in the wild. By detecting PAs at an early
stage, we have chances to discover malicious activities on the app
market.

Detection of previously unknown malicious apps As shown
in table 8, this reviewer gave high ratings and wrote very short
positive reviews for three malicious apps on the same day. More-
over, all the post times are earlier than the first submission times
in VirusTotal. The apps evaluated by this promotional attacker are
more likely to be malicious. The security expert and market op-
erator can therefore discover new, previously unknown malicious

apps by analyzing the apps related to this promotional attacker
detected by PADetective.

5. discussion
In this section, we discuss some of the limitations of PADetec-

tive and future research directions derived from these limitations.
Reviewer integrity In this study, we used the reviewer name

as each reviewer’s identifier. An attacker may inject fake ratings
and reviews for different malicious/benign apps using different re-
viewer names, as it is easy and free to obtain numerous reviewer
names. PADetective will fail to detect promotional attackers who
use a variety of reviewer names to post fake ratings and reviews
for only one or two apps. In this case, additional features col-
lected by app store providers, such as IP addresses or geographic
information, can be added to PADetective so that PADetective is
able to identify such reviewers as PAs.

Number of apps reviewed by each reviewer As mentioned
in the data preprocessing step, we removed reviewers who re-
view only one or two apps because the number of apps reviewed
by each reviewer is too small to allow the extraction of enough
features. The number of apps reviewed by each reviewer will
probably reach or exceed 3 over time, at which point these re-
viewers can be inputted to PADetective. In future study, we will
build a real-time collection system that can refresh the UGC and
the metadata within a very short period, such as one or two days,
instead of an offline collection system.

Maximum number of reviews We only crawled 4,500 most
recent reviews due to the constraint of Google Play review col-
lection API. This may lead to false negative that our system miss
to discover the PAs who exhibit their malicious behavior at very
early time such as five year ago. We aim to identify the newest
promotional attackers who can be used to find our potentially ma-
licious apps before they were submitted to public online virus
checkers. To keep our collection data up to date, we need to build
a real-time collection system mentioned above.

－1046－



6. Related work
Numerous analysis methods related to our system have been

proposed in recent years. Such methods can be classified into
three categories depending on what type of data is used. In this
section, we review related work from these three categories and
compare them with ours.

UGC analysis Kong et al. [14] designed a system called Au-
toREB, which can automatically understand users ’mobile app
security and privacy concerns. They applied the relevance feed-
back technique for the semantic analysis of user reviews and the
crowdsourcing technique to aggregate the results of user review
analysis to apps’ behaviors. Mukherjee et al. [2], [3] studied the
detection of fake reviewer groups from Amazon product reviews.
They first used a frequent itemset mining method to identify a
set of candidate groups and then used several behavioral mod-
els based on the relationships among groups such as the review
posting times and similarities. Xie et al. [4] presented a method
that can discover collusion reviewer groups in app stores. They
built a relation graph using rating and deviation of ratings and
then applied graph cluster algorithm to detect collusion reviewer
groups. Our PADetective system can make use of all UGC, in-
cluding post time and reviewer name, to identify previously un-
known promotional attackers effectively and efficiently. More-
over, we performed a large-scale analysis on real-world data col-
lected from approximately 1 M apps.

Metadata Analysis Xie et al. [5] studied the mobile app re-
views traded on the underground market. They analyzed the
metadata of promoted apps collected from the underground mar-
ket, including average ratings, total number of reviewers, cate-
gory distributions, and developers. The WHYPER system [15]
was the first work to analyze text descriptions semantically to
perform risk assessments of mobile apps. The experimental re-
sults showed that WHYPER can accurately relate text descrip-
tions with app permissions. Qu et al. [16] developed the Au-
toCog system for measuring description-to-permission fidelity in
Android applications. AutoCog is most relevant to WHYPER.
The advantage of AutoCog is not only its detection performance
but also its ability to generalize over permissions to a large extent.
Our PADetective system is able to extract features from not only
the metadata mentioned above but also UGC in a more compre-
hensive way.

App analysis Kirin [17] is a lightweight system that can
flag potential malware applications at the time of installation
using a set of security rules that match malware characteris-
tics. DREBIN [18] is a lightweight and automatic Android mal-
ware detection system that is deployed directly on the smart-
phone. DroidMiner [19] can automatically mine malicious pro-
gram logic from known Android malware using behavioral graph
and machine-learning techniques. In our study, we attempt to ad-
dress this problem in a different way that utilizes the correlation
between UGC, metadata, and malicious apps to improve the qual-
ity of mobile app store service. We believe that our system will
be an important complement to the past research outcomes on the
analysis/detection of malicious apps.

7. Conclusion
In this study, we have proposed the PADetective system, which

can identify unknown promotional attackers in app stores us-
ing UGC and metadata, as well as machine-learning techniques.
We applied PADetective to a large-scale analysis of unlabeled
reviewer data. The PADetective system detected 289 K of re-
viewers as potential PAs. The detected potential PAs posted re-
views to 136 K of apps, which included 21 K of malicious apps.
The large-scale evaluation and case study analysis illustrated that
PADetective is able to effectively and efficiently predict previ-
ously unknown malicious apps. In future study, we plan to make
the PADetective system work in a real-time manner.
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