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Abstract: Privacy issues obstruct data to be published because anonymizing data to preserve privacy even-
tually lowers the data usefulness. For trajectory data, it is challenging to remove privacy threat and to
retain data usefulness at the same time because of its high dimensionality and sequentiality. Additionally,
anonymizing trajectory data has two conflicting goals of k-anonymity and l-diversity. Many researches had
limited focus on k-anonymity for trajectory data. In this paper, we consider both k-anonymity and l-diversity
by assuming an adversary who has limited information of pre-determined locations. We sanitize data not to
allow the adversary to know any individual’s sensitive information.
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1. Introduction

Location aware devices and location based services(LBSs)

are widely spread nowadays. In LBSs, customers provide

their location information and the service provider receives

the location, then provides adequate service. Those tra-

jectory*1 data earned from customers are collected by the

service provider to be analyzed with data mining tools, so

that they could increase their service quality. Furthermore,

not only increasing their service quality, those mining results

benefit other various applications such as city development,

travel recommendation, location based advertising, etc. To

make those applications fully utilized, publishing data to

other parties are devised. Plus, some parties need to share

their data to increase the data size which will make better

mining performance. For example, the mining results would

be better if hospitals share their patients information. For

those reasons, data publication(sharing) is highly motivated.

Data publication is often hindered by privacy problem be-

cause data often involves private information of customers

(e.g., diagnose in hospital). Trajectory is also considered

as private information because it is easy to infer individ-

ual’s home address, office address, political views, religious

inclination, etc from the trajectory. Thus, there have been

many researches to publish data while preserving privacy. k-

anonymity[1] is proposed to preserve re-identification of indi-

viduals by obstructing identity linkage attack. k-anonymity

assumes adversary who:

• has the published data

• knows that (potential) victim is in the data table

• has side information of the victim.
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*1 Several location and time doublets form a trajectory

Succeeding in identity linkage attack will allow adversary

to re-identify victim and so he will know the victim’s sen-

sitive information. k-anonymity guarantees the succeeding

in identity linkage attack ≤ 1/k by making any individual

undistinguishable from at leat k − 1 other individuals. It

aggregates k individuals by sanitizing data to have same val-

ues. However, even though adversary fails to re-identify vic-

tim, somehow he may succeed to know the victim’s sensitive

information when all the aggregated trajectories share same

sensitive values (attribute linkage attack). l-diversity[2] and

confidence bounding[3] are proposed to secure data from

attribute linkage attack. Both l-diversity and confidence

bounding requires the aggregated individuals to have differ-

ent sensitive values, so adversary fail to infer one.

Trajectory is considered as private because it is easy to in-

fer private values. Meanwhile, trajectory can also be a clue

(quasi identifiers) for adversary to attempt identity linkage

attack because adversary may have side information of tra-

jectory data. Abul et al.[4] addressed that publishing tra-

jectory data has two conflicting goals because k-anonymity

requires similarity on the quasi identifiers and l-diversity

requires dissimilarity on the sensitive values. To solve this

problem, Terrovitis and Mamoulis[7] divided location points

in trajectory into two types; one is observed by adversary

and the other is hidden from adversary. However, since they

assume multiple adversaries, they failed to retain data use-

fulness even though they suppressed time stamp. In addi-

tion, they did not consider the case that hidden locations

are too close.

In this paper, we suggest a new adversary model who has

side information of limited locations for solving those prob-

lems. We model trajectory as a sequence of (location, time)

doublets and define observed doublet and unobserved dou-

blet to classify each doublet to quasi-identifiers or sensitive
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attributes of trajectory. Then, we propose an algorithm that

sanitizes the trajectory data to be safe from privacy threat.

We introduce related work in Section 2. Problem defini-

tion is described in Section 3. We propose our sanitizing

algorithm in Section 4 which is discussed in Section 5. We

conclude in Section 6 and our future work is described in

Section 7.

2. Related Work

2.1 Common Privacy Notions

k-anonymity[1] is a traditional framework which guaran-

tees the succeeding in identity linkage attack ≤ 1/k. The

basic assumptions in this framework is that each record in

data table is uniquely correspond to an individual and ad-

versary attempts to re-identify an individual with his side

information. A record consists of attributes which are clas-

sified to follows:

• explicit-identifiers such as social ID, passport number,

phone number, name*2 are uniquely correspond to in-

dividuals.

• quasi-identifiers such as gender, age, zip code are not

uniquely correspond to individual, yet, combining sev-

eral quasi-identifiers may let adversary re-identify indi-

viduals.

• others are the attributes that are not classified to

explicit-identifiers or quasi-identifiers. Others are often

divided to sensitive values and non-sensitive values. For

example, Heavy diagnose such as cancer, HIV are clas-

sified to sensitive. On the other hand, relatively light

disease are classified to non-sensitive.

To achieve k-anonymity for the published data, explict-

identifiers should be removed before publishing because it

uniquely corresponds to the individual. Quasi-identifiers

are sanitized to have same values with at least k − 1 other

records, thus a record cannot be distinguished from at

least k − 1 other records. Others are not sanitized for k-

anonymity, instead, they are sanitized to avoid identity link-

age attack. When adversary succeeds to re-identify a victim,

then he will know the sensitive values of him. Even though

k-anonymity is satisfied, the adversary may learn sensitive

values of victim in k-aggregated data if they share same sen-

sitive value. To avoid identity linkage attack, l-diversity[2]

and confidence bounding[3] are proposed, basically both no-

tions require each of aggregated records to have different

sensitive values.

Others also can be a quasi-identifiers. [5] claimed that

others should be regarded as quasi-identifiers (so, they

should be same to satisfy k-anonymity) to be free from iden-

tity linkage attack. However, regarding others as quasi-

identifiers allow adversary to do attribute linkage attack

possible. As Abul et al.[4] addressed, quasi-identifiers should

be similar to avoid identity linkage attack and others should

be dissimilar to avoid attribute linkage attack.

*2 Person name is socially recognized as explicit-identifier though
it is not uniquely connected to individual

2.2 Anonymizing Trajectory Data

There were many related works focusing on satisfying

k-anonymity for trajectory data[4], [6], [7], [8], [9] using

mechanisms of generalization or suppression to aggregate

k trajectories in data table. To the best of our knowl-

edge, most works deemed trajectory as a quasi-identifier ex-

cept [7]. Abul et al.[4] proposed (k, δ)-anonymity which is

motivated from the imprecision of positioning system (e.g.,

GPS). (k, δ)-anonymity represents the trajectory as a cylin-

drical volume, where its radius δ represents the possible loca-

tion imprecision. Thus, trajectory is indistinguishable from

k−1 other trajectories which are closer than δ. They aggre-

gate trajectories to bounding tube where k trajectories pos-

sibly present, and suppressed the trajectories that cannot be

aggregated. Nergiz et al.[6] generalized the location points

to regions, so that trajectories form k aggregated cylindrical

volume. Then they re-construct trajectories from the aggre-

gated cylindrical volume by selecting k atomic points from

aggregated regions and linking points.

On the other hand, Terrovitis and Mamoulis[7] focused

on suppression to keep data as accurate as possible based

on assumption that an adversary holds partial information

about trajectory. In [7], trajectory is considered as a se-

quence of location points and adversary has side information

of several places that individual visited. The location points

what the adversary don’t know is considered as sensitive val-

ues. It is possible for adversary to know partial trajectory

of individuals, e.g., he can earn side information from credit

card company or transportation card, etc. They proposed

an algorithm considering multiple adversaries having differ-

ent side information, however, there are too many things to

consider, even though they suppressed time points, it was

not applicable in general. Chen et al.[8] proposed a com-

prehensive notion of (K,C)L-privacy and suggested a local

suppression algorithm. (K,C)L-privacy guarantees follow-

ings;

• Pr[Succeeding in an identity linkage attack]≤ 1/k

• Pr[Succeeding in an attribute linkage attack]≤ C

where an adversary’s side information is bounded by at

most L continual location-time doublets. Instead of [7],

they suppose an adversary who has at most L location-time

doublets of every individuals. They considered records

have trajectory and a attribute and considered attribute

linkage attack for the sensitive attribute, however, they

did not consider attribute linkage attack for the doublets

which adversary don’t know. Additionally, limiting the

number of location-time doublets to L is not realistic

considering a capable adversary who can continue stalking

every trajectory of potential victim. Later, Ghasemzadeh[9]

employed local suppression to achieve (K,L)-privacy for

the trajectory data however, did not consider trajectory as

sensitive. It is said that employing generalization to the

trajectory data loses the data utility more than employing

suppression because generalization has to merge all selected

child nodes to their parent node, when suppression only

removes the selected child node violating privacy[10].
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P (loc, r, T, T̂ ) = max
t̂r∈T̂

|{tr|tr ∈ T (t̂r) ∧ ∃(loc, t) ∈ tr s.t. (loc, t) /∈ t̂r ∧ (loc, t) ∈ circle(loc, r)|
|T (t̂r)|

(1)

However, trajectory data recorded by the positioning system

(e.g., GPS) naturally has imprecision[6] thus, we can say

that it is already a generalized version of trajectory. Also,

many applications can not be realized without generaliza-

tion, it can be employed for retaining better data utility.

2.3 Differential Privacy

Recently, ϵ-differential privacy[11] is proposed which guar-

antees the difference of adjacent data table negligible by

adding controlled random noise such as Laplace noise. To

make data differentially private while retaining data useful-

ness, the data size should be big and one record can not

change many things to data (sensitivity). Data size should

be big in order to decrease the influence on one record. Small

size of data is much more susceptible to noise. Also, sensitiv-

ity should be small because it will make a bigger noise. So,

it can be employed in very restricted dataset and restricted

use. It is not recommended to flat data (e.g., trajectory

data) because it will loss its truthfulness by noise. Chen et

al.[12] proposed a sanitization algorithm for trajectory data

to satisfy ϵ-differential privacy on the purpose of two data

mining tasks; count query and maximal frequent sequence

mining which are very basic mining tasks.

2.4 Our Contribution

In this paper, we assume adversary who has limited side

information and attempts Identity linkage attack. The

main difference between [7] is two; one is that we define

privacy threat that adversary confidently infer individual’s

sensitive location with distance error ≤ r. The other is

that we engaged generalization approach to remove privacy

threat.

3. Security Definition

We model trajectory as a sequence of (location, time) dou-

blets. We assume adversary has limited side information,

so we divide doublets to observed doublets and unobserved

doublets. Then, we formalize privacy threat and data use-

fulness.

3.1 Trajectory Model

We consider trajectory tr as a sequence of location, time

doublets, tr is represented as {(loc1t1) → (loc2t2) → ... →
(locntn)} where loci ∈ L (location universe) and ti ∈ T
(time universe). (loc1t1) means that an individual visited

loc1 at t1.

We classify each doublet to follows;

• observed doublet : A doublet which location is exposed

to adversary and observed by adversary. Observed dou-

blets are regarded as quasi-identifiers because adversary

may use the information to re-identify the individual.

• unobserved doublet*3 : A doublet which location is

not exposed to adversary. Unobserved doublets are re-

garded as sensitive attributes. Especially, home loca-

tion, office location, and other frequent visited locations

should be treated as sensitive attributes.

based on assumption that adversary has limited side infor-

mation for trajectory.

3.2 Adversary Model

We consider adversary has knowledge of partial trajectory

of individuals’ trajectory. In this paper, we consider a spe-

cific condition that adversary can access to transportation

card company and he is able to certify that card owner is

in the published data table. Then, partial trajectories of

individuals in the published data, who used transportation,

are exposed by the adversary.

It is a reasonable scenario, compare to L continual dou-

blets[8] because it reminds a physical stalker, however it is

hard for the stalker to stalk the individual. If we assume

that there is a talented adversary who can stalk L continual

doublets, then it is easy for him to follow the individual over

L doublets. In [7], multiple adversaries with partial side

information are considered, however, multiple adversaries

require the doublets to be ’quasi-identifiers’ and ’sensitive

attributes’ at the same time. For example, if a is observed

by adversary A and not observed by adversary B, then dou-

blets involving a should be similar not to be re-identified by

A and should be dissimilar not to be inferred by B.

3.3 Privacy Threat

We consider the attack is succeed when a sensitive loca-

tion is confidently inferred by adversary. We define a sen-

sitive location which distance to any unobserved location

is ≤ r. It is because, adversary can infer a sensitive loca-

tion from close locations. If sensitive locations of aggregated

trajectories are too close, then it will loss its diversity. Ad-

versary attempts identity linkage attack to trajectories and

attribute linkage attack to aggregated trajectories to learn

sensitive locations from individuals in published data.

We regard the attack failed when adversary cannot infer

sensitive area of any individual confidently. We formalize

the privacy threat here. We define trajectory data table T

and adversary’s side information table T̂ . Trajectory data

table T consists of several tr which uniquely correspond to

individual. Side information table T̂ consists of partial tra-

jectories t̂r which is originally from tr. We denote trajecto-

ries in data table T and which is involving tr for its partial

trajectory, T (tr). Let adversary infers sensitive location of

individual in data table T . Sensitive location can be any lo-

*3 Actually, not every unobserved doublets are sensitive, however,
we consider them as sensitive.

－916－



Table 1 Example of trajectory data table T

ID# trajectory
tr1 A5→ b5→ e7→ I8
tr2 B2→ a5→ e7→ L9
tr3 G4→ c6→ e7→ J8
tr4 F5→ d6→ e7→ K9
tr5 C2→ a3→ c3→ E4
tr6 D2→ a3→ c3→ H5

Table 2 Example of adversary’s side information table T̂

ID# observed trajectory count

t̂r1 b5→ e7 1
t̂r2 a6→ e7 1
t̂r3 c6→ e7 1
t̂r4 d6→ e7 1
t̂r5 a3→ c3 2

Fig. 1 The map of example locations

cation in radius r circle area from any unobserved locations.

The privacy threat is then computed as equation 1, where,

circle(loc, r) represents the center loc, radius r circle area.

(See Fig. 1 for circle area.) If P (loc, r, T, T̂ ) equals to 1,

then adversary confidently infers that the member of aggre-

gated group visited loc, thus individual in the aggregated

group is exposed to privacy threat. For side information

t̂rj ∈ T̂ , we say loc is insecure when P (loc, t̂rj , T ) > C. In

some cases, not only location, time is also sensitive, however,

in this paper we focus on preserving locations.

We show a simple example of trajectory data table in Ta-

ble 1. In this example, we assume a simple origin-destination

trajectory which is represented as {origin → get on station

→ get off station → destination}. We denote unobserved

locations, here origin and destination, as large capital (A

to L), and observed locations, here get on and off stations,

as small capital (a to e). Adversary has side information

of location universe Lob = {a, b, c, d, e}, i.e., if individual

pass through locations in Lob, then the log will be reported

to adversary. We set privacy parameter C = 0.5 and r

is shown in Figure 1. The adversary’s side information is

shown in Table 2. We calculate privacy threat for every lo-

cation points in the circled area. From Table 2, adversary

can uniquely re-identify tr1, tr2, tr3, tr4, thus their sensitive

locations. tr5 and tr6 are not uniquely re-identified because

adversary cannot distinguish them. Location point loc sat-

isfies P (loc, r, T, t̂r5) ≤ 0.5, so tr5 and tr6 are safe from

privacy threat.

We sanitize trajectory data table not to leak sensitive lo-

cation to adversary. The sanitized trajectory data table is

Table 3 Example of sanitized trajectory data table T ′

ID# trajectory
tr1 A5→ {a, b}5→ e7→ I8
tr2 B2→ {a, b}5→ e7→ L9
tr5 C2→ a3→ c3→ E4
tr6 D2→ a3→ c3→ H5

shown in Table 3. The mechanism for sanitizing is described

in Section 4. While sanitizing, a ∈ t̂r2 and b ∈ t̂r1 are gen-

eralized to location group {a, b}. This generalization makes

t̂r1 identical to t̂r2 and eventually eliminate privacy threat

of sensitive locations. However applying same generaliza-

tion to c ∈ t̂r3 and d ∈ t̂r4 doesn’t go well because, location

G and F are close each other (We say locations are close if

there exists any location points which distance to each loca-

tions is less than or equal to r.), adversary is able to infer

sensitive location of t̂r3 and t̂r4. There is no need to do

sanitization to t̂r5 and t̂r6 since they are safe from privacy

threat.

3.4 Data Utility

Data recipient will analyze the anonymized data in vari-

ous ways. Generally, the data publisher doesn’t know what

kind of analyzing tasks the data recipients will do. Different

data recipients may have different purposes, so we measure

the similarity between data table T and the anonymized

data table T ′ is a reasonable information metric.

We measure the utility loss between a location and its

generalized location to measure how its similarity damaged.

Generalized location is denoted as a group consists of sev-

eral locations. We measure the utility loss by measuring the

distance between the original location and the center of lo-

cations in the potential generalized group. Measuring every

utility loss in loc ∈ tr, we earn utility loss of trajectory data

T . Measuring the every distance between locations loc ∈ tr

and every loc′ in its generalized group is as follows;

UL(T, T ′) =
∑
tr∈T

dist(tr, tr′)

=
∑
tr∈T

∑
(loc,t)∈tr

dist(loc,Group(loc))

where,

dist(loc,Group(loc)) = dist(loc,

∑
p∈Group p− loc

|Group(loc)| − 1
).

If such Group(loc) that satisfies equation 1 doesn’t exist,

then trajectories having violating locations are suppressed.

We restrain suppression as possible, at this time, we penalty

the maximum utility loss to the suppressed trajectory in T .

4. Algorithm

We sanitize trajectory data to make it safe from pri-

vacy threat using generalization and suppression (Section

3.3) while minimizing the utility loss (Section 3.4) as possi-

ble. Briefly, we generalize the observed locations to location

groups or suppress the observed locations, so that adversary

cannot get any further information of individual over C con-

fidently. Since finding the optimal points of generalization
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and suppression for anonymizing that minimizes the utility

loss is NP-hard[13], we use a greedy algorithm which selects

the best solution that minimizes utility loss at one time.

4.1 Sanitizing Algorithm

Our sanitizing algorithm is shown in Algorithm 1. At

first, pick up the partial trajectories T̂v which is violating

privacy from T̂ . This process is described in algorithm 2.

(line 1) Until T̂v becomes empty, we randomly select a tra-

jectory t̂r from T̂v, find its nearest trajectory t̂r
∗
in T̂v. (line

3-4) The closest trajectory will minimize the utility loss of

trajectories in T (t̂r) after generalization. If such t̂r
∗
exists,

generalize every t̂r in T to group of {t̂r, t̂r∗}. (line 5-6) As

T renewed to generalized version, so shall T̂ do. (line 7)

The generalized trajectories may steal not be safe from pri-

vacy threat. So, we renew T̂v by algorithm 2. (line 8) As a

matter of fact, violation check does not have to be done to

whole trajectories, it is more effective just checking the gen-

eralized trajectories. if such t̂r
∗
does not exist, just remove

trajectories in T (t̂r
∗
). (line 10) Also, remove corresponding

partial trajectory t̂r
∗
from T̂ and T̂v. (line 11)

Algorithm 1 Sanitizing algorithm

Input: trajectory T , adversary’s info. T̂ , confidence C, radius r

Output: Sanitized trajectory data T

1: T̂v :=CheckViolate(T, T̂ , C)

2: while Tv do

3: pick t̂r ∈ T̂v randomly

4: t̂r
∗
:= argmint̂r

∗
inT̂ UL(t̂r, t̂r

∗
)

5: if t̂r
∗
exists then

6: generalize every t̂r to {t̂r, t̂r∗}
7: renew T , T̂

8: T̂v :=CheckViolate(T, T̂ , C)

9: else

10: remove T (t̂r) from T

11: remove t̂r from T̂ and T̂v

12: end if

13: end while

14: return T

Algorithm 2 Violation check algorithm

Input: T, T̂ , C, r

Output: observed data T̂v that violate privacy

1: T̂v ← ϕ

2: for all t̂r ∈ T̂ do

3: if ∃loc s.t. P (loc, r, T (t̂r), t̂r) > C then

4: T̂v ← t̂r

5: end if

6: end for

7: return T̂v

4.2 Violation Check Algorithm

To verify that trajectory data is safe from privacy threat,

which is formulated in Section 3.3, for every t̂r ∈ T̂ , we

find location loc such that satisfies P (loc, r, T (t̂r), t̂r) > C.

(line2-3) If such loc exists, it means that loc is threatened

to be known by adversary, so we put it in T̂v. (line 4) Doing

this verification repeatedly for every t̂r, finally return the

T̂v.

5. Security Discussion

In this section, we prove that our algorithms remove pri-

vacy threats and show the trajectory data table in Table 1

sanitized to Table 3. Then, we discuss our adversary model

and more stronger model.

5.1 Proof of our algorithm

We first prove that our algorithms work properly to re-

move privacy threat. What we show in Theorem 1 is that

our algorithm removes privacy threats. Theorem 2 shows us

that privacy threatening trajectories are correctly added to

T̂v.

Theorem 1. Algorithm 1 eventually diminishes T̂v.

Proof. Algorithm 1 changes T̂v in 2 ways; whether t̂r
∗
ex-

ists or not for randomly given t̂r. if t̂r
∗
exists, then, t̂r is

generalized to {t̂r, t̂r∗}. Thus, t̂r is removed from T̂v and

{t̂r, t̂r∗} is added (or it is already added) to T̂v. So, when

t̂r
∗
exists and {t̂r, t̂r∗} already exists, the number of T̂v de-

creases. Otherwise, when t̂r
∗
exists and {t̂r, t̂r∗} does not

exists, the number of T̂v is not changed. Doing this process

several time, there will be no t̂r
∗
anymore. It is more easy

to prove when t̂r
∗
does not exist. If t̂r

∗
doesn’t exist, t̂r

∗
is

removed from t̂r
∗
, so t̂r

∗
decreases.

Theorem 2. Algorithm 2 adds every partial trajectory

that is threatening privacy to T̂v.

Proof. Algorithm 2 runs repeatedly for every trajectory in

T̂ . If it correctly picks up a trajectory t̂r ∈ T̂ that vio-

lates privacy, then it will add every violating traejectory to

T̂v. if there exists location loc such that threatening privacy

(P (loc, r, T (t̂r), t̂r) > C), it will be added to T̂v. Thus, al-

gorithm 2 correctly adds every partial trajectory to T̂v.

We show that our algorithm 1 sanitizes trajectory data in

Table 1 to Table 3, when adversary has knowledge of Table

2. Following the procedure in algorithm 1, we first do vio-

lation check. As we already mentioned, t̂r1, t̂r2, t̂r3, t̂r4 are

uniquely correspond to trajectory in T , so they are added

to T̂v. We randomly pick a trajectory from T̂v, let’s de-

cide that we picked t̂r1 for the first. (We proved that T̂v

decreases eventually. The pick up order does not matter.)

To minimize the utilily loss, t̂r1 is generalized to the closest

location point, b. Thus, t̂r1 becomes {{a, b}5 → e7}. Doing

same thing to t̂r2, it generalized to {{a, b}5 → e7}. For

t̂r3, t̂r4, since they have no t̂r
∗
that generalization with it

makes the trajectory safe from privacy threat. Note that

{{c, d}6 → e7} steal threatening privacy since both t̂r3 and

t̂r4 have close origin location. So, they are suppressed from

Table 1. Consequently, trajectory data in Table 1 sanitized

to Table 3.
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5.2 Stronger Adversary Model

In this paper, we assume that adversary knows partial

trajectory of individual in published data. Specifically, we

assume adversary has side information of transportaion com-

pany, so he knows every individual using transportation.

However, adversary may know further information such as

individual’s school thanks to commuter pass. In such case,

it is easier to infer the individual’s sensitive location for ad-

versary. To preserve individual whose destination is exposed

to adversary, there should be at least ⌈1/C⌉− 1 trajectories

share same detstination and observed locations and differ-

ent (r far away from each other) origin locations. Simple

calculation teaches us that to have same data usefulness to

N trajectories, it requires N2 trajectories for stronger ad-

versary having further information of destination.

5.3 General Trajectory Model

We consider trajectory as discrete sequence of (location,

time) doublets, restricted its form to {origin → get on sta-

tion → get off station → destination}. This is the most

simplest trajectory form, some data recipient may want to

utilize longer trajectory data. However, long trajectory usu-

ally increases its dimensionality, so longer trajectory requires

more sanitization, it losses its utility. Some works removed

time stamps from trajectory[7] or cloaked time to have one-

hour term[8], [9] to lower the dimensionality.

6. Conclusion

Since trajectory data mining has various usages, trajec-

tory data publication will benefit us in many applications.

To realize trajectory data publication, it is very important to

remove personal privacy in published data. In this paper, we

focused on that trajectory data can be a quasi-identifier and

also can be a sensitive attribute. Since quasi-identifier and

sensitive attribute are having conflict goals, it is challenging

to anonymizing trajectory data. In this paper, we assume

adversary who has side information of transportation sys-

tem attempts to know individual’s sensitive locations. We

defined privacy threat and we used generalization and sup-

pression to anonymize trajectory data, so that published

trajectory data be safe from privacy threat. Specifically, we

define an utility metrics by measuring the utility loss when

location point of trajectory generalized. Then we proposed

a greedy algorithm which chooses the optimal solution, min-

imizes the utility loss, for each randomly selected trajectory

that violates privacy. We showed that our algorithm re-

moves violating trajectories and make trajectory data safe

from privacy threat. We discussed more strong adversary

who has further knowledge of destination, however, it re-

quires the second power of data size to have same data util-

ity. Further, we discussed that general trajectory has higher

dimensionality so that it requires more sanitization.

7. Future Work

It is often told that it is hard to anonymize trajectory data

because of its high dimensionality. For now, we will apply

our algorithm to dataset of Tokyo area 2008 from People

Flow Project[14] by changing the radius parameter r and

confidence parameter C, and the time stamp cloaking in-

terval. Specifically, we extract origin-destination trip using

train from dataset[14]. Later, we will extend our work in

two ways.

One is expanding origin-destination trajectory to one-day

trajectory. Longer trajectories provide better analyze re-

sults, however the data would be more distorted because of

its increased dimension. We will evaluate our algorithm to

one-day trajectory, and on the other hand, we will working

on improving our algorithm; i.e., generalizing time stamp

to preserve privacy which will be our second future work.

In this paper, we did not do any sanitization process to

time stamp in doublets, however, engaging generalization or

suppression to time stamp will increase data utlity. For ex-

ample, in Table 1, tr3 and tr4 are suppressed, however, if

time is generalized, both c6 and d6 can be generalized to

{a, b, c, d}{5, 6}.
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