
Vol. 44 No. SIG 18(TOD 20) IPSJ Transactions on Databases Dec. 2003

Regular Paper

XPath-based Concurrency Control in XML Document Management

Eun Hye Choi† and Tatsunori Kanai†

Although concurrency control has been recognized as an important issue in XML data
management, there are still few previous works that provide the concurrency of transactions
retrieving and modifying the same XML documents. To overcome this problem, we propose
a new XPath-based concurrency control scheme, called XPCC, that guarantees high concur-
rency and serializability of concurrent transactions to the same XML document. The proposed
approach considers unrestricted XML documents and general XPath query, and the key ideas
of XPCC are as follows: (1) semantic locks are set on XPath expressions used in transaction
accesses, and (2) two versions of an XML document, a version containing updates of each
transaction and a version containing updates of all concurrent transactions, are utilized for
conflict checks. In XPCC, at the time that each transaction access is requested, the conflict to
violate serializability is detected based on the equivalence check for results of XPath evalua-
tion against two versions of documents. Since the proposed approach enables locking to be at
the level of precise data actually retrieved and updated in XML documents, high concurrency
can be achieved assuring serializability in XML data management.

1. Introduction

As the eXtensible Markup Language (XML) 2)

becomes widely adopted in various application
areas, the number of XML documents is rapidly
growing and the subsequent need for sharing
those documents by multiple users and appli-
cations is increasing more and more. For ex-
ample, consider a system that manages meta-
data of contents in XML documents. The meta-
data will be retrieved using a query language to
XML documents such as XPath 5). At the same
time, the metadata such as the content’s loca-
tion will be updated when changing the location
of contents or replicating contents. In such ap-
plication environments where transactions con-
currently retrieve and modify XML data in the
same document, data consistency and concur-
rency control are important issues.

In general, XML documents are stored as
either binary large objects (BLOBs) in rela-
tional databases or XML format in native XML
databases. In the former case, the entire docu-
ment is replaced when modifying data, and thus
concurrent updating on the same document
cannot be processed. In the latter case, sim-
ilarly, locking at the level of entire documents
is often adopted, and thus no concurrency of
transactions to the same document is actually
provided 1). Few solutions to the concurrency
control problem for XML document manage-

† Corporate Research & Development Center, Toshiba
Corporation

ment have been proposed so far. To overcome
this problem, we propose an XPath-based con-
currency control method, called XPCC, that
achieves high concurrency of transactions re-
trieving and updating data in the same XML
document while maintaining strict data consis-
tency and serializability at the same time.

In XPCC, we consider XML documents with
no restriction and the general XPath query for
transaction accesses. Since XPath, which is to
address parts of an XML document, is being
used as a base in a number of other XML stan-
dards and query languages such as XQuery 3),
XPCC can be easily extended for other query-
ing based on XPath.

From the concurrency point of view, one of
the most fundamental problem is the serializ-
ability constraint, which requires that concur-
rent transactions produce the same result as the
same transactions executed in a certain sequen-
tial order and prevent the phantom problem 6).
As traditional techniques to solve the serializ-
ability problem, pessimistic locking approach
and optimistic approach have been extensively
investigated so far.

In the optimistic approach, all transaction ac-
cesses are concurrently performed without lock-
ing and consistency across concurrent transac-
tions is validated at commit time of each trans-
action. Although this approach involves less
locking overhead, it has shortcomings such that
the validation phase is necessary instead of lock-
ing and the whole transactions are aborted if
there is a conflict.

17

18 IPSJ Transactions on Databases Dec. 2003

Fig. 1 An XML document.

In the pessimistic locking approach, there are
two general strategies, predicate locking 6) and
its approximation, granular locking 9). In pred-
icate locking, locks are set on predicates used
in transaction accesses and conflicts are de-
tected by checking the satisfiability of predi-
cates. Although predicate locking is a complete
solution to the serializability requirement, it is
quite expensive since the satisfiability between
arbitrary two predicates is known to be NP-
complete.

In contrast, in granular locking, locks are
set on granules of data instead of predicates.
Since the granular locking is less expensive, it
has been widely adopted for relational database
management systems. However, in XML doc-
ument management considering the general
XPath query, the granular locking approach
hardly provides high concurrency and ensures
the consistency at the level of XML seman-
tics. For example, consider an XML docu-
ment shown in Fig. 1 and two concurrent trans-
actions T1 and T2. Suppose that T1 inserts
a new depositor next to depositor “Mary”.
If T2 retrieves data using XPath expression
“depositor[name=’Mary’]”, there is no conflict.
However, if T2 retrieves the same data using
XPath expression “depositor[position()=last]”,
we must block either T1 or T2. To ensure the
data consistency, all elements about depositors
should be locked in granular locking, and then
no concurrency on the document is provided.

To overcome this problem, we adopt a kind
of improved predicate locking called preci-
sion locking 12) in XPCC. In precision locking,
conflicts between predicates and updates are
checked instead of those between two predicates
in the following way: As a transaction performs
a read and a write, the predicate used in the
read and the update by the write are posted

in a predicate list and an update list, respec-
tively. In order to check the conflicts between
predicates and updates by different transac-
tions, each predicate (update) posted is checked
against updates (predicates) by other transac-
tions in the update list (the predicate list).
When a conflict is detected, the access is de-
layed until the other transaction that the access
conflicts finishes. Precision locking performs
the conflict check against only actual predi-
cates and updates, and thus it provides high
concurrency and a relatively lower cost than
the predicate locking. Although the precision
locking can preserve high concurrency for XML
data from its generality, the problem to perform
practical conflict checks still remains.

For the conflict check, analyzing the satisfi-
ability of an arbitrary set of updates with the
XPath expression used in each read is necessary
but is difficult since XPath is a path-based and
semistructured query language, not a generic
boolean predicate. In order to handle this de-
ficiency, we propose a method called an equiv-
alence check that can detect any conflict be-
tween the update and the XPath expression
while evaluating the XPath expression with two
documents such that one contains the update
and the other does not. The semantics of XPath
with the proposed equivalence check is also pre-
sented in this paper.

The basic ideas of the proposed method
XPCC are as follows: First, we introduce a new
document management model, which handles
the three kinds of documents: (1) an original
document in the database, denoted by Dst, (2)
a local copy of Dst containing the updates by
each active transaction Ti, denoted by Di, and
(3) a local copy of Dst containing all concur-
rent updates, denoted by Dall. Next, conflicts
are checked based on the proposed equivalence
check performed in XPath evaluation with two
documents. As for the conflict check for each
read requested, documents Di and Dall are used
for the equivalence check. As for the conflict
check for each write requested, previous states
of documents regenerated from Dst are used for
the equivalence check.

The rest of this paper is organized as follows:
Previous works related on concurrency control
on XML documents are addressed in Section 2.
In Section 3, we describe the models of XML
documents, transactions and XPath. The doc-
ument management model and the overview of
XPCC are presented in Section 4. In Sections

Vol. 44 No. SIG 18(TOD 20) XPath-based Concurrency Control in XML Document Management 19

5 and 6, we explain the conflict check based
on XPath evaluation with equivalence check-
ing and propose the algorithms for the conflict
check. Finally, we summarize this paper with
some future works in Section 7. In addition, the
denotational semantics of the proposed XPath
evaluation with equivalence checking is pre-
sented in the appendix.

2. Related Works

To our best knowledge, the only two concur-
rency control approaches Refs. 7), 11) that con-
sider concurrent retrieving and updating on the
same XML documents have been proposed so
far.

Jea et al. proposed a method called XLP in
Ref. 11). XLP adopts granular locking and con-
siders axis directions containing ancestor nodes
in XPath expressions differently from simple
tree locking. However, since XLP physically
locks data retrieved and updated in XML doc-
uments, it can not prevent the phantom prob-
lem when considering predicate expressions of
the XPath.

In Ref. 7), Grabs, et al. proposed a locking
method called DGLOCK that can tackle this
problem. DGLOCK is a combination of gran-
ular locking and precision locking based on
the alternative structure of an XML document,
called a DataGuide 8). DGLOCK utilizes the
characteristic of the DataGuide such that the
same path occurs exactly once, and locks are
set on all nodes in the DataGuide that match
any of the path expressions. Predicate locks are
also set on nodes of which values are referred
in predicate expressions. Although DGLOCK
can provide a high degree of concurrency, it
has several restrictions since locking relies on
DataGuide as the underlying structure. First,
it could be applied to XML documents with
limited node types since DataGuide does not
support every types of nodes in XML specifica-
tion. Secondly, it assumes only simple XPath
expressions for querying such that path expres-
sions have an axis containing descendant nodes
and predicates are conjunctions of the form [x
θ c] with node x, θ ∈ {=,∈, �=,≤, · · ·} and con-
stant c.

Against Refs. 7), 11), the proposed concur-
rency control can be applied to XML docu-
ments and XPath expressions with no restric-
tion.

Fig. 2 A tree model.

3. Preliminaries

In this section, we first describe the models of
XML documents and transaction accesses and
next give the semantics of XPath and some def-
initions used in our research.

3.1 XML Documents and Transaction
Accesses

An XML document (document, for short) is
modeled as a tree whose nodes are classified into
various node types, e.g., element, text and at-
tribute, as defined in XPath data model 5). Fig-
ure 1 and Fig. 2 show an example XML doc-
ument and its representation as a tree, respec-
tively. In Fig. 2, “e” and “t” attached to each
node represent that the node is an element node
and a text node, respectively.

We assume that transactions access a doc-
ument using general XPath expressions in
Ref. 5)☆. In this paper, we consider a single
document as a target of transaction accesses,
just for simplicity. Transactions read and write
data in a document in the following manner.

(1) A read is performed by specifying a docu-
ment and an XPath expression that identifies a
node (or nodes) in the document☆☆. In the fol-
lowing, a read operation is denoted by read(ε)
with an XPath expression ε, and the result of
evaluating XPath expression ε on document D
is denoted by get(D, ε).

(2) A write is performed by specifying a write
operation and a target node in the document.
The target node is selected by a read before the
write. We assume all the three kinds of write
operations: insert, delete and replace. In the
following, the state of document D updated by
a write w (a set of writes W) is denoted by

☆ In this paper, we assume that the reader is familiar
with basic notations of XPath, e.g., a location path,
a location step and an axis, and its evaluation. For
more detail, refer to Ref. 5).

☆☆ Actually, an XPath expression is evaluated with a
context node in the document. For simplicity, we
consider the root node of the document as the con-
text node otherwise indicated.

20 IPSJ Transactions on Databases Dec. 2003

Fig. 3 An updated document.

p ::= p | p | /p | p/p | p[q] | p[e] |
axis :: nodetest

q ::= q and q | q or q | q = q | q! = q |
q < q | q > q | q <= q |
q >= q | p | e

e ::= e + e | e − e | e ∗ e | e div e |
e mod e | − e | p | q

axis ::= forward axis | reverse axis
forward axis ::= self | child | descendant |

descendant-or-self |
following |
following-sibling

reverse axis ::= parent | ancestor |
ancestor-or-self |
preceding |
preceding-sibling

nodetest ::= name | ∗ | text() | node()
Fig. 4 Abstract syntax of XPath.

D+w (D+W).
Example 1 Consider a read with expres-

sion ε1 =“depositor[name=‘John’]/balance” to
the document shown in Fig. 2. Node v1 in Fig. 2
is then selected as a result of the read, i.e.
get(D, ε1) = {v1}. The value of element node
v1 equals to “100”. Consider a write that re-
places the value of node v1 to “150”. Docu-
ment D is then updated by the write as shown
in Fig. 3. The updated nodes are marked with
bold lines in the figure. �

Through this paper, we consider a set of con-
current transactions, T = {T1, · · · , Tn}, that
access the same document. Each transaction is
a time-ordered sequence of reads and writes. In
the following, n denotes the number of transac-
tions and the term transactions means concur-
rent active transactions otherwise indicated. In
the following, Wi denotes the sequential set of
writes of transaction Ti.

3.2 Semantics of XPath
Figure 4 describes the abstract syntax of

XPath expressions we consider. Expression p
is a location path, shortly called a pattern or
a path. Expressions q and e are referred to as
a qualifier and an expression, respectively. To
save space, we here omit the precise explana-
tion for the general semantics of XPath. Please
refer to Refs. 15) or 17) for more detail. Note

Fig. 5 An example evaluation tree.

that the proposed approach can also be applied
to general syntax not mentioned in Fig. 4.

The semantics of XPath is specified by three
functions S, Q and E with an expression and a
context node. S[[p]]x denotes the node-list se-
lected by pattern p with context node x. A
node-list represents an ordered set of nodes,
and the ordering of a node-list is determined
as follows: if path p is a location step with a
reverse-axis, the result node-list selected by p
is in reverse document order; otherwise, the re-
sult node-list is in document order. In addition,
Q[[q]]x denotes the boolean value of qualifier q,
and E [[e]]x denotes the numerical value of ex-
pression e.

Each function F(=S, Q, E) is evaluated by
recursively calling a function (or functions) if
its expression has a subexpression. Let F ← F ′
denote that function F calls function F ′ and re-
fer to such function F ′ as a sub-function of F .
The evaluation of XPath expression ε(=p, q, e)
is then represented by a directed tree whose
root note represents a function with ε and child
nodes represent sub-functions of a function cor-
responding to their parent. Hereafter, we refer
to the tree representing these function calls in
the evaluation of XPath expression ε as an eval-
uation tree of ε.

Example 2 Consider an XPath expression
ε =“depositor[balance > ε1]/name” with ε1 in
Example 1. Figure 5 illustrates the evaluation
tree of ε. For simplicity, the context node as-
sociated with each function is omitted in the
evaluation tree in Fig. 5. �

Among three functions S,Q and E , both
functions Q and E can be recursions of func-
tion S and the results of them are determined
from the result node-list of S. Note that func-
tion S changes the context node but functions

Vol. 44 No. SIG 18(TOD 20) XPath-based Concurrency Control in XML Document Management 21

Fig. 6 Document management model.

Q and E don’t.

4. Overview of XPCC

This section presents our document manage-
ment model and the overview of the concur-
rency control mechanism of XPCC.

4.1 Document Management Model
Figure 6 illustrates our document manage-

ment model. Each triangle in the figure repre-
sents a document state and the three kinds of
document states are hold:
• Dst : the document state committed.
• Di(1 ≤ i ≤ n) : the document state con-

taining only the updates of transaction Ti.
• Dall : the document state containing the

updates of all transactions.
Initially, Di’s and Dall are copied from Dst, and
their states are managed in the following man-
ner:
(1) When each transaction Ti starts, docu-

ment Di is generated as a copy of Dst.
(2) While Ti proceeds, Ti accesses Di and its

update is reflected in both Di and Dall.
(3) When Ti commits, its updates are re-

flected in Dst and Dj ’s(1 ≤ j ≤ n, j �= i).
(4) When Ti aborts, Dall is regenerated for

taking away the updates of Ti contained
in Dall.

In our document management model, the abort
or rollback of a transaction can be easily han-
dled since the updates of each transaction Ti

are not contained in Dst before commitment.
Here we define an equivalence of nodes in dif-

ferent document states as follows.
Definition 1 Nodes v and v′ are equivalent

each other, denoted by v ≡ v′, in the following
cases: (1) node v in Di was copied from node v′
in Dst, (2) nodes v and v′ in different Di’s were
copied from the same node in Dst, or (3) nodes
v and v′ in different Di’s or Dall were updated
by the same write. �

Previous access by
other transactions

Read Write
Requested Read a) − b)

√
access Write c)

√
d) −√

means that conflict checks are needed.

Fig. 7 Conflicts to be checked.

For example, consider the documents shown
in Figs. 2 and 3 again. Nodes v2’s in the two
documents are equivalent but nodes v1’s are not
equivalent each other.

4.2 Concurrency Control
The concurrency control of XPCC is per-

formed by checking conflicts between a re-
quested access (read or write) and previous ac-
cesses by other concurrent transactions when
the access is requested. If a conflict is detected,
the requested access is blocked until the trans-
action that conflicts with the access finishes.
(Actually the requested access could preempt
the other transaction, but we assume not in
this paper.) Deadlock which occurs by block-
ing transactions can be detected by using well-
known solutions such as the wait-for graph 9).

To ensure transaction serializability, the fol-
lowing two kinds of conflict checks are needed,
as shown in Fig. 7: a read-write conflict (Case
b) and a write-read conflict (Case c). No con-
flict exists between reads (Case a). On the
other hand, a write-write conflict (Case d) can
be detected by a previous read-write conflict or
a previous write-read conflict. The reason is
that before a write operation on the nodes that
leads to a conflict, a read operation retrieving
the target nodes must be performed previously.
The proposed conflict check classifies into the
following two phases: a read-write check and a
write-read check.
• Read-Write Check

Each time a transaction requests a read,
check whether the read leads to the read-
write conflict with previous writes of other
transactions.

• Write-Read Check
Each time a transaction requests a write,
check whether the write leads to the write-
read conflict with previous reads of other
transactions.

In XPCC, the conflict between a read and a
write is detected by performing the read against
two documents such that one contains the up-
date of the write and the other does not and
comparing results of XPath evaluation against

22 IPSJ Transactions on Databases Dec. 2003

those two documents. The mechanism for con-
flict detection is described in Section 5, and the
mechanisms for the read-write check and the
write-read check are described in Section 6.

5. XPath-based Conflict Detection

In this section, we explain how to detect
conflicts between reads and writes by different
transactions in XPCC. The conflict detection
is based on the proposed equivalence checking
performed in XPath evaluation under our doc-
ument management.

5.1 Conflict Detection between Read
and Write Accesses

Consider a transaction Ti and its correspond-
ing document Di which is a local copy for Ti.
For a read ri with an XPath expression ε re-
quested by Ti, the result of ri(= read(ε)) is ob-
tained by evaluating expression ε on document
Di. The evaluated result of an XPath expres-
sion is a node-list (an ordered set of nodes),
a boolean, a number or a string. Here we de-
fine an equality of result node-lists from different
document states as follows.

Definition 2 For node-lists N and N ′ from
different document states, N = N ′ iff |N | =
|N ′| and for any i-th nodes n(∈ N) and n′(∈
N ′) with 1 ≤ i ≤ |N |, n ≡ n′☆. �

Lemma 1 Consider a read ri requested by
a transaction Ti and a sequential set of writes,
Wj , of the other transaction Tj . Iff there is a
conflict between ri and Wj ,

get(Di, ε) �= get(Di + Wj , ε). (5.1)
�

Obviously, if the result of read ri to Di is
not equal to the result of ri to the state of Di

containing the updates by Wj , read ri leads to
a conflict. By Lemma 1, a conflict between read
ri and writes Wj of any other transaction Tj is
detected by checking formula 5.1.

Here one must notice that read ri could con-
flict with a set of writes by more than one con-
current transactions even when ri does not con-
flict with writes of any of the transactions. The
reverse case is also considered.

Example 3 Consider that T1 requests r1 =
read(ε) with XPath expression ε in Example
2 to the document shown in Fig. 2. In addi-
tion, consider that T2 replaces the balance of
John’s branch to “150” (=W2) and T3 replaces
the value of Mary’s balance to “150” (=W3).

☆ Recall that the equivalence of nodes was defined in
Definition 1.

Read r1 conflicts with W2+W3 but with neither
W2 nor W3 since get(D1, ε) = get(D1+W2, ε) =
get(D1+W3, ε) �= get(D1+W2+W3, ε). To con-
sider the reverse case, suppose that T2 replaces
the balance of John’s branch to “200” (=W ′

2)
and T3 replaces the value of Mary’s balance to
“300” (=W ′

3). Then r1 conflicts with W ′
2 but

not with W ′
2 + W ′

3. �

Lemma 2 Consider a read ri = read(ε) re-
quested by Ti and a set of all writes, W , of
concurrent transactions T . Iff read ri does not
lead to a conflict,

get(Di, ε) = get(Di +W ′, ε) (5.2)
for writes W ′(⊆ W) of any combination of
transactions in T . �

Hereafter, let notation W denote the set of
all writes of concurrent transactions where the
writes by different transactions do not conflict
each other. In addition, we define an equiva-
lence of results evaluated on a document and
an updated state of the document by writes W
as follows.

Definition 3 Consider a read ri = read(ε)
and writes W of concurrent transactions T .

get(Di, ε) ≡ get(Di +W , ε) (5.3)
iff for W ′(⊆ W) of any combination of transac-
tions in T , equation 5.2 holds. �

By Lemma 2 and Definition 3, read ri leads
to no conflict iff the result of ε on Di is equiv-
alent to the result of ε on Di +W , that is, the
equality in formula 5.2 holds for all combina-
tions of transactions. However, such an equiva-
lence check is extremely time consuming. (The
number of all combinations to be considered for
each read requested is 2n−1 − 1 where n is the
number of concurrent transactions.)

To handle this problem, we present sufficient
conditions for the equivalence in formula 5.2
in the following. In XPCC, conflicts are de-
tected by checking such conditions while eval-
uating XPath expressions on documents, and
thus it is not needed to consider all combina-
tions of transactions. Sufficient and efficient
conditions for the conflict detection, i.e., those
for the equivalence check are proposed in Sec-
tions 5.2 and 5.3.

5.2 Equivalence Checking —— Suffi-
cient Condition

Consider document Di, the state of Di up-
dated by writes W of concurrent transactions
and XPath expression ε. (Recall that any writes
in W by different transactions do not conflict
each other.) Hereafter, let x:Di and x:D′

i de-
note context nodes in documents Di and D′

i

Vol. 44 No. SIG 18(TOD 20) XPath-based Concurrency Control in XML Document Management 23

respectively such that the nodes are equivalent
each other.

Lemma 3 Consider documents Di and
Di +W and XPath expression ε. If get(Di, ε) �=
get(Di +W , ε),
S[[p]]x:Di �= S[[p]]x:(Di +W)

for some functions S with pattern p called when
evaluating ε on Di and Di +W .
proof: Suppose that no such function S is
called when evaluating ε, that is, S always re-
turns the same results for Di and Di +W . Ob-
viously, get(Di, ε) = get(Di +W , ε). This is a
contradiction. �

Theorem 1 Consider documents Di and
Di +W and XPath expression ε. If get(Di, ε) �≡
get(Di +W , ε),
S[[p]]x:Di �= S[[p]]x:(Di +W) (5.4)

for some functions S with pattern p called when
evaluating ε on Di and Di +W .
proof: If get(Di, ε) �≡ get(Di +W , ε), there is
a set of writes W ′(⊆ W) such that get(Di, ε) �=
get(Di + W ′, ε) by Definition 3. Let D′

i =
Di +W ′ and D′′

i = Di +W . There are two
cases to be considered: get(Di, ε) �= get(D′′

i , ε)
and get(Di, ε) = get(D′′

i , ε). In the former case,
the theorem holds by Lemma 3. Consider the
latter case. Since get(Di, ε) �= get(D′

i, ε), a cer-
tain function S such that S[[p]]x:Di �= S[[p]]x:D′

i

is called when evaluating ε on Di and D′
i. Then,

there is a node v ∈ S[[p]]x:Di such that no node
equivalent to v exists in S[[p]]x:D′

i. This means
that the node equivalent to v in D′

i was pre-
viously updated (deleted or replaced) by W ′.
SinceW ′ andW−W ′ do not conflict each other,
no node equivalent to v exists in S[[p]]x:D′′

i , nei-
ther. Hence S[[p]]x:Di �= S[[p]]x:D′′

i . �

By Theorem 1, any conflict between a read ri

to Di and writes by any combination of trans-
actions can be detected by checking formula 5.4
when each function S is called in the evaluation
of XPath expression ε on Di and Di +W . Note
that this is a sufficient but not a necessary con-
dition for a conflict. In other words, calling such
function S whose results with Di and Di +W
are not equal does not necessarily cause a con-
flict. For a highly efficient conflict detection,
we propose efficient conditions for equivalence
checking in the XPath evaluation in the follow-
ing.

5.3 Equivalence Checking——Efficient
Conditions

Consider an XPath expression ε and a doc-
ument Di. As mentioned in Section 3.2,
F [[ε]]x:Di denotes the result of XPath expres-

sion ε evaluated on document Di with context
node x(∈ Di), and function F is recursively
evaluated from its sub-functions using the eval-
uation tree of ε.

Here we define an equivalence of the results of
function F with document Di and an updated
state of Di as follows.

Definition 4 Consider a function F for an
expression ε and documents Di and Di +W .
F [[ε]]x:Di ≡ F [[ε]]x:(Di +W) (5.5)

if for W ′(⊆ W) of any combination of transac-
tions in T , equation 5.2 holds. �

By Definitions 3 and 4, formula 5.3 holds if
formula 5.5 holds. This means that if the re-
sults of function F with two documents Di and
Di +W are equivalent, the results of XPath ex-
pression ε with Di and Di +W are also equiv-
alent, and thus a conflict does not occur.

As mentioned before, function F is evalu-
ated from its sub-functions. Thus a node corre-
sponding to F must have no children that lead
to a conflict in the evaluation tree so that the
results of F with two documents are equivalent.

In the following, we classify function
F(=S,Q, E) into six cases according to the syn-
tax of XPath and give the conditions to de-
termine the equivalence for function F from
the results of sub-functions of F . In XPCC,
the equivalence check is performed as follows:
When evaluating an XPath expression ε used in
a read, the equivalence of function F in formula
5.5 is recursively computed using the proposed
conditions. Since the equivalence is a sufficient
condition that there is no conflict between read
ri = read(ε) and any writes in W , conflicts are
detected from the equivalence of F with docu-
ments Di and Di +W .

Now we propose the conditions to determine
the equivalence for each function S, Q and E
with documents Di and Di +W , and explain
why a conflict does not occur if the conditions
hold.

First, consider that function S calls a sub-
function S ′. There are three cases to be consid-
ered: (Case 1) a location path, (Case 2) a step
with a predicate that is a qualifier and (Case 3)
a step with a predicate that is an expression.

Suppose that S ′[[p]]x:Di �= S ′[[p]]x:(Di +W).
In this case, there then exists a node v in node-
list S ′[[p]]x:Di or S ′[[p]]x:(Di +W) such that no
equivalent node to v exists in the other node-
list. By Theorem 1, there then is a possibility
of a conflict. However, if such node v does not
effect to the result of function S, a conflict does

24 IPSJ Transactions on Databases Dec. 2003

not occur.
In order to determine the equivalence for S,

we introduce the notion of a nondetermination
for nodes in result node lists. A node in a re-
sult node-list such that no equivalent node to
the node exists in the other node-list and the
node effects to the result in the evaluation is re-
ferred to as a nondetermined node. In addition,
the result nodes selected using a nondetermined
node as the context node are also referred to
as nondetermined nodes. Precise definitions for
each cases 1–3 are given in the following, and
the equivalence for S is determined by Lemma
4.

Case 1 (p = p1/p2/ · · · /pm)

Consider the case of a location path. In
the evaluation of p, each node x′ in the result
node-list of S[[p1]]x is used as the context node
for S[[p2]]x′, and the result of S[[p1/p2]]x is the
union of the results of S[[p2]]x′ for all nodes in
S[[p1]]x. This procedure is iterated and each
steps are composed from left to right.

Definition 5 For each step with pl(1 ≤ l ≤
m), node x′′ in S[[pl]]x′:Di (S[[pl]]x′:(Di +W))
is nondetermined iff (1) context node x′ is non-
determined, or (2) no equivalent node with x′′
exists in the other node-list. �

Case 2 (p = p1[q])

Consider the case of a step with a predicate q.
The result node-list of p contains every node x′
in S[[p1]]x such that the boolean value of Q[[q]]x′
equals to 1.

Definition 6 We define that node x′ in
S[[p]]x:Di (S[[p]]x:(Di +W)) is nondetermined
iff (1) context node x is nondetermined, (2) no
equivalent node with x′ exists in the other node-
list, or (3) Q[[q]]x′:Di �≡ Q[[q]]x′:(Di +W). �

Case 3 (p = p1[e])

Consider the case of a step with a predicate
e. The result node-list of p contains every node
x′ in S[[p1]]x such that the proximity position
of node x′ in the node-list equals to the value
of E [[e]]x′.

Definition 7 We define that node x′ in
S[[p]]x:Di (S[[p]]x:(Di +W)) is nondetermined
iff (1) context node x is nondetermined, (2)
no equivalent node with x′ exists in the other
node-list, (3) E [[e]]x′:Di �≡ E [[e]]x′:(Di +W), or
(4) there is a previous node of x′ in S[[p1]]x:Di

(S[[p1]]x:(Di +W)) that is nondetermined. �

The latest condition (4) is different from the

case of a step with predicate q. The reason is
that the proximity position of x′ is determined
from the number of previous nodes in the node-
list.

The equivalence of the results of function S
then can be determined from the existence of
nondetermined nodes in the results as follows.

Lemma 4 S[[p]]x:Di ≡ S[[p]]x:(Di +W) if
there is no nondetermined node in S[[p]]x:Di

and S[[p]]x:(Di +W).
proof: If no nondetermined node exists in
S[[p]]x:Di and S[[p]]x:(Di + W), S[[p]]x:Di =
S[[p]]x:(Di +W ′) for any writes W ′(⊆ W) by
a combination of transactions. By Definitions
3 and 4, the theorem holds. �

Next, consider the case where function Q or E
calls a sub-function. There are three cases to be
considered: (Case 4) function Q is a recursion
of function S, (Case 5) function E is a recursion
of function S, and (Case 6) the remained cases.

Case 4 (q = p)

Consider the case where function Q is a re-
cursion of function S. The equivalence of the
results are determined as follows.

Lemma 5 Q[[p]]x:Di ≡ Q[[p]]x:(Di +W) if
there are a node v in S[[p]]x:Di and a node v′
in S[[p]]x:(Di +W) such that v ≡ v′ and v and
v′ are not nondetermined.
proof: In the case of Q[[p]]x ← S[[p]]x, the
boolean value of Q[[p]]x equals to 1 iff the re-
sult node-list of S[[p]]x is not empty. Thus,
if nodes v and v′ such that v ≡ v′ and those
nodes are not nondetermined respectively exist
in S[[p]]x:Di and S[[p]]x:(Di +W), Q[[p]]x:Di =
Q[[p]]x:(Di +W ′) = 1 for any writes W ′ by a
combination of transactions. By Definitions 3
and 4, the lemma holds. �

Case 5 (e = p)

Consider the case where function E is a re-
cursion of function S. The equivalence of the
results are determined as follows.

Lemma 6 E [[p]]x:Di ≡ E [[p]]x:(Di + W) if
the first node v in S[[p]]x:Di and the first node
v′ in S[[p]]x:(Di +W) are equivalent and v and
v′ are not nondetermined.
proof: In the case of E [[p]]x ← S[[p]]x, the nu-
merical value of E [[p]]x is determined from the
string-value of the first node in the node-list
of S[[p]]x. Thus, if the first nodes in S[[p]]x:Di

and S[[p]]x:(Di +W) are equivalent and are not
nondetermined, E [[p]]x:Di = E [[p]]x:(Di+W) for

Vol. 44 No. SIG 18(TOD 20) XPath-based Concurrency Control in XML Document Management 25

any writesW ′ by a combination of transactions.
By Definitions 3 and 4, the lemma holds. �

Case 6 (q = q1 θ q2, e = e1 θ e2, e = θ e1

θ ∈ {and, or,+,−, · · ·})
Consider the case where function Q or E calls

sub-functions Q′ or E ′, e.g. q = q1 or q2 and
e = e1 + e2. In such cases, the equivalence of
the results is determined as follows.

Lemma 7 F [[ε]]x:Di ≡ F [[ε]]x:(Di +W) if
for any sub-function F ′ such that F ← F ′,
F ′[[ε′]]x:Di ≡ F ′[[ε′]]x:(Di +W).
proof: A sub-function F ′ is either Q or E , and
the equivalence for F ′ is determined by the con-
ditions in Lemma 5 and/or Lemma 6. Obvi-
ously, F [[ε]]x(Di) = F [[ε]]x(Di + W ′) for any
writes W ′ by a combination of transactions if
F ′[[ε′]]x:Di ≡ F ′[[ε′]]x:(Di + W) for any sub-
function F ′. �

Example 4 We illustrate how the equiva-
lence is determined using the example cases
in Example 3. Consider read r1 = read(ε)
and writes W2, W3, W ′

2 and W ′
3 in Example

3 and the evaluation tree of ε in Fig. 5. Let
Di be the document shown in Fig. 2. Then
F [[ε]]x:Di(= S0[[ε]]x:Di) is recursively computed
using the evaluation tree in Fig. 5 and the result
of S0[[ε]]x:Di is the node-list containing a node,
v, whose child is labeled “Mary”. First, con-
sider writes W2 and W3, and letW = W2 +W3.
The result of S0[[ε]]x:(Di+W) is an empty node-
list. Since no equivalent node to node v exists
in S0[[ε]]x:(Di +W), node v in S0[[ε]]x:Di is a
nondetermined node. By Lemma 4, it is de-
termined that S0[[ε]]x:Di �≡ S0[[ε]]x:(Di + W),
and thus the conflict between r1 and W2 + W3

is detected. Next, consider writes W ′
2 and

W ′
3, and let W = W ′

2 + W ′
3. In this case,

the equivalence for functions in the area sur-
rounded by a dotted line in Fig. 2 does not hold.
For example, consider S7[[balance]]x′:Di and
S7[[balance]]x′:(Di+W) called in the evaluation.
S7[[balance]]x′:Di �≡ S7[[balance]]x′:(Di + W)
since nodes in the results for S7 with Di and
Di +W are not equivalent each other. Then
the equivalence for function E2 does not hold by
Lemma 6. Similarly, the equivalence for other
functions are determined and it is finally de-
termined that S0[[ε]]x:Di �≡ S0[[ε]]x:(Di + W)
although S0[[ε]]x:Di = S0[[ε]]x:(Di +W). Thus
the conflict between r1 and W ′

2 is detected. �

We now discuss the cost of the proposed
equivalence checking in the XPath evaluation

for conflict detection. The nondetermination of
result nodes from the context node in the evalu-
ation of S and the equivalence of results in the
evaluation of Q and E are determined with a
little effort. On the other hand, for each loca-
tion step in the evaluation of S, checking the
equivalence of nodes in the different node-lists
is needed and it takes a proportional overhead
to the number of steps contained in the expres-
sion.

We show that the number of equivalence
checks needed for evaluating location steps can
be reduced as follows: Consider again a loca-
tion path p = p1/p2/ · · · /pm. Assume that for
some l(1 ≤ l < m), S[[pl]]x:Di �= S[[pl]]x:(Di +
W). Then there is a node v in S[[pl]]x:Di or
S[[pl]]x:(Di +W) that has no equivalent node
in the other node-list. In the case of v ∈ Di, it
means that the node equivalent to v in Di +W
was deleted by W . Then no nodes equivalent
to nodes in a subtree of v exist in Di +W . In
the case of v ∈ Di +W , it means that node v
is inserted by W . Then no nodes equivalent to
nodes in a subtree of v exist in Di. Therefore,
if the next step pl+1 has an axis☆ for searching
nodes in the subtree of the context node (let us
refer to such an axis as a down-axis), the nodes
selected by pl+1 using a non-equivalent result
node of the previous step as a context node
are also non-equivalent nodes. Therefore, for
each step pl, the equivalence check for nodes in
S[[pl]]x:Di and S[[pl]]x:(Di +W) can be omitted
if the axis of the next step pl+1 is a down-axis.
In other words, the equivalence check for nodes
is needed for only the step whose next step has
not a down-axis. The denotational semantics of
XPath with the proposed equivalence checking
is presented in the appendix of this paper.

6. Conflict Check

In this section, we propose the mechanisms
for the read-write check and the write-read
check in XPCC. The proposed mechanisms are
based on the XPath evaluation with equivalence
checking presented in Section 5.

6.1 Read-Write Check
This section describes the proposed method

for the read-write check. When a read is re-
quested, the read-write check detects any read-
write conflict caused by the read requested.

By Definitions 3 and 4, a conflict between a

☆ Such axes in XPath are child, self, descendant,
descendant-or-self, attribute and namespace.

26 IPSJ Transactions on Databases Dec. 2003

read ri = read(ε) requested by transaction Ti

and any previous writes of other transactions
can be detected by checking formula 5.5 with
documents Di and Di +W where W is a se-
quence of all writes, i.e. W = W1 + · · ·+ Wl +
· · ·+Wn(l �= i). In our document management,
the updates of all previous writes are contained
in Dall, that is, Dall = Di +W . Theorem 2
then holds.

Theorem 2 If a read ri = read(ε) causes a
read-write conflict with any previous writes by
other transactions,
F [[ε]]x:Di �≡ F [[ε]]x:Dall. (6.1)

�

The proposed algorithm for the read-write
check is then as follows: At the time that a
transaction Ti requests a read read(ε),
(1) Check formula 6.1 using the pro-

posed XPath evaluation with equivalence
checking.

(2) If the formula does not hold, ri causes no
read-write conflict and thus Ti proceeds.

(3) If the formula holds, ri causes a read-
write conflict with other transactions.
Find transactions conflict with ri, and
block Ti until such transactions finish.

When ri causes a read-write conflict, ri may
conflict with a set of transactions even if ri

does not conflict with each of the transactions.
Several solutions to handle this problem can
be considered although we omit details here.
One simple solution to be considered is block-
ing Ti until all other transactions finish. This
is the easiest way but causes a long waiting-
time. The other solution is checking the equiv-
alence against W1, W1 +W2, · · · , W1 + · · ·+Wn,
one after another. For example, if it is checked
that F [[ε]]x:Di �≡ F [[ε]]x:(Di + W ′) for W ′ =
W1 + · · ·+Wj , the set of transactions that con-
flicts with ri is a subset of {T1, · · · , Tj}. The
conflict of ri is then prevented by blocking ri

until transactions T1, · · · , Tj finish.
In the read-write check, XPath evaluation is

processed for both Di and Dall. The execution
cost needed for the proposed read-write check
is then the sum of the cost for evaluating an
XPath expression and the cost for equivalence
checks in the XPath evaluation. Equivalence
checks for nodes can be easily implemented by,
for instance, sharing a pointer between equiv-
alent nodes in distinct documents in our docu-
ment management model.

6.2 Write-Read Check
This section describes the proposed method

for the write-read check. When a write is re-
quested, the write-read check detects any write-
read conflict caused by the write requested.

Consider a write wi requested by transaction
Ti and a previous read rj = read(ε) by trans-
action Tj . Let D′

j be the previous state of doc-
ument Dj to that read rj was performed. In
addition, let Wi be a sequence of all writes of Ti

including wi. By Definitions 3 and 4, if write wi

causes a write-read conflict with read rj , then
F [[ε]]x:D′

j �≡ F [[ε]]x:(D′
j + Wi +W ′) (6.2)

where W ′ = W1 + · · · + Wl + · · · + Wn(l �=
i, j). There is no conflict between writes of Wi

and any set of writes of W ′ since such conflicts
are detected by previous conflict checks. The
following lemma and theorem then hold.

Lemma 8 If a write wi requested by Ti

causes a write-read conflict with a previous read
rj = read(ε),
F [[ε]]x:D′

j �≡ F [[ε]]x:(D′
j + Wi). (6.3)

proof: There are two cases to be considered.
First, consider the case where read rj con-
flicts with writes of Wi. By Lemma 1, for-
mula 6.3 then holds. Next, consider the case
where rj conflicts with the set of writes of
Wi and a combination of writes in W ′. As-
sume that F [[ε]]x:D′

j ≡ F [[ε]]x:(D′
j + Wi). Then

F [[ε]]x:D′
j �≡ F [[ε]]x:(D′

j +W ′) because formula
6.2 holds and there is no conflict between writes
of Wi and any set of writes of W ′. This is a
contradiction since such a nonequivalence is de-
tected in previous conflict checks. Therefore the
lemma holds. �

Theorem 3 If write wi requested by Ti

causes a write-read conflict with a previous read
rj = read(ε),
F [[ε]]x:(Dst+W ′

j) �≡F [[ε]]x:(Dst+W ′
j +Wi)
(6.4)

where W ′
j denotes a sequence of all writes of

Tj before rj and Wi denotes a sequence of all
writes of Ti including wi.
proof: Recall that Dst is the document state
committed. If D′

j = Dst + W ′
j with the pre-

vious state D′
j of Dj at the time of rj , for-

mula 6.4 obviously holds. If D′
j �= Dst + W ′

j ,
then Dst contains the updates of writes W ′ by
transactions committed after Tj started. Since
rj does not conflict with any writes in W ′,
F [[ε]]x:(D′

j) ≡ F [[ε]]x:((D′
j +W ′) = (Dst+W ′

j)).
Formula 6.3 is then equivalent to formula 6.4.
Thus the theorem holds. �

By Theorem 3, a conflict between the re-

Vol. 44 No. SIG 18(TOD 20) XPath-based Concurrency Control in XML Document Management 27

quested write wi and a previous read rj can
be detected by checking formula 6.4. For any
previous read of other transactions, we need to
check whether the write requested leads to a
write-read conflict.

The proposed algorithm for the write-read
check is as follows: At the time that a transac-
tion Ti requests a write wi, for each transaction
Tj(i �= j, 1 ≤ j ≤ n),
(1) Prepare two documents D′

i(= Di + wi)
and D which is a copy of Dst.

(2) Trace each access in the access sequence
of Tj step by step.
(a) If the access is a write, update D

and D′
i by the write.

(b) If the access is a read rj = read(ε),
check if F [[ε]]x:D ≡ F [[ε]]x:D′

i. If
so, then wi does not conflict with
rj , and thus go to (2). Otherwise,
wi causes a conflict with Rj , and
thus block Ti until Tj finishes.

By tracing the access sequence of each transac-
tion Tj(i �= j, 1 ≤ j ≤ n) once, the write-read
check finishes.

To evaluate the computing cost needed for
the proposed write-read check, we define the
following notations:
• nrj : the number of reads in the access

sequence of Tj .
• nwj : the number of writes in the access

sequence of Tj .
• crj : the cost of performing the equivalence

checking.
• cwj : the cost of performing a write.

When a write is requested, the execution cost
needed for the write-read check based on trac-
ing access sequences is equal to

∑

1≤j≤n,i �=j

(nrj × crj + nwj × cwj).

Here we proposed the algorithm for the write-
read check that uses previous states of Di’s gen-
erated by tracing access sequences of transac-
tions. If multi-version documents are adopted
in the document management, regenerating
previous states of documents is not necessary
and thus the cost for the write-read check can
be reduced. We also have an idea for a more
efficient write-read check using document Dall

and its previous states. An improved algorithm
for the write-read check was proposed in Ref. 4).

7. Conclusion

In this paper, we proposed the concurrency

control method XPCC guaranteeing serializ-
ability in XML document management, assum-
ing concurrent XPath accesses and updates
to the same XML documents. XPCC en-
forces data consistency in XML semantics and
achieves great concurrency by the conflict check
and locking at the level of precise data in XML
documents. In XPCC, conflicts between XPath
expressions used in reads and updates of writes
by different transactions are detected based on
the XPath evaluation with equivalence check-
ing. In order to check conflicts efficiently, we
first introduced the new document management
model, which handles two versions of a docu-
ment, document Di containing the updates of
each transaction Ti and document Dall contain-
ing the updates of all transactions. We next
proposed the mechanism of the XPath evalua-
tion with equivalence checking which can de-
tect conflicts while processing the evaluation
of an XPath expression on two versions of a
document. Under our document management
model, conflict checks are performed when each
transaction access is requested. As for the read-
write check for each read requested by transac-
tion Ti, the XPath expression used in the read is
evaluated on both documents Di and Dall and
the equivalence of the results is checked. As for
the write-read check for each write requested,
the conflict check is performed against every
previous read while tracing access sequences of
transactions.

The weakness of XPCC is that the execu-
tion cost for the write-read check seems rela-
tively high although the execution cost for the
read-write check is low. Obviously, the cost for
the conflict check could be reduced by trans-
action ordering or depending on isolation lev-
els of transactions or simply the number of
write accesses. Analysis of trade-off between
the isolation level and the cost of conflict checks
is an interesting future subject. In addition,
since XPCC handles local copies of the docu-
ment for each transactions similar to optimistic
concurrency control, it involves memory over-
head when executing many transactions con-
currently. To reduce the memory overhead,
we include the implementation of local copies
virtually on one document by identifying the
transaction that updated each node in the doc-
ument in future research. The implementa-
tion of XPCC and the quantitative analysis of
execution times and memory sizes needed for
XPCC should also be included in future works.

28 IPSJ Transactions on Databases Dec. 2003

As our future study, we will also improve XPCC
in order to realize concurrency control with less
overhead in conflict checks so as to build a so-
phisticated XML data management system.

Acknowledgments Authors would like to
thank anonymous reviewers for their construc-
tive comments which helped in improving the
quality of this paper. Authors also would like
to thank Prof. Kaname Harumoto, the editor
in charge, for his invaluable comments to revise
our manuscript.

References

1) Bourret, R.: XML and databases, Internet
Document (Feb. 2002).
http://www.

rpbourret.com/xml/XMLAndDatabases.htm

2) Bray, T., Paoli, J. and Sperberg-McQueen,
C.M.: Extensible markup language (XML) 1.0.,
W3C Recommendation (Feb. 1998).
http://www.w3.org/XML

3) Boag, S., Chamberlin, D., Fernandez, M.F.,
Florescu, D. Robie, J. and Simeon, J.: XQuery
1.0: An XML Query Language, W3C Working
Draft (Aug. 2002).
http://www.w3.org/XML/Query

4) Choi, E. and Kanai, T.: XPath-based concur-
rency control for XML data, Proc. IEICE 14th
Data Engineering Workshop (DEWS), 6-C-4
(Apr. 2003).

5) Clark, J. and DeRose, S.: XML Path Lan-
guage (XPath) 1.0., W3C Recommendation
(Nov. 1999).
http://www.w3.org/TR/xpath

6) Eswaran, K.P., Gray, J., Lorie, R. and Traiger,
I.: The notions of consistency and predicate
locks in a database systems, Comm. ACM,
Vol.19, No.11, pp.624–633 (Nov. 1976).

7) Grabs, T., Böhmd, K. and Schek, H.:
XMLTM: efficient transaction management for
XML documents, Proc.19th International Con-
ference on Information and Knowledge Man-
agement (CIKM), pp.142–152 (Nov. 2002).

8) Goldman, R. and Widom, J.: DataGuides: en-
abling query formulation and optimization in
semistructured databases, Proc. 23rd VLDB
Conference, pp.436–445 (Aug. 1997).

9) Gray, P. and Reuter, A.: Transaction process-
ing: concepts and technology, Morgan Kauf-
mann (1993).

10) Helmer, S., Kanne, C.-C. and Moerkotte, G.:
Isolation in XML bases, Technical Report, Uni-
versity of Mannheim, Germany (2001).

11) Jea, K.F.: Concurrency control in XML docu-
ment databases: XPath locking protocol, Proc.
9th International Conference on Parallel and

Distributed Systems (ICPADS) (Dec. 2002).
12) Jordan, J.R., Banerjee, J. and Batman, R.B.:

Precision locks, Proc. ACM SIGMOD Inter-
national Conference on Management of Data,
pp.143–147 (Apr. 1981).

13) Lomet, D.B.: Key range locking strategies for
improved concurrency, Proc. 19th VLDB Con-
ference, pp.655–664 (Aug. 1993).

14) Mohan, C.: ARIES/KVL: A key-value lock-
ing method for concurrency control of mul-
tiaction transactions operating on B-tree in-
dexes, Proc. 16th VLDB Conference, pp.392–
405 (Aug. 1990).

15) Olteanu, D., Meuss, H., Furche, T. and Bry,
F.: XPath: Looking forward, Proc. Workshop
on XML Data Management (XMLDM) (March
2002).

16) Tatarinov, I., Ives, Z.G., Halevy, A.Y. and
Weld, D.S.: Updating XML, Proc. ACM SIG-
MOD International Conference on Manage-
ment of Data, pp.413–424 (May 2001).

17) Wadler, P.: Two semantics for XPath, Tech-
nical report (Jan. 2000)
http://www.research.avayalabs.com/user/

wadler/papers/xpath-semantics

Appendix: Semantics of XPath with
Equivalence Checking

Here we present the semantics of XPath that
can perform the equivalence checking for the
proposed conflict check. For convenience, we
refer to the XPath with equivalence checking
as eXPath. We consider the abstract syntax
described in Fig. 4 as the syntax of eXPath, but
that can be easily extended.

The denotational semantics of eXPath is
specified by three functions S,Q and E with
two arguments, an expression and a pair of
contexts X = (X1, X2), which is described in
Figs. 8 and 9. Note that the semantics of
eXPath holds two contexts to be compared,
while the general semantics of XPath is spec-
ified by similar functions with only one con-
text. The context for function S is defined as
Xi = (xi, ui) with i = 0, 1 where xi is the con-
text node and ui is a boolean value represent-
ing the nondetermination of the context node.
The context for functions Q and E is defined
as Xi = (xi, posi, sizei, ui) with i = 0, 1 where
xi, posi, sizei and ui respectively denote the
context node, the context position, the context
size and the nondetermination of the context
node. As for the context, the difference between
the general XPath and our eXPath is then that
boolean value ui is added to check whether the

Vol. 44 No. SIG 18(TOD 20) XPath-based Concurrency Control in XML Document Management 29

X = ((x0, u0), (x1, u1))

UnionExpr

S = S[[p1|p2]]X
SRi

= SRi
[[p1]]X ∪ SRi

[[p2]]X
SUi

= {ui,j(1 ≤ j ≤ |SRi
|) | ui,j = ui ∨ ¬((xi,j ∈ SRi

[[p1]]X ∧ ∃x ∈ SRī
[[p1]]X, x ≡ xi,j)

∨(xi,j ∈ SRi
[[p2]]X ∧ ∃x ∈ SRī

[[p2]]X, x ≡ xi,j))}

AbsoluteLocationPath

S = S[[/p]]X
SRi

= SRi
[[p]]((root(x0), u0), (root(x1), u1))

SUi
= SUi

[[p]]((root(x0), u0), (root(x1), u1))

RelativeLocationPath

S = S[[p1/p2]]X
SRi

= {x | x′ ∈ SRi
[[p1]]X,

if (∃x′′(∈ SRī
[[p1]]X), x′ ≡ x′′), x ∈ SRi

[[p2]]((y0, u0), (y1, u1))
where if i = 0, y0 = x′ and y1 = x′′; otherwise, y0 = x′′ and y1 = x′;
otherwise, x ∈ SR0 [[p2]]((x′, 1), ∅)}

SUi
= {ui,j(1 ≤ j ≤ |SRi

|) | ui,j = ui∨
¬((∃x ∈ SR0 [[p1]]X,∃x′ ∈ SR1 [[p1]]X, x ≡ x′) ∧ (xi,j ∈ SRi

[[p2]]((x, u0), (x′, u1))))}

LocationStep

S = S[[p[q]]]X
SRi

= {x | x ∈ SRi
[[p]]X

let posi = |{xp | xp ∈ SRi
[[p]]X, xp ≤order x}|, let sizei = |SRi

[[p]]X|
if (∃x′(∈ SRī

[[p]]X), x ≡ x′),
let posī = |{xp | xp ∈ SRī

[[p]]X, xp ≤order x′}|, let sizeī = |SRī
[[p]]X|

if i = 0, QRi
[[q]](Y, Y ′) = 1, otherwise QRi

[[q]](Y ′, Y) = 1
where Y = (x, posi, sizei, ui), Y

′ = (x′, posī, sizeī, uī);
otherwise, QR0 [[q]]((x, posi, sizei, 1), ∅) = 1}

SUi
= {ui,j(1 ≤ j ≤ |SRi

|) | ui,j = ui ∨ (∀x ∈ SRī
, x �≡ xi,j)∨

(∃x ∈ SRī
, x ≡ xi,j ,Qu[[q]]((xi,j , posi, sizei, ui), (x, posī, sizeī, uī)) = 1)}

S = S[[p[e]]]X
SRi

= {x | x ∈ SRi
[[p]]X

let posi = |{xp | xp ∈ SRi
[[p]]X, xp ≤order x}|, let sizei = |SRi

[[p]]X|
if (∃x′(∈ SRī

[[p]]X), x ≡ x′),
let posī = |{xp | xp ∈ SRī

[[p]]X, xp ≤order x′}|, let sizeī = |SRī
[[p]]X|

if i = 0, ERi
[[e]](Y, Y ′) = posi, otherwise ERi

[[e]](Y ′, Y) = posi

where Y = (x, posi, sizei, ui), Y
′ = (x′, posī, sizeī, uī);

otherwise, ER0 [[e]]((x, posi, sizei, 1), ∅) = posi}
SUi

= {ui,j(1 ≤ j ≤ |SRi
|) | ui,j = ui ∨ (∃l, 1 ≤ l ≤ j, x0,l �≡ x1,l)∨

(Eu[[e]]((x0,j , j, size0, u0), (x1,j , j, size1, u1)) = 1)}

S = S[[axis :: nodetest]]X
SRi

= {x | x ∈ A[[axis]]x, x satisfies nodetest}
SUi

= {ui,j(1 ≤ j ≤ |SRi
|) | ui,j = ui ∨ (SR

i
= ∅)}

* When i = 0 and 1, i = 1 and 0, respectively.
** A[[a]]x is an auxiliary function which denotes the node-list generated by axis a from context node x.
*** x <order x′ with two nodes x and x′ in a node-list denotes that x is previous to x′ in the node-list.

Fig. 8 Semantics of S.

30 IPSJ Transactions on Databases Dec. 2003

X = ((x0, pos0, size0, u0), (x1, pos1, size1, u1))

OrExpr, AndExpr, EquialityExpr, RelationalExpr

Q = Q[[q1 ⊕ q2]]X, ⊕ : and, or, =, ! =, <, >, <=, >=
QRi

= QRi
[[q1]]X ⊕QRi

[[q2]]X
Qu = Qu[[q1]]X ∨Qu[[q2]]X

Pattern

Q = Q[[p]]X
QRi

= let S = S[[p]]((x0, u0)(x1, u1)), 1 iff SRi
�= ∅

Qu = 1 iff for any ui,j ∈ SUi
, ui,j = 1

Expression

Q = Q[[e]]X
QRi

= 1 iff ERi
[[e]]X �= 0;

Qu = Eu[[e]]X

AdditiveExpr, MultiplicativeExpr

E = E[[e1 ⊕ e2]]X, ⊕ : +,−, ∗, div, mod
ERi

= ERi
[[e1]]X ⊕ ERi

[[e2]]X
Eu = Eu[[e1]]X ∨ Eu[[e1]]X

UnaryExpr

E = E[[−e]]X
ERi

= −ERi
[[e]]X

Eu = Eu[[e]]X

Pattern

E = E[[p]]X
ERi

= let S = S[[p]]((x0, u0)(x1, u1)), number(xi,1) (xi,1 ∈ SRi
) if SRi

�= ∅; otherwise, 0
Eu = u0,1(∈ SU0) ∨ u1,1(∈ SU1)

Qualifier

E = E[[q]]X
ERi

= 1 if QRi
[[q]]X �= 0; otherwise, 0

Eu = Qu[[q]]X

Fig. 9 Semantics of Q and E.

context node is nondetermined or not.
For each function F(=S, Q, E), we write
FRi

[[ε]]X (i = 0, 1) for the result value of ex-
pression ε evaluated with context Xi. That is,
SRi

[[p]]X denotes the node-list selected by pat-
tern p, QRi

[[q]]X denotes the boolean value of
qualifier q, and ERi

[[e]]X denotes the numeri-
cal value of expression e☆. The equality of the
results associated with two contexts X0 and

☆ In Ref. 17), notions S[[p]]xi, Q[[q]](xi, posi, sizei) and
E[[e]](xi, posi, sizei) are used to indicate the result
values of p, q and e with context node xi. Note
that SRi

[[p]]X = S[[p]]xi, QRi
[[q]]X = Q[[q]](xi,

posi, sizei) and ERi
[[e]]X = E[[e]](xi, posi, sizei).

X1 is defined as follows: In the cases of Q
and E , FR0 [[e]]X = FR1 [[e]]X iff the (boolean
or numerical) values are same. In the case
of S, SR0 [[p]]X = SR1 [[p]]X iff |SR0 [[p]]X| =
|SR1 [[p]]X| and for every pair of the j-th nodes
x0,j(∈ SR0 [[p]]X) and x1,j(∈ SR1 [[p]]X), node
x0,j is equivalent to node x1,j . Hereafter, xi,j(∈
SRi

[[p]]X) denotes the j-th node in result node-
list SRi

[[p]]X.
The equivalence of the results associated with

two contexts X0 and X1 is determined depend-
ing on each function as explained in Section 5.3.
For each function F , Fu[[ε]]X denotes a boolean
value representing the equivalence of FR0 [[ε]]X

Vol. 44 No. SIG 18(TOD 20) XPath-based Concurrency Control in XML Document Management 31

and FR1 [[ε]]X, i.e., Fu[[ε]]X = 1 iff FR0 [[ε]]X ≡
FR1 [[ε]]X. In addition, for each function S,
SUi

[[p]]X denotes a list whose element ui,j is a
boolean value representing the nondetermina-
tion of node xi,j in SRi

[[p]]X. This means that
ui,j = 1 iff node xi,j is nondetermined. Thus
Su[[p]]X = 1 iff there is no ui,j ∈ SUi

[[p]]X with
i = 0, 1 such that ui,j = 1, by Lemma 4.

Figures 8 and 9 describe the details of the se-
mantics for function S and those for functions
Q and E respectively. Using the proposed se-
mantics of eXPath, one can efficiently perform
conflict detection associated with two document
states and an XPath expression by checking the
equivalence of the results evaluated.

(Received June 20, 2003)
(Accepted October 2, 2003)

（Editor in Charge Kaname Harumoto）

Eun Hye Choi received M.E.
and Ph.D. degrees in computer
engineering from Osaka Univer-
sity in 1999 and in 2002, re-
spectively. She has been worked
for Toshiba Corp. from 2002 to
2003. Her current research in-

terests are in the areas of XML database and
transaction processing and distributed comput-
ing. She is a member of the IEEE.

Tatsunori Kanai received
his B.E. and M.E. degrees in
Information Science from Kyoto
University in 1984 and 1986 re-
spectively. He has been working
in Toshiba Corp. since 1989 and
now is a senior research scientist

of Corporate Research and Development Cen-
ter of Toshiba. His research interests include
computer architecture, online transaction pro-
cessing and information architecture. He is a
member of IPSJ and IEICE.

