

IoT malware behavior analysis and classification

using text mining algorithm

Chun-Jung Wu†1, Ying Tie†1, Katsunari Yoshioka†1†2, Tsutomu Matsumoto†1†2

Abstract: Dramatic increase of cyber attacks targeting IoT devices via telnet protocol has been observed since a few years ago.

We have collected a thousand malware samples and logs of 3 million telnet sessions' since 2015 April. There is an urgent need to

analyze these malware and logs for taking proper defense. In this paper we present a method based on text mining algorithm for

analyzing the logs. We extract the key commands from the logs and apply N-gram model to establish malware family classifiers.

Keywords: Malware behavior, text mining, N-gram

1. Introduction

1.1 Background

According to Gartner’s forecast in 2015, there will be 6.4 billion

IoT devices in use in 2016, and will reach 20.8 billion by 2020

[1]. In other word, embedding information and communications

technology hardware to buildings, furniture, and vehicles is an

ongoing trend. However, IoT is a huge challenge for cyber

security protection and research. The challenge caused by the

features of IoT devices as follows:

 Most IoT devices are always online.

 Implemented with simple and low level hardware

 With a variety of CPU architectures and OS

 Lack of antivirus and monitoring service

 Diverse developers with lack of security expertise

Accordingly, IoT devices are under the constant threat of cyber-

attacks without protection such as antivirus software. The

analysts have to face varieties of Linux/Unix malware, which are

much different with previous Windows malware. Furthermore,

because of the complexity of OS types and environment, properly

analyzing IoT malware in sandbox leads extra challenge.

In order to observe the cyber-attack against IoT devices and

analyze the threats of IoT malware, Yin Minn Pa Pa et al. [1]

proposed IoTPOT, a honeypot which observes attacks on IoT

devices. It focuses on Telnet-based attack and emulates IoT

devices which accept telnet protocol connection. When attackers

access IoTPOT, it will record all the net flow and then pass it to

analysis task, such as downloading the samples. Since 2015 we

have successfully observe 799,136 download attempts from

723,873 different hosts and downloaded over a thousand malware

samples. Moreover, we also collect 3,909,901 session logs from

the net flow, these logs record all the shell commands input sent

from the attackers. Thus IoTPOT is a valid method to analyze and

understand IoT cyber-attacks.

†1

Graduate School of Environment and Information Sciences,

Yokohama National University

1.2 Motivation

It is uncertain that we could successfully download malware

binaries from the download links observed by IoTPOT. Even if

we download the samples from remote download servers, we are

not sure the sample can be trigger in our environment. The static

and dynamic analysis of IoT malware still require a lot of time

and human resource. Although to develop automated analysis

system is a general solution, it still needs to download the binaries.

Thus, if we can infer or recognize IoT malware by its intrusion

behavior, we may save a lot of time and human resource. Our goal

is to determine which malware family the attacks are coming

from by observing and analyzing only the command sequences.

In this paper we design a classifier to analyze malware behavior

and then predicate the malware family from the observed

behavior, namely command sequences. Furthermore, we can

create a measurement to detect the change of behavior via

comparing similarity of command sequences come from

different time. The detection should enable the analyst to observe

and monitor the evolutions of IoT malware families.

1.3 Research value

Following is the summary of our contributions:

(1) We provide a method to infer malware families from only

their intrusion behavior, namely, command sequences.

(2) The method serve as an automatic measurement system to

monitor the evolution of IoT malware.

2. Related works

In 2013 Yen et al. present a research which from epidemiological

study of malware encounters in a large, multi-national enterprise.

They collected security and network infrastructure logs, and then

find out key features which present the behaviors of web-based

malware. Moreover, they used logistical regression model to infer

and rank the risk of encountering malware [3]. Masud, Khan, and

Thuraisingham present a method that combines there kinds of

feature: binary n-grams, assembly instruction sequences, and

†2

Institute of Advanced Sciences,

Yokohama National University

Computer Security Symposium 2016
11 - 13 October 2016

－41－

Dynamic Link Library (DLL) function calls to detect malicious

executables [4]. In 2015, Microsoft and Kaggle hold a game,

Kaggle Microsoft Malware Classification Challenge (BIG 2015).

Microsoft offers twenty thousand Windows malware binary files

and ASM files, and ask contestants to classify the category of

malware. Microsoft gave contestants that there are 9 categories

of malware. The champion team extracted efferent feature from

ASM files’ opcode and gather pixel data from disk image of

malware. And then apply N-gram algorithm to predicate the class

of malware, which led their method to achieve 99.7% accuracy.

A year later, Ahmadi et al. used similar features and improve

classification algorithm to archive 99.8% accuracy with less

computation cost [5]. Drew, Moore, and Hahsler apply the Strand

gene sequence classifier, which offers a robust classification

strategy that can easily accommodate unstructured data. To

classifying malware, they execute it on approximately 500GB of

malware data for predicting 9 classes of polymorphic malware.

Experiments show that, with minimal adaptation, the method

achieves accuracy levels well above 95% [6]. Previous researches

almost analyzed windows-based malware and devised

experiments in MS Windows platforms. For Linux/Unix malware,

Shahzad and Muddassar Farooq (2012) have analyzed 709 Linux

executable and linkable format (ELF) files. They extracted

features from ELF header, and then applied machine learning

classifiers to detect ELF malware. Their approach provides 99%

detection accuracy with less than 0.1% false alarm rate [7]. Bai

et al. (2013) have gathered feature from system calls of ELF files.

They tested four classification algorithms (J48, Random Forests,

AdboostM1, and IBK) to detect Linux malware. Their Detection

accuracy is about 98% [8]. Since 2001 there were serious worm

attack over Internet. In 2007, Wang et al. has propose a worm

detection approach based on mining the dynamic program

executions. They analyzed system calls from MS Windows and

Linux. Via natural language processing algorithm, they traced

system call sequences. Furthermore, they applied machine

learning algorithm, Naïve Bayes and Support Vector Machine

(SVM) to detect worm. SVM approach archive 99.5% detection

rate and 2.22% false positive rate [9]. Our research will face both

Linux and MS Windows malware. The major difference with

previous research is our data set. We will only analyze the shell

command cause by IoT malware. Our approach will focus on

malware behavior records and won’t relay on header or system

call features of the malware binaries.

3. Method

3.1 Preliminaries

3.1.1 Sequences of shell commands observed by IoTPOT

By IoTPOT, we collect 3 million session logs. These logs record

the shell commands come from attackers. Here we define a term

“command sequences” to represent the content of each session

logs. A command sequence may contain single or multiple shell

command clauses. After understanding the purpose of clauses, we

can figure out three kinds of command sequences such as the

following.

 Authentication

In order to login the device, e.g. “root” or “'root', '1234'”

 Recognition

Test the environment to check existence of some path, e.g.

“'echo welcome', 'cd /tmp'”

 Infection

The purpose of the commands is to infect targeted devices,

consist of multiple different shell command. e.g. “'system',

'ping ; sh', 'echo welcome', 'cd /var/tmp ; rm -f .nttpd ; wget

-O .nttpd http://200.77.201.173:3343 ; chmod

+x .nttpd ; ./.nttpd', 'exit', 'exit'”

Because the behavior of authentication and recognition are less

diverse, we will majorly analyze the infection sequences. We find

most of the sequences consisting of four kinds of detailed

behavior:

1. Authentication behavior

Login with ID and password

2. Change the directory behavior

Change the directory/folder of the terminal's shell

3. Create or download files behavior

Type “echo” to produce binary files or use “wget”/”tftp” to

download files

4. Execution behavior

Use “sh” to execute downloaded binary or script files

Sometimes, malware will execute “chmod” to alter the files’

privilege, “history –c –r” to clean the system log, “rm“ to remove

files, and “exit” to terminate the session. Those commands may

be repeatedly executed multiple time to ensure the infection is

successful.

3.1.2 IoT malware families

There are several malware families we have observed previously.

We pick command sequences from ZORRO, nttpd, and gayfgt as

our initial research target. We recognize these 3 families’

sequences and label them manually. We pick these families

because they all echo special string in command sequences, so we

can easily recognize them by checking the keywords and use

them as ground truth. Please note that our classification method

does not rely on such heuristic features like common special

strings in the command sequences as such features are very

fragile and adversary can always choose to remove them although

our manual inspection suggests it has not yet the case and they

can still serve as ground truth for now.

－42－

In previous research result, Yin Minn Pa Pa et al. find some

patterns of families’ command sequence [1]. This can be seen in

the following Table 1. We use the categories of purposes to

analyzing the pattern of each family. Therefore, we can find

ZORRO would execute many types of recognition and infection

command sequence. This implies ZORRO may have higher

success rate of infection and more complex than other two

families. As opposed to ZORRO, nttpd seems to execute simpler

command sequence. The gayfgt and nttpd families are more

similar to each other on behavior.

Table 1 Families’ command sequence comparison [1]

Family Pattern of Command Sequence Number
of family
per Day
Jan 1st

~May 19th

gayfgt Recognition:
1. Check whether shell can be used or not

by echoing “gayfgt”
2. Download shell script.
Infection:
1. Using downloaded shell script, kill

previously running malicious process,
download malware binaries of different
CPU architectures and block 23/TCP in
order to prevent other infection.

2. Run all downloaded malware binaries.

328

nttpd Recognition:
1. Check whether shell can be used or not

by echoing “welcome”
Infection:
1. Download binary to /tmp directory.
2. Run Binary

146

ZORRO Recognition:
1. Check type of victim shell with

command “sh”
2. Check error reply of victim by running

non-existing command such as
ZORRO.

3. Check whether wget command is
usable or not.

4. Check whether busybox shell can be
used or not by echoing ZORRO.

Infection:
1. Remove various command and files

under /usr/bin/, /bin, var/run/, /dev.
2. Copy /bin/sh to random file name
3. Append series of binaries to random

file name of step 6 and make attacker’s
own shell

4. Using attacker’s own shell, download
binary. IP Address and port number of
malware download server can be seen
in the command.

5. Run binary

1753

As shown in Figure 1, from Jan 1st to May 19th there are 243,781

(9.7%) commands come from the ZORRO family, 45,634 (1.8%)

commands come from the gayfgt family, and nttpd only sent

20,429 (0.8%) commands. Note that these numbers are obtained

by the ground truth described in Section 3.1.2.

Figure 1 Statistics of IoT malware families.

3.2 Behavior sequence

Different kinds of IoT malware may target various devices to

infect IoT devices. To complete the infection task, malware will

produce various shell commands to execute in our IoTPOT. This

variety will lead to different command sequences and hence we

may recognize malware family by their command sequences. In

order to process the large number of complex sequences, we use

representative simplified form of the sequences, called behavior

sequence. For example, sequences of shell command:

['cd /tmp || cd /var/run || cd /dev/shm || cd /mnt || cd /var; tftp -r

tftp.sh -g test.test.org; sh tftp.sh; busybox wget http’] can be

expressed as a behavior sequence “ccccctsw” by representing

each command with a special single letter, such as ‘w’ for ‘wget’

and c for ‘cd’. Then, we apply natural language processing

algorithm to classify the behavior sequence. We have made a

table that maps each of 41 commands to a corresponding

symbolic letter. A part of the table is shown in Table 2. These

commands are from the historical observation data of the

honeypot.

Table 2 A part of command mapping table.

Shell Behavior
token

Shell Behavior
token

& A echo e

&& A mv m

/bin/busybox B exit q

cd C chmod C

enable E echo E

ftpget F flag F

get G > G

sh H kill K

mv M system M

netstat N Shell S

3.3 Data collection and analysis process

Data collection for this study is done over 5 months. IoTPOT

catches all the net flow and stores the pcap files to the repository

server. We extracted command sequences from pcap files, and

then created the behavior sequences from them. Finally, we used

classifiers to classify the behavior sequences into malware

－43－

families. The whole process is show in Figure 2.

Figure 2 flow of data analysis

3.4 Data analysis algorithm

3.4.1 Malware family classifier

N-gram is an algorithm based on Computational Linguistics and

probability. This probabilities can be used to estimate the

likelihood of a sentence occurring at all or a following word [6].

N-gram can also apply to efficient approximate string matching.

Using N-gram to index lexicon terms, signature file can be

compressed to a smaller size than an inverted file [12].

Furthermore, N-gram can be used to calculate similarity between

two strings [9]. .In this paper, we apply N-gram to approximate

behavior sequence. We use four months behavior sequences that

come from ZORRO, gayfgt, and nttpd families as training set data.

For each family, we will build a classifier. Those classifiers will

give an approximate values for input behavior sequence to

indicate how similar the input data and training data set are. Our

classifiers are all based on trigram model, namely N = 3.

3.4.2 Evaluation of classification

We use a confusion matrix and receiver operating characteristic

(ROC) curve to measure the classification result in our

experiments. For a target family, if a sequence includes the

families’ keyword described in Section 3.1.2, we label it belong

to the family as true; otherwise, we label it as false. Here, given

a target family, let TP (true positive) be the number of behavior

sequences correctly classified as the target family; FN (false

negative) be the number of sequences from the target family that

are misclassified as another; let TN (true negative) be the number

of sequences from other families that are correctly classified; and

let FP (false positive) be the number of sequences that are

incorrectly classified as the target family. The precision (P) is

defined by precision = TP/ (TP + FP) and the recall rate (R) is

defined by recall = TP/ (TP + FN). The F-score, which is the

harmonic mean of precision (P) and recall (R), provides a balance

between precision and recall, that is, F-score = 2 P R/ (P + R).

The F-score is conducive to find threshold of similarity. The

accuracy (A) is defined by accuracy = (TP+TN) / ALL and error

rate is defined by error rate = 1- accuracy. [13].

ROC curves are used to judge the discrimination ability of

various statistical methods and classification algorithms. The

curve is drawn by plotting the true positive rate (TPR) against the

false positive rate (FPR) at different threshold settings. The area

under the ROC curve (AUC) is equal to the probability that a

classifier will correctly answer a randomly chosen positive

instance higher than a randomly chosen negative one. If the AUC

area is more close to 1, the classifier is better [14].

4. Experiments

4.1 Malware families’ classification

The training data set is extracted from session logs from Jan 1st

to April 30th. We collected 300 gayfgt behavior sequences, 51

nttpd behavior sequences, and 2,430 ZORRO behavior sequences.

4.1.1 Result of gayfgt classifier

We use 300 gayfgt behavior sequences to train the classifier and

test it with the behavior sequences observed between May 1st and

May 4th, 2016. The ground truth is that there are 32 unique gayfgt

behavior sequences and 9,026 non-gayfgt behavior sequences.

The confusion table and accuracy of classifier are shown in Table

3 and Table 4. The ROC curve is shown in Figure 3.

Table 3 Confusion table of gayfgt.

Threshold
similarity

TP
(total 32)

FN
 (total 32)

FP (total
9026)

TN (total
9026)

1 0 32 0 9026

0.9 5 27 24 9002

0.8 20 12 80 8946

0.7 22 10 162 8864

0.6 25 7 242 8784

0.5 29 3 313 8713

0.4 32 0 376 8650

0.3 32 0 444 8582

0.2 32 0 625 8401

0.1 32 0 873 8153

0 32 0 9026 0

Table 4 Accuracy, error rate, and F-score of gayfgt.

Threshold
similarity

Accuracy error rate F-score

1 0.9964 0.0036 0.0000

0.9 0.9943 0.0057 0.0011

0.8 0.9897 0.0103 0.0044

0.7 0.9809 0.0191 0.0049

0.6 0.9724 0.0276 0.0055

0.5 0.9650 0.0350 0.0064

0.4 0.9584 0.0416 0.0070

0.3 0.9509 0.0491 0.0070

0.2 0.9309 0.0691 0.0070

0.1 0.9035 0.0965 0.0070

0 0.0035 0.9965 0.0071

－44－

Figure 3 ROC of gayfgt malware family.

4.1.2 Result of nttpd classifier

We use 51 nttpd behavior sequences to train the classifier. To test

nttpd family sequences between May 1st and May 4th. There are

11 unique nttpd behavior sequences and 5315 non-nttpd behavior

sequences. The confusion table and accuracy of classifier are

shown as Table 5 and Table 6. The ROC curve is as following

Figure 4.

Table 5 Confusion table of nttpd.

similarity TP
(total 11)

FN
(total 11)

FP (total
5315)

TN (total
5315)

1 0 11 0 5315

0.9 0 11 5 5310

0.8 0 11 11 5304

0.7 0 11 25 5290

0.6 7 4 36 5279

0.5 8 3 57 5258

0.4 9 2 84 5231

0.3 11 0 107 5208

0.2 11 0 189 5126

0.1 11 0 655 4660

0 11 0 5315 0

Table 6 Accuracy, error rate, and F-score of nttpd.

similarity accuracy error rate F-score

1 0.9981 0.0019 0

0.9 0.9972 0.0028 0

0.8 0.9960 0.0040 0

0.7 0.9934 0.0066 0

0.6 0.9913 0.0087 0.0026

0.5 0.9873 0.0127 0.0030

0.4 0.9822 0.0178 0.0034

0.3 0.9779 0.0221 0.0041

0.2 0.9625 0.0375 0.0041

0.1 0.8750 0.1250 0.0041

0 0.0000 1.0000 0.0041

Figure 4 ROC of nttpd malware family.

4.1.3 Result of ZORRO classifier

We pick 500 ZORRO behavior sequences to train the classifier

and test it with the honeypot observation from May 1st to May

4th. There are 4,286 unique ZORRO behavior sequences and

1,039 non- ZORRO behavior sequences. The confusion table and

accuracy of classifier are shown in Table 7 and Table 8 . The ROC

curve is shown in Figure 5.

Table 7 Confusion table of ZORRO.

similarity TP(total
4286)

FN(total
4286)

FP(total
1039)

TN(total
1039)

1 0 4286 0 1039

0.9 3764 522 0 1039

0.8 3852 434 0 1039

0.7 3945 341 0 1039

0.6 4068 218 0 1039

0.5 4166 120 0 1039

0.4 4283 3 0 1039

0.3 4285 1 0 1039

0.2 4286 0 0 1039

0.1 4286 0 8 1031

0 4286 0 1039 0

Table 8 Accuracy, error rate, and F-score of ZORRO.

similarity accuracy error rate F-score

1 0.1951 0.8049 0.0000

0.9 0.9020 0.0980 0.8787

0.8 0.9185 0.0815 0.8812

0.7 0.9360 0.0640 0.8836

0.6 0.9591 0.0409 0.8868

0.5 0.9775 0.0225 0.8891

0.4 0.9994 0.0006 0.8918

0.3 0.9998 0.0002 0.8919

0.2 1.0000 0.0000 0.8919

0.1 0.9985 0.0015 0.8919

0 0.8049 0.1951 1.6098

－45－

Figure 5 ROC of ZORRO malware family.

4.2 Detecting evolution of malware behavior

About gayfgt family, we use the same classifier and training set

to test collected data between May 5th and May 8th. And then we

also calculate the confusion matrix, accuracy, F-score, and

drawing ROC curve. The confusion table in Table 9 shows that

there are 19 false negative behavior sequences under 0.4

similarity. Those false negatives are not detected by classifier in

the data between May 1st and May 4th. We manually looked into

command sequence on May 5th and found that there are some

new command sequences, shown in Figure 6, sent from gayfgt

family. This kind of evolution is also observed by previous

IoTPOT research [1] and indicates active development of the

malware family by adversary.

Table 9 Confusion table of gayfgt (5/5~5/8).

similarity TP (total
42)

FN (total
42)

FP (total
5285)

TN (total
5285)

1 0 42 0 5285

0.9 1 41 20 5265

0.8 12 30 64 5221

0.7 18 24 123 5162

0.6 22 20 188 5097

0.5 29 13 251 5034

0.4 31 11* 305 4980

0.3 35 7* 355 4930

0.2 40 2* 518 4767

0.1 42 0 763 4522

0 42 0 5285 0

Figure 6 new command sequence of gayfgt of malware family

observed during May 5th to May 8th.

Table 10 Accuracy, error rate, and F-score of gayfgt. (5/5~5/8)

similarity accuracy error rate F-score

1 0.9921 0.0079 0.0000

0.9 0.9885 0.0115 0.0004

0.8 0.9824 0.0176 0.0045

0.7 0.9724 0.0276 0.0068

0.6 0.9610 0.0390 0.0083

0.5 0.9504 0.0496 0.0109

0.4 0.9407 0.0593 0.0116

0.3 0.9320 0.0680 0.0131

0.2 0.9024 0.0976 0.0149

0.1 0.8568 0.1432 0.0156

0 0.0079 0.9921 0.0158

Figure 7 ROC of gayfgt (5/5~5/8) malware family.

5. Discussion and Conclusions

According to confusion tables and ROC curves of three families,

the result show a clear and strong conclusion that N-gram can

properly classify ZORRO, gayfgt, and nttpd behavior. Even if the

threshold of similarity is 0.1, our method only causes 8 false

positives as shown in Table 7. All of the three classifier can reach

more than 0.9 accuracy with a few false positive. All the AUC of

classifiers are near 0.9. Thus we may say that the 3 families’

－46－

behavior are much different with each other. So we may use these

classifiers to infer the malware family of compromised devices,

even if we can’t download the binary sample. We hope this

research may save time and human resources that are spent on

malware analysis tasks.

Our method can also detect the change of malware behavior.

Because the new command sequences may cause false negatives.

Analyst may find the change by confusion table, decrease of

accuracy, or AUC of ROC curve. If we conduce this method daily

or weekly, we can systematize monitoring the evolution of IoT

malware families.

Although the present study has yielded findings that have both

theoretical and practical implications, its design is not without

flaws. Having acknowledged the limitation of this study, we can

nevertheless confirm that to apply text mining algorithm to

malware behavior analysis is effective. First, before we teach the

classifier, we must prepare the training sequences of malware

family. Moreover, if IoTPOT could get all the malware samples,

and the analyst might quickly activate every sample. This method

is not necessary for recognition of malware family.

6. Future work

This study should provide a descriptive basis for additional

research. Future research could examine if other IoT malware

families can be properly classified by N-gram.

Acknowledgement

A part of this research was conducted under the auspices of the

MEXT Program for Promoting Reform of National Universities.

Reference

[1]Gartner Says a Thirty-Fold Increase in Internet-Connected Physical

Devices by 2020 Will Significantly Alter How the Supply Chain

Operates, [online] Available: online

[2]Pa, Y. M. P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T., &

Rossow, C. (2016). IoTPOT: A Novel Honeypot for Revealing

Current IoT Threats. Journal of Information Processing, 24(3),

522-533.

[3]Yen, T. F., Heorhiadi, V., Oprea, A., Reiter, M. K., & Juels, A. (2014,

November). An epidemiological study of malware encounters in a

large enterprise. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security (pp. 1117-

1130). ACM.

[4]Masud, M. M., Khan, L., & Thuraisingham, B. (2008). A scalable

multi-level feature extraction technique to detect malicious

executables. Information Systems Frontiers, 10(1), 33-45.

[5]Ahmadi, M., Ulyanov, D., Semenov, S., Trofimov, M., & Giacinto,

G. (2016, March). Novel feature extraction, selection and fusion

for effective malware family classification. In Proceedings of the

Sixth ACM Conference on Data and Application Security and

Privacy (pp. 183-194). ACM.

[6]Drew, J., Moore, T., & Hahsler, M. Polymorphic Malware Detection

Using Sequence Classification Methods.

[7]hahzad, F., & Farooq, M. (2012). ELF-Miner: using structural

knowledge and data mining methods to detect new (Linux)

malicious executables. Knowledge and information systems, 30(3),

589-612.

[8]Bai, J., Yang, Y., Mu, S., & Ma, Y. (2013). Malware detection

through mining symbol table of Linux executables. Information

Technology Journal, 12(2), 380.

[9]Kondrak, G. (2005, November). N-gram similarity and distance. In

International Symposium on String Processing and Information

Retrieval (pp. 115-126). Springer Berlin Heidelberg.

[10]Wang, X., Yu, W., Champion, A., Fu, X., & Xuan, D. (2007,

September). Detecting worms via mining dynamic program

execution. In Security and Privacy in Communications Networks

and the Workshops, 2007. SecureComm 2007. Third International

Conference on (pp. 412-421). IEEE.

[11]Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., & Lai, J.

C. (1992). Class-based n-gram models of natural language.

Computational linguistics, 18(4), 467-479

[12]Carterette, B., & Can, F. (2005). Comparing inverted files and

signature files for searching a large lexicon. Information

processing & management, 41(3), 613-633.

[13]R. Kohavi and F. Provost, “Glossary of terms,” Machine Learning,

Editorial for the Special Issue on Applications of Machine

Learning and the Knowledge Discovery Process, Vol. 30, 1998, pp.

271-274.

[14]Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the

area under a receiver operating characteristic (ROC) curve.

Radiology, 143(1), 29-36.

－47－

