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using text mining algorithm  
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Abstract: Dramatic increase of cyber attacks targeting IoT devices via telnet protocol has been observed since a few years ago. 

We have collected a thousand malware samples and logs of 3 million telnet sessions' since 2015 April. There is an urgent need to 

analyze these malware and logs for taking proper defense. In this paper we present a method based on text mining algorithm for 

analyzing the logs. We extract the key commands from the logs and apply N-gram model to establish malware family classifiers. 
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1. Introduction   

1.1 Background 

According to Gartner’s forecast in 2015, there will be 6.4 billion 

IoT devices in use in 2016, and will reach 20.8 billion by 2020 

[1]. In other word, embedding information and communications 

technology hardware to buildings, furniture, and vehicles is an 

ongoing trend. However, IoT is a huge challenge for cyber 

security protection and research. The challenge caused by the 

features of IoT devices as follows: 

 Most IoT devices are always online. 

 Implemented with simple and low level hardware 

 With a variety of CPU architectures and OS 

 Lack of antivirus and monitoring service 

 Diverse developers with lack of security expertise  

Accordingly, IoT devices are under the constant threat of cyber-

attacks without protection such as antivirus software. The 

analysts have to face varieties of Linux/Unix malware, which are 

much different with previous Windows malware. Furthermore, 

because of the complexity of OS types and environment, properly 

analyzing IoT malware in sandbox leads extra challenge. 

In order to observe the cyber-attack against IoT devices and 

analyze the threats of IoT malware, Yin Minn Pa Pa et al. [1] 

proposed IoTPOT, a honeypot which observes attacks on IoT 

devices. It focuses on Telnet-based attack and emulates IoT 

devices which accept telnet protocol connection. When attackers 

access IoTPOT, it will record all the net flow and then pass it to 

analysis task, such as downloading the samples. Since 2015 we 

have successfully observe 799,136 download attempts from 

723,873 different hosts and downloaded over a thousand malware 

samples. Moreover, we also collect 3,909,901 session logs from 

the net flow, these logs record all the shell commands input sent 

from the attackers. Thus IoTPOT is a valid method to analyze and 

understand IoT cyber-attacks. 

                                                                 
†1  

Graduate School of Environment and Information Sciences, 

Yokohama National University 

1.2 Motivation 

It is uncertain that we could successfully download malware 

binaries from the download links observed by IoTPOT. Even if 

we download the samples from remote download servers, we are 

not sure the sample can be trigger in our environment. The static 

and dynamic analysis of IoT malware still require a lot of time 

and human resource. Although to develop automated analysis 

system is a general solution, it still needs to download the binaries. 

Thus, if we can infer or recognize IoT malware by its intrusion 

behavior, we may save a lot of time and human resource. Our goal 

is to determine which malware family the attacks are coming 

from by observing and analyzing only the command sequences. 

In this paper we design a classifier to analyze malware behavior 

and then predicate the malware family from the observed 

behavior, namely command sequences. Furthermore, we can 

create a measurement to detect the change of behavior via 

comparing similarity of  command sequences come from 

different time. The detection should enable the analyst to observe 

and monitor the evolutions of IoT malware families. 

1.3 Research value 

Following is the summary of our contributions: 

(1) We provide a method to infer malware families from only 

their intrusion behavior, namely, command sequences. 

(2) The method serve as an automatic measurement system to 

monitor the evolution of IoT malware. 

2. Related works 

In 2013 Yen et al. present a research which from epidemiological 

study of malware encounters in a large, multi-national enterprise. 

They collected security and network infrastructure logs, and then 

find out key features which present the behaviors of web-based 

malware. Moreover, they used logistical regression model to infer 

and rank the risk of encountering malware [3]. Masud, Khan, and 

Thuraisingham present a method that combines there kinds of 

feature: binary n-grams, assembly instruction sequences, and 
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Dynamic Link Library (DLL) function calls to detect malicious 

executables [4]. In 2015, Microsoft and Kaggle hold a game, 

Kaggle Microsoft Malware Classification Challenge (BIG 2015). 

Microsoft offers twenty thousand Windows malware binary files 

and ASM files, and ask contestants to classify the category of 

malware. Microsoft gave contestants that there are 9 categories 

of malware. The champion team extracted efferent feature from 

ASM files’ opcode and gather pixel data from disk image of 

malware. And then apply N-gram algorithm to predicate the class 

of malware, which led their method to achieve 99.7% accuracy. 

A year later, Ahmadi et al. used similar features and improve 

classification algorithm to archive 99.8% accuracy with less 

computation cost [5]. Drew, Moore, and Hahsler apply the Strand 

gene sequence classifier, which offers a robust classification 

strategy that can easily accommodate unstructured data. To 

classifying malware, they execute it on approximately 500GB of 

malware data for predicting 9 classes of polymorphic malware. 

Experiments show that, with minimal adaptation, the method 

achieves accuracy levels well above 95% [6]. Previous researches 

almost analyzed windows-based malware and devised 

experiments in MS Windows platforms. For Linux/Unix malware, 

Shahzad and Muddassar Farooq (2012) have analyzed 709 Linux 

executable and linkable format (ELF) files. They extracted 

features from ELF header, and then applied machine learning 

classifiers to detect ELF malware. Their approach provides 99% 

detection accuracy with less than 0.1% false alarm rate [7]. Bai 

et al. (2013) have gathered feature from system calls of ELF files. 

They tested four classification algorithms (J48, Random Forests, 

AdboostM1, and IBK) to detect Linux malware. Their Detection 

accuracy is about 98% [8]. Since 2001 there were serious worm 

attack over Internet. In 2007, Wang et al. has propose a worm 

detection approach based on mining the dynamic program 

executions. They analyzed system calls from MS Windows and 

Linux. Via natural language processing algorithm, they traced 

system call sequences. Furthermore, they applied machine 

learning algorithm, Naïve Bayes and Support Vector Machine 

(SVM) to detect worm. SVM approach archive 99.5% detection 

rate and 2.22% false positive rate [9]. Our research will face both 

Linux and MS Windows malware. The major difference with 

previous research is our data set. We will only analyze the shell 

command cause by IoT malware. Our approach will focus on 

malware behavior records and won’t relay on header or system 

call features of the malware binaries. 

3. Method 

3.1 Preliminaries 

3.1.1 Sequences of shell commands observed by IoTPOT 

By IoTPOT, we collect 3 million session logs. These logs record 

the shell commands come from attackers. Here we define a term 

“command sequences” to represent the content of each session 

logs. A command sequence may contain single or multiple shell 

command clauses. After understanding the purpose of clauses, we 

can figure out three kinds of command sequences such as the 

following. 

 Authentication 

In order to login the device, e.g. “root” or “'root', '1234'” 

 Recognition 

Test the environment to check existence of some path, e.g. 

“'echo welcome', 'cd /tmp'” 

 Infection 

The purpose of the commands is to infect targeted devices, 

consist of multiple different shell command. e.g. “'system', 

'ping ; sh', 'echo welcome', 'cd /var/tmp ; rm -f .nttpd ; wget 

-O .nttpd http://200.77.201.173:3343 ; chmod 

+x .nttpd ; ./.nttpd', 'exit', 'exit'” 

Because the behavior of authentication and recognition are less 

diverse, we will majorly analyze the infection sequences. We find 

most of the sequences consisting of four kinds of detailed 

behavior: 

1. Authentication behavior 

Login with ID and password  

2. Change the directory behavior 

Change the directory/folder of the terminal's shell 

3. Create or download files behavior 

Type “echo” to produce binary files or use “wget”/”tftp” to 

download files 

4. Execution behavior 

Use “sh” to execute downloaded binary or script files 

Sometimes, malware will execute “chmod” to alter the files’ 

privilege, “history –c –r” to clean the system log, “rm“ to remove 

files, and “exit” to terminate the session. Those commands may 

be repeatedly executed multiple time to ensure the infection is 

successful. 

3.1.2 IoT malware families 

There are several malware families we have observed previously. 

We pick command sequences from ZORRO, nttpd, and gayfgt as 

our initial research target. We recognize these 3 families’ 

sequences and label them manually. We pick these families 

because they all echo special string in command sequences, so we 

can easily recognize them by checking the keywords and use 

them as ground truth. Please note that our classification method 

does not rely on such heuristic features like common special 

strings in the command sequences as such features are very 

fragile and adversary can always choose to remove them although 

our manual inspection suggests it has not yet the case and they 

can still serve as ground truth for now. 
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In previous research result, Yin Minn Pa Pa et al. find some 

patterns of families’ command sequence [1]. This can be seen in 

the following Table 1. We use the categories of purposes to 

analyzing the pattern of each family. Therefore, we can find 

ZORRO would execute many types of recognition and infection 

command sequence. This implies ZORRO may have higher 

success rate of infection and more complex than other two 

families. As opposed to ZORRO, nttpd seems to execute simpler 

command sequence. The gayfgt and nttpd families are more 

similar to each other on behavior. 

Table 1  Families’ command sequence comparison [1] 

Family Pattern of Command Sequence Number 
of family 
per Day 
Jan 1st 

~May 19th  

gayfgt Recognition: 
1. Check whether shell can be used or not 

by echoing “gayfgt” 
2. Download shell script. 
Infection: 
1. Using downloaded shell script, kill 

previously running malicious process, 
download malware binaries of different 
CPU architectures and block 23/TCP in 
order to prevent other infection. 

2. Run all downloaded malware binaries. 

328 

nttpd Recognition: 
1. Check whether shell can be used or not 

by echoing “welcome” 
Infection: 
1. Download binary to /tmp directory. 
2. Run Binary 

146 

ZORRO Recognition: 
1. Check type of victim shell with 

command “sh” 
2. Check error reply of victim by running 

non-existing command such as 
ZORRO. 

3. Check whether wget command is 
usable or not. 

4. Check whether busybox shell can be 
used or not by echoing ZORRO. 

Infection: 
1. Remove various command and files 

under /usr/bin/, /bin, var/run/, /dev. 
2. Copy /bin/sh to random file name 
3. Append series of binaries to random 

file name of step 6 and make attacker’s 
own shell 

4. Using attacker’s own shell, download 
binary. IP Address and port number of 
malware download server can be seen 
in the command. 

5. Run binary 

1753 

 

As shown in Figure 1, from Jan 1st to May 19th there are 243,781 

(9.7%) commands come from the ZORRO family, 45,634 (1.8%) 

commands come from the gayfgt family, and nttpd only sent 

20,429 (0.8%) commands. Note that these numbers are obtained 

by the ground truth described in Section 3.1.2. 

 

Figure 1  Statistics of IoT malware families. 

3.2 Behavior sequence 

Different kinds of IoT malware may target various devices to 

infect IoT devices. To complete the infection task, malware will 

produce various shell commands to execute in our IoTPOT. This 

variety will lead to different command sequences and hence we 

may recognize malware family by their command sequences. In 

order to process the large number of complex sequences, we use 

representative simplified form of the sequences, called behavior 

sequence. For example, sequences of shell command: 

['cd /tmp || cd /var/run || cd /dev/shm || cd /mnt || cd /var; tftp -r 

tftp.sh -g test.test.org; sh tftp.sh; busybox wget http’] can be 

expressed as a behavior sequence “ccccctsw” by representing 

each command with a special single letter, such as ‘w’ for ‘wget’ 

and c for ‘cd’. Then, we apply natural language processing 

algorithm to classify the behavior sequence. We have made a 

table that maps each of 41 commands to a corresponding 

symbolic letter. A part of the table is shown in Table 2. These 

commands are from the historical observation data of the 

honeypot. 

Table 2  A part of command mapping table. 

Shell  Behavior 
token 

Shell  Behavior 
token 

& A echo e 

&& A mv m 

/bin/busybox B exit q 

cd C chmod C 

enable E echo E 

ftpget F flag F 

get G > G 

sh H kill K 

mv M system M 

netstat N Shell S 

 

3.3 Data collection and analysis process  

Data collection for this study is done over 5 months. IoTPOT 

catches all the net flow and stores the pcap files to the repository 

server. We extracted command sequences from pcap files, and 

then created the behavior sequences from them. Finally, we used 

classifiers to classify the behavior sequences into malware 
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families. The whole process is show in Figure 2. 

 

Figure 2  flow of data analysis 

 

3.4 Data analysis algorithm 

3.4.1 Malware family classifier 

N-gram is an algorithm based on Computational Linguistics and 

probability. This probabilities can be used to estimate the 

likelihood of a sentence occurring at all or a following word [6]. 

N-gram can also apply to efficient approximate string matching. 

Using N-gram to index lexicon terms, signature file can be 

compressed to a smaller size than an inverted file [12]. 

Furthermore, N-gram can be used to calculate similarity between 

two strings [9]. .In this paper, we apply N-gram to approximate 

behavior sequence. We use four months behavior sequences that 

come from ZORRO, gayfgt, and nttpd families as training set data. 

For each family, we will build a classifier. Those classifiers will 

give an approximate values for input behavior sequence to 

indicate how similar the input data and training data set are. Our 

classifiers are all based on trigram model, namely N = 3. 

3.4.2 Evaluation of classification 

We use a confusion matrix and receiver operating characteristic 

(ROC) curve to measure the classification result in our 

experiments. For a target family, if a sequence includes the 

families’ keyword described in Section 3.1.2, we label it belong 

to the family as true; otherwise, we label it as false. Here, given 

a target family, let TP (true positive) be the number of behavior 

sequences correctly classified as the target family; FN (false 

negative) be the number of sequences from the target family that 

are misclassified as another; let TN (true negative) be the number 

of sequences from other families that are correctly classified; and 

let FP (false positive) be the number of sequences that are 

incorrectly classified as the target family. The precision (P) is 

defined by precision = TP/ (TP + FP) and the recall rate (R) is 

defined by recall = TP/ (TP + FN). The F-score, which is the 

harmonic mean of precision (P) and recall (R), provides a balance 

between precision and recall, that is, F-score = 2 P R/ (P + R). 

The F-score is conducive to find threshold of similarity. The 

accuracy (A) is defined by accuracy = (TP+TN) / ALL and error 

rate is defined by error rate = 1- accuracy. [13].  

ROC curves are used to judge the discrimination ability of 

various statistical methods and classification algorithms. The 

curve is drawn by plotting the true positive rate (TPR) against the 

false positive rate (FPR) at different threshold settings. The area 

under the ROC curve (AUC) is equal to the probability that a 

classifier will correctly answer a randomly chosen positive 

instance higher than a randomly chosen negative one. If the AUC 

area is more close to 1, the classifier is better [14]. 

4. Experiments 

4.1 Malware families’ classification  

The training data set is extracted from session logs from Jan 1st 

to April 30th. We collected 300 gayfgt behavior sequences, 51 

nttpd behavior sequences, and 2,430 ZORRO behavior sequences. 

4.1.1 Result of gayfgt classifier 

We use 300 gayfgt behavior sequences to train the classifier and 

test it with the behavior sequences observed between May 1st and 

May 4th, 2016. The ground truth is that there are 32 unique gayfgt 

behavior sequences and 9,026 non-gayfgt behavior sequences. 

The confusion table and accuracy of classifier are shown in Table 

3 and Table 4. The ROC curve is shown in Figure 3. 

 

Table 3  Confusion table of gayfgt. 

Threshold 
similarity  

TP 
(total 32) 

FN 
 (total 32) 

FP (total 
9026) 

TN (total 
9026) 

1 0 32 0 9026 

0.9 5 27 24 9002 

0.8 20 12 80 8946 

0.7 22 10 162 8864 

0.6 25 7 242 8784 

0.5 29 3 313 8713 

0.4 32 0 376 8650 

0.3 32 0 444 8582 

0.2 32 0 625 8401 

0.1 32 0 873 8153 

0 32 0 9026 0 

 

Table 4 Accuracy, error rate, and F-score of gayfgt. 

Threshold 
similarity  

Accuracy error rate F-score 

1 0.9964  0.0036  0.0000 

0.9 0.9943  0.0057  0.0011 

0.8 0.9897  0.0103  0.0044 

0.7 0.9809  0.0191  0.0049 

0.6 0.9724  0.0276  0.0055 

0.5 0.9650  0.0350  0.0064 

0.4 0.9584  0.0416  0.0070 

0.3 0.9509  0.0491  0.0070 

0.2 0.9309  0.0691  0.0070 

0.1 0.9035  0.0965  0.0070 

0 0.0035  0.9965  0.0071 

 

－44－



 

 

 

 

  
 

 

Figure 3  ROC of gayfgt malware family. 

 

4.1.2 Result of nttpd classifier 

We use 51 nttpd behavior sequences to train the classifier. To test 

nttpd family sequences between May 1st and May 4th. There are 

11 unique nttpd behavior sequences and 5315 non-nttpd behavior 

sequences. The confusion table and accuracy of classifier are 

shown as Table 5 and Table 6. The ROC curve is as following 

Figure 4. 

 

Table 5  Confusion table of nttpd. 

similarity  TP 
( total 11) 

FN  
(total 11) 

FP (total 
5315) 

TN (total 
5315) 

1 0 11 0 5315 

0.9 0 11 5 5310 

0.8 0 11 11 5304 

0.7 0 11 25 5290 

0.6 7 4 36 5279 

0.5 8 3 57 5258 

0.4 9 2 84 5231 

0.3 11 0 107 5208 

0.2 11 0 189 5126 

0.1 11 0 655 4660 

0 11 0 5315 0 

 

Table 6 Accuracy, error rate, and F-score of nttpd. 

similarity  accuracy error rate F-score 

1 0.9981  0.0019  0 

0.9 0.9972  0.0028  0 

0.8 0.9960  0.0040  0 

0.7 0.9934  0.0066  0 

0.6 0.9913  0.0087  0.0026 

0.5 0.9873  0.0127  0.0030 

0.4 0.9822  0.0178  0.0034 

0.3 0.9779  0.0221  0.0041 

0.2 0.9625  0.0375  0.0041 

0.1 0.8750  0.1250  0.0041 

0 0.0000  1.0000  0.0041 

 

 

Figure 4  ROC of nttpd malware family. 

 

4.1.3 Result of ZORRO classifier 

We pick 500 ZORRO behavior sequences to train the classifier 

and test it with the honeypot observation from May 1st to May 

4th. There are 4,286 unique ZORRO behavior sequences and 

1,039 non- ZORRO behavior sequences. The confusion table and 

accuracy of classifier are shown in Table 7 and Table 8 . The ROC 

curve is shown in Figure 5. 

 

Table 7  Confusion table of ZORRO. 

similarity  TP( total 
4286) 

FN(total 
4286) 

FP(total 
1039) 

TN(total 
1039) 

1 0  4286  0  1039  

0.9 3764  522  0  1039  

0.8 3852  434  0  1039  

0.7 3945  341  0  1039  

0.6 4068  218  0  1039  

0.5 4166  120  0  1039  

0.4 4283  3  0  1039  

0.3 4285  1  0  1039  

0.2 4286  0  0  1039  

0.1 4286  0  8  1031  

0 4286  0  1039  0  

 

Table 8  Accuracy, error rate, and F-score of ZORRO. 

similarity  accuracy error rate F-score 

1 0.1951  0.8049  0.0000 

0.9 0.9020  0.0980  0.8787 

0.8 0.9185  0.0815  0.8812 

0.7 0.9360  0.0640  0.8836 

0.6 0.9591  0.0409  0.8868 

0.5 0.9775  0.0225  0.8891 

0.4 0.9994  0.0006  0.8918 

0.3 0.9998  0.0002  0.8919 

0.2 1.0000  0.0000  0.8919 

0.1 0.9985  0.0015  0.8919 

0 0.8049  0.1951  1.6098 
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Figure 5  ROC of ZORRO malware family. 

 

4.2 Detecting evolution of malware behavior 

About gayfgt family, we use the same classifier and training set 

to test collected data between May 5th and May 8th. And then we 

also calculate the confusion matrix, accuracy, F-score, and 

drawing ROC curve. The confusion table in Table 9 shows that 

there are 19 false negative behavior sequences under 0.4 

similarity. Those false negatives are not detected by classifier in 

the data between May 1st and May 4th. We manually looked into 

command sequence on May 5th and found that there are some 

new command sequences, shown in Figure 6, sent from gayfgt 

family. This kind of evolution is also observed by previous 

IoTPOT research [1] and indicates active development of the 

malware family by adversary. 

 

Table 9  Confusion table of gayfgt (5/5~5/8). 

similarity  TP (total 
42) 

FN (total 
42) 

FP (total 
5285) 

TN (total 
5285) 

1 0  42 0 5285 

0.9 1  41 20 5265 

0.8 12  30 64 5221 

0.7 18  24 123 5162 

0.6 22  20 188 5097 

0.5 29  13 251 5034 

0.4 31  11* 305 4980 

0.3 35  7* 355 4930 

0.2 40  2* 518 4767 

0.1 42  0 763 4522 

0 42  0 5285 0 

 

 

Figure 6 new command sequence of gayfgt of malware family 

observed during May 5th to May 8th. 

 

Table 10 Accuracy, error rate, and F-score of gayfgt. (5/5~5/8) 

similarity  accuracy error rate F-score 

1 0.9921  0.0079  0.0000 

0.9 0.9885  0.0115  0.0004 

0.8 0.9824  0.0176  0.0045 

0.7 0.9724  0.0276  0.0068 

0.6 0.9610  0.0390  0.0083 

0.5 0.9504  0.0496  0.0109 

0.4 0.9407  0.0593  0.0116 

0.3 0.9320  0.0680  0.0131 

0.2 0.9024  0.0976  0.0149 

0.1 0.8568  0.1432  0.0156 

0 0.0079  0.9921  0.0158 

 

 

Figure 7  ROC of gayfgt (5/5~5/8) malware family. 

 

5. Discussion and Conclusions 

According to confusion tables and ROC curves of three families, 

the result show a clear and strong conclusion that N-gram can 

properly classify ZORRO, gayfgt, and nttpd behavior. Even if the 

threshold of similarity is 0.1, our method only causes 8 false 

positives as shown in Table 7. All of the three classifier can reach 

more than 0.9 accuracy with a few false positive. All the AUC of 

classifiers are near 0.9. Thus we may say that the 3 families’ 
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behavior are much different with each other. So we may use these 

classifiers to infer the malware family of compromised devices, 

even if we can’t download the binary sample. We hope this 

research may save time and human resources that are spent on 

malware analysis tasks. 

Our method can also detect the change of malware behavior. 

Because the new command sequences may cause false negatives. 

Analyst may find the change by confusion table, decrease of 

accuracy, or AUC of ROC curve. If we conduce this method daily 

or weekly, we can systematize monitoring the evolution of IoT 

malware families. 

Although the present study has yielded findings that have both 

theoretical and practical implications, its design is not without 

flaws. Having acknowledged the limitation of this study, we can 

nevertheless confirm that to apply text mining algorithm to 

malware behavior analysis is effective. First, before we teach the 

classifier, we must prepare the training sequences of malware 

family. Moreover, if IoTPOT could get all the malware samples, 

and the analyst might quickly activate every sample. This method 

is not necessary for recognition of malware family. 

6. Future work 

This study should provide a descriptive basis for additional 

research. Future research could examine if other IoT malware 

families can be properly classified by N-gram.  
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