
IPSJ SIG Technical Report

Enhancing Subspaces for Elastic Deformation
with Collisions

Duosheng Yu1,a) Takashi Kanai1,b)

Abstract: In general, subspace methods for elastic deformations can greatly increase the simulation speed and have
good global supports. However, when novel external collisions are encountered, the expressivity of subspace is not
enough, and then obvious artifacts will appear. In this paper, we present an efficient data-driven approach to adaptively
enhance the expressivity of subspace for elastic deformations with novel collisions. We firstly capture several time-
series shapes from an object by performing full-space simulation. We then construct a database of subspace including
displacements and potential derivatives among shapes of all time-series. In run-time simulation, we choose several
proper bases from such a database and use them as run-time local basis. As a result, we show that our approach can
achieve faster and more accurate computation of elastic deformation when novel collisions happen.

1. Introduction
The simulation of deformable objects has become more and

more important for the realisticity of films, computer games, vir-
tual reality and related fields. Among the methods of deformable
object simulation, Finite Element Method (FEM) is widely used
for simulating physically-correct deformable object. However,
since the full-space FEM simulation is required to calculate inter-
nal forces and force differentials of all 3D volumetric elements,
it is too expensive to use FEM to simulate high resolution de-
formable objects in real-time.

To address this problem, the subspace method, also known as
model reduction [21], uses pre-computed basis vectors to project
the original high-dimensional system into the low-dimensional
space that those bases span. Then the simulation of low-
dimensional system only depends on the number of basis vectors
that is rather smaller than the original DOFs. Therefore, such a
simulation can achieve a great acceleration.

Subspace methods typically have good global support, how-
ever, can also cause unrealistic artifacts when the expressivity of
subspace is not enough, such as novel external collisions are en-
countered (see Fig. 1). Hahn et al. [9] presented a method that
precomputes global bases as usual and in run-time simulation a
solution of Boussinesq analysis is used to construct a set of bases
to represent local deformation. However, this analytic solution is
only suitable for small deformation. Teng et al. [22] combined
both full-space and subspace, and a full-space simulation is used
for collided area which losts the merit of high efficiency.

In this paper, we present a data-driven approach to solve these
two limitations. Using the fact that adding basis vectors can in-
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(a) Global subspace colliding simulation

(b) Full-space colliding simulation

Fig. 1 Comparison of traditional subspace method and full-space col-
liding simulation. We simulate a falling rigid cylinder to collide
a capsule. The global subspace is clearly lack of local information
than full-space simulation.

crease the span of subspace, we firstly capture some feature basis
vectors by doing full-space collided simulation and save them as
subspace database. In run-time simulation, we select proper basis
vectors from database to enhance the expressivity of subspace for
collided deformation.

Our work can be categorized as a novel extension of the idea
in Hahn et al’s approach [8] to deformable object, but the detail
of our method is definitely different. Hahn et al’s approach con-
structs a subspace database for cloth simulation that is able to
well reproduce wrinkles and folds. Unlike Hahn et al’s approach
which creates database by performing full-space simulation with
certain character animations, our training stage is using a rigid
object to collide simulated object in a pre-defined region. Hahn
et al’s approach also selects basis vectors by aligning basis vec-
tors to the gradient of current time-step configuration. On the
other hand, we select a whole subspace according to the collided
position.
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The rest of this paper is organized as follows. We will briefly
introduce recent developments in deformable object simulation in
Section 2. In Section 3 we simply explain subspace method for
deformable object simulation. Next, the detail of our data-driven
method is described in Section 4. We then show our results com-
pared with other methods in Section 5. We finally conclude our
work and describe future work in Section 6.

2. Related Work
Since Terzopoulos et al. [23] introduced the theory of elasticity

in computer graphics, deformable object simulation has achieved
a lot of developments. There are several methods to simulate a de-
formable object such as mass-spring system, FEM, shape match-
ing, a recently-developed position based dynamics, etc. There
are great surveys [18] and [6] which provide a good cover of de-
formable object simulation.

We are particularly interested in FEM method, which is one of
most poplar methods in deformable object simulation [21]. Ob-
jects are discretized into continuously connected volumes, then
continuum mechanics equation which can provide physically cor-
rect deformation is solved. The simplest FEM method uses lin-
ear material for small deformations, however, it typically causes
artifacts under large deformations. A linear co-rotational FEM
by Müller et al. [17] extracts rotations of local elements to warp
stiffness. McAdams et al. [16] and Barbič [2] further compute
an exact co-rotational stiffness matrix which makes simulation
more stable. Other nonlinear materials could deal with large de-
formation, such as St. Venant-Kirchhoff, Neo-Hookean, Mooney-
Rivlin materials [7]. Li et al. [15] and Xu et al. [28] do not restrict
to these standard materials, and they proposed material design
which can adjust the properties of the material for specific appli-
cation.

Subspace methods were firstly introduced to deformable object
simulation by Pentland and Willams [19], but were applied only
for linear materials. James et al. [11] used precomputed modal
analysis to efficiently simulate dynamic deformation of muscles
in character animation. Hauser et al. [10] showed that subspace
modal framework can be easily coupled with external constraints,
such as manipulation, collision, etc. Barbič and James [3] pre-
sented modal derivatives for fast subspace integration of reduced
nonlinear St. Venant-Kirchhoff material. A fast evaluation of in-
ternal forces based on subspace by optimizing cubatures [1] for
different types of materials could reduce the cost of evaluating
subspace forces from O(r4) to O(r2), where r is the dimension
of subspace. Subspace methods have proved its power over a lot
of graphics applications, such as shape interpolation [26], skin-
ning character dynamics [27], animation editing [4, 15] and fluid
simulation [24].

A variety of works have been proposed to address the expres-
sivity limitation of subspace. Barbič et al. [5] and Kim et al.
[13] used multi-domain technologies. The basis vectors usually
have global support, so the object is partitioned into several con-
nected domains and subspace simulation is performed for each
sub-domain to localize the influence of basis vectors. Kim et
al. [12] proposed error estimation for subspace simulation, detect-
ing when subspace is capable of performing the next time-step,

and switching to full-space simulation when the expressivity of
subspace is not enough. Harmon et al. [9] used analytic solution
to calculate local bases. Hahn et al. [8] created database to enrich
run-time subspace. Teng et al. [22] combines subspace and full-
space at the same time. Our method complements the limitation
of their works.

3. Background
3.1 Equation of simulation

We will first explain the base of FEM deformable object sim-
ulation. In computer graphics, we often use 3D volumetric ele-
ments like tetrahedrons or hexahedrons to approximate the object
we want to simulate. Given a tetrahedral mesh with N vertices,
the deformation u ∈ R3N is the displacement of vertices away
from the rest configuration X of mesh in world coordinates. The
equation that governs the motion of a deformable object can be
written as:

Mü + Du̇ + fint(u) = fext, (1)

where M ∈ R3N×3N is the mass matrix of object, D ∈ R3N×3N

is the damping matrix, fint , fext ∈ R3N is an internal force and
an external force of this object respectively. Dots denote time
derivatives.

This equation can be simplified to yield a quasistatic equation:

Ku = fext − fint, (2)

where K ∈ R3N×3N is the tangent stiffness matrix with respect to
current configuration. The quasistatic equation always makes the
simulated result reach to rest configuration over time. For sim-
plicity we use this equation in our result.

3.2 Subspace method
In full-space simulation, Equation (1) and (2) have to evalu-

ate strain and stress of all volumetric elements and solve a large
linear equation, which is too expensive for interactive applica-
tions. To address this problem, subspace method is used to ac-
celerate the simulation of dynamical systems described by dif-
ferential equations. The idea underlying subspace method is that
using a subspace basis matrix U ∈ R3N×r the original high dimen-
sional system is projected to a low custom dimensional system,
where r (r << 3N) is a dimension of this subspace. The ordinary
differential equation in Equation (1) and (2) can be projected by
pre-multiplying UT from the left and U from the right:

M̄ = UT MU, D̄ = UT DU, K̄ = UT KU,

f̄int = UT fint, f̄ext = UT fext,
(3)

The original 3N high dimensional equation then becomes r low
dimensional equation:

M̄q̈ + D̄q̈ + f̄int(q) = f̄ext, (4)

K̄u = f̄ext − f̄int, (5)

where q is the reduced coordinates. The affine space of U can be
represented as a linear combination of basis vectors attached to
the reference state of simulated object {Uq + X|q ∈ Rr}. Here we
apply the idea of [9], any subset of precomputed basis vectors can

ⓒ 2016 Information Processing Society of Japan 2

Vol.2016-CG-165 No.24
Vol.2016-DCC-14 No.24

Vol.2016-CVIM-204 No.24
2016/11/10



IPSJ SIG Technical Report

be chosen for simulation. We can think that our runtime subspace
is selected from a larger, unknown bases r′ >> r. Theoretically,
there are an infinite number of such bases, and we gather those
bases which we are interested to database. During run-time sim-
ulation, we can augment our run-time subspace with the vectors
from database which are most likely to capture the deformation
of the object:

U = [G L] ∈ R3N×(r+s), (6)

where G is the precomputed r global subspace basis matrix to
support global simulation. L is the s local subspace basis matrix,
which is selected from our database for augmenting the affine
space of our run-time subspace. So the projection of subspace is:

K̄ = UT KU =
GT KG GT KL
LT KG LT KL

 , (7)

f̄int = UT fint =

GT fint

LT fint

 . (8)

The other variants would be projected by the same way. A
global subspace basis matrix G can be computed by a variety
of methods, such as modal analysis [20], modal derivatives [3],
modal extension [25], etc. The subspaces of those methods all
have good global support. Here we simply introduce the modal
analysis method which solves the generalized eigen problem,

Kv = λMv, (9)

for the smallest r eigenvalues. We then collect the correspond-
ing eigenvectors to construct subspace basis matrix. We use this
method to construct our global subspace G. The construction of
local subspace L will be introduced in Section 4.

4. Proposed Method
4.1 Overview

Fig. 2 shows the overview of our system. Here we briefly de-
scribe each stage of our system.

The input of our system is a tetrahedra mesh of a deformable
object we want to simulate and a rigid object that creates colli-
sions. During pre-process, we firstly define a region where we
predict that collision will happen in run-time and compute our
global subspace using modal analysis in Equation (9). We then
perform full-space simulations using the rigid object collides sim-
ulated object along the normal direction of this region. We cap-
ture several keyframes from those motions and then construct our
database using the method described in Section 4.2. In run-time
simulation, collision detection is performed for each frame. If
collision does not happen, we simulate an object with global sub-
space. We would choose a proper local subspace and add it to a
global subspace when collision happens in a predicted region.

4.2 Motion-based database
The first question is what should be stored in our database.

Here we extend the concept of pose-space deformation [14] to
motion space. A set of poses which could be obtained directly
by skinning or inverse kinematics, and several pose controls from
artists such as volume preservation or elimination of candy wrap-
per are given. Pose space deformation then solves an interpola-
tion problem to generate desired animations of a character.

Pre-computation:

mesh and rigid object input 

define collide region global bases(G) computation

full-space simulation

motions capture

motion-based database construction

collision detection

noyes

select a local subspace(L)

subspace integration

compute full displacements

deform object

Rendering

Run-time:

only use global subspace(G)

Fig. 2 Overview of our system.

In our case, the deformation of collision is defined as continu-
ous dynamics. Since specifically sparse poses only span the space
among themselves, and the expressivity of such a subspace is not
enough for our collided deformation, we choose to use motion as
the ingredient of our database.
Training stage

We perform full-space colliding simulation for the equally-
spaced region where we predict that collision happens. In this
case, storing the deformation of every frames would result in a
massive amount of data that is not practical. We would prefer
a small amount of data that well capture the deformation. Our
solution here is to capture a keyframe in each k-th frame from
a motion. A keyframe is a configuration of an object at certain
time. The size and the quality of database can be controlled by
adjusting k. More keyframes would result larger size but more
accurate database.
Basis computation

Assume we have captured m keyframes from a motion. A
set of keyframes and local subspace of a motion i is defined as
Xi = {x1, x2, ..., xm} and Li respectively, where xi ∈ R3N is the
position of vertices in i-th keyframe. The number in subscripts
indicates a chronological order of this motion.

We firstly calculate the affine space which linearly spans this
motion using the displacement between keyframes as described
in [8, 22]. These displacements represent the deformation of this
motion.

xk − xk−1 subject to k ∈ {2, 3, ...,m}. (10)
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Data: Sets of keyframes {X1, X2, ...Xi} of training motions
Result: Database {L1, L2, ..., Li}
for i = 1, 2, ... do

Li ← {};
for k = 2, 3, ...,m do

Li ← Li ∪ {xk − xk−1};
end
for j, k = 1, 2, 3, ...,m; j , k do

Solve K(xi)D j = F j(xi);
Li ← Li ∪ {D j};

end
do PCA for Li (optional);

end
Algorithm 1: Database construction algorithm.

We add all resulting m − 1 vectors to a local subspace Li.
We then compute the derivatives of all these keyframe con-

figurations where the corresponding derivative with respect to a
keyframe configuration is a vector in R3N , as desribed in [26].
All derivative vectors of a keyframe configuration linearly span a
m − 1 subspace that best approximates other keyframe configura-
tions. We can think that this affine space is the tangent space at
keyframe configuration xi.

To get more accurate simulated result, we need a subspace that
contains the tangent spaces of the m keyframe states. The deriva-
tives are calculated by solving the following equation,

K(xi)D j(xi) = F j(xi), (11)

where K(xi) is the tangent stiffness matrix in configuration xi,
F j(xi) is the internal force deforming xi into x j, and D j(xi) is the
resulting derivatives. We do this for all states, so the resulting
tangent subspace has m ×m −m vectors. We finally add all these
vectors to Li. Totally, Li will contain m2 − 1 vectors.

The construction of the database is listed in Algorithm 1. After
we collect the difference vectors and the derivative vectors of a
motion to Li. A truncated PCA over each local subspace Li to or-
thogonalize this local basis is optionally used, the size of database
can be further reduced.

4.3 Basis selection
Once a motion-based subspace database is constructed, the re-

maining question is how to select a proper subspace in run-time
simulation. We want this subspace to be low-dimensional and to
well capture the collided deformation.

One solution is to compare the current state with the vectors
in database using some evaluate metrics such as L2 norm, and
to gather a constant number of vectors that best approximate the
current state to construct our run-time subspace. However in our
experiment, we found that this solution is not practical. Since
our database contains a large amount of vectors, updating a sub-
space every frame would take too much time which does not meet
our motivation. Also, updating a subspace with a regular interval
frames would result in discontinuous subspaces which make the
simulation become unstable. Another solution is to create a fixed
subspace from all training data using data analysis technologies
such as PCA. However, this method losts the detail of local de-
formation.

For these reasons, our current solution chooses to select a

Table 1 L2-error of displacement. “der” is the subspace of our method,
and “dis” is subspace which only contain displacements.

frame no. 20th 30th 40th 50th
der 0.0115 0.0231 0.0327 0.0197
dis 0.1452 0.2447 0.3707 0.4660

whole subspace Li according to the position where collision hap-
pens in run-time simulation. In the training stage, in addtion to
computing local subspaces for full-space motions, we also store
the position where a rigid object collides a simulation object. In
run-time simulation, when collision happens, we compare the po-
sition where collision happens with the saved positions. We then
choose the closest position and the corresponding Li for our run-
time subspace.

5. Results and Discussion
Implementation

In our result, we use the co-rotational material introduced in
[21]. We perform our simulation over the tetrahedral mesh of
a capsule shape with 5,312 vertices and 18,604 tetrahedra. We
define that the top region on a mesh would be collided in run-
time simulation. We firstly perform full-space simulation using a
rigid cylinder which collides such a region to generate 51 motions
(each motion has 75 frames) for our method. Using this training
data, we capture 5 keyframes in each 17 frames interval for a mo-
tion, then calculate our motion-based local subspace, resulting in
24 basis vectors for a motion.
Validation

We firstly demonstrate that the accuracy of our motion-based
subspace is better than the previous method. We use a rigid cylin-
der to collide with a capsule for both full-space and different sub-
spaces that are created by using the same motion that collides at
the same place as training data. The simulation results are shown
in Figure 3.

In Table 1, we also list the relative L2-errors for the displace-
ment between the rest configuration and a certain configuration
in a frame. This L2-error is computed as,

ε = ||Di
f ull − Di

sub||2, (12)

where Di
f ull is the displacement of full-space simulation and Di

sub

is the displacement of subspace simulation at i-th frame respec-
tively.

Next, to validate our subspace selection strategy, we implement
a user interface that provides an intuitive controller for changing
the position that a rigid cylinder would collide. Whenever the
user clicks in the region where is pre-defined, the rigid cylinder
will fall from the clicked position. We use this interface randomly
to choose four positions and capture the deformation. Figure 4
shows our result. It is obvious that our method can well capture
local deformation.
Evaluation of Computational Time

We list the computational times for pre-computation in table
2 and run-time simulation in table 3. At run-time, we simulate
500 frames in each method, then measure its average time of all
frames. The times for computing internal forces and stiffness ma-
trix of both full-space and subspace are the same. In full-space
simluation, we used a conjugate gradient method to solve a large
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Simulated scene 

Frame 20 Frame 30 Frame 40 Frame 50

Full-space

Derivative
subspace

Displacement
subspace

Fig. 3 Comparison of our subspace with previous subspace and full-space simulations. Left: Our
simulated scene which a rigid cylinder falls and collides with a deformable capsule. Right: Our
simulation result. The top row is the result of full-space simulation, the middle row is the result of
our method, and the bottom row is the result of previous subspace method, respectively.

Table 2 Computational times for pre-computation.

training modal analysis database construction
Time used 1534.69s 1.13s 441.49s

Table 3 Simulation statistics. From left to right: the dimension of global
subspace (r) , the dimension of local subspace (s), the computa-
tional times per frame under full-space (f-s), global subspace only
(g-s) and our subspace using database (d-s), the speedup of our
method with respect to full-space simulation (sp).

r s f-s g-s d-s sp
30 24 0.389s 0.138s 0.165s 2.36×

sparse linear equation, and to solve a small dense linear equation
in subspace we used LU-decomposition. Our database method is
slightly slower than the global subspace simulation because we
add a local subspace L to a global subspace G which makes the
dimension of our subspace larger. Nevertheless, it is obvious that
our method can achieve the speedup of subspace and compensate
the expressivity of subspace.

6. Conclusion and Future Work
In this paper, we propose a scheme that achieves accurate local

deformation of collided deformable simulation using a carefully-
constructed subspace database to enhance the expressivity of ex-
isted subspace. Our database is motion-based which can capture
more detail than pose-based. The result shows that our method
can achieve the deformation that well approximates full-space
simulation. With the position-based selection, we can keep the
simulation in a very low-dimensional subspace. This makes the
scheme well-suited for real-time applications that involve colli-
sions of deformable objects such as video games, surgery simu-
lation, and so on.

There are several aspects that we should consider as our future

Fig. 4 Validation of our select strategy. (a) is the result with rigid cylinder
rendered, (b) is the result without rigid cylinder rendered. They were
captured in same time-step.

work.

6.1 Training stage
We currently define a region for the colliding simulation which

is relatively small with respect to whole surface of our simula-
tion object, and we only fell a rigid object from a single direc-
tion. Then, if the collision happened outside of the region where
our database is covered, our method produces deformations very
close to traditional subspace simulation. Our final goal is to con-
struct a system that the user can drag the rigid object to collide
deformable object from arbitrary position and direction.
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For such an extension, we are thinking about partitioning the
entire surface into several sub-regions so that the area of each
sub-region is no more than a certain threshold. For example, us-
ing k-means clustering with k = ⌈S t/(CS ave)⌉, where S t is a to-
tal area of surface, S ave is the average area of surface, and C is
a user-defined constant. Another choice is to use Poisson disk
sampling, which samples the vertices on the surface subject to
their distances no more than user-defined values. After partition-
ing or sampling, we can set up a hemisphere with the center of a
sub-region or at a sampled vertex, then perform full-space collide
simulation from the vertices of a icosahedron in this hemisphere
to the center to create our training data.

6.2 Subspace selection
The above aspect which is considered for future improvement

is our data selection strategy. Currently we just choose one sub-
space Li which is a trained motion closest to where novel colli-
sion happens. This subspace can be seen as an approximate span
of novel collision subspace. We think about selecting several sub-
spaces near the collided position and interpolate them according
to the distance between their trained motions and their collided
positions. We expect this strategy can provide more accurate sub-
space.

6.3 Other aspects
Computing reduced internal forces and reduced stiffness ma-

trix by projecting their full-space version will take too much com-
putational resources, because every volumetric elements have to
be evaluated. Cubature by An et al. [1] can significantly increase
the performance of subspace simulation by using a small amount
of key elements to rapidly evaluate reduced internal force and re-
duced stiffness.

However, the original cubature is trained with a pre-computed
global subspace. In contrast, our subspace is updated in run-time
simulation, so the original cubature will cause error forces and
stiffness. A new cubature scheme should be researched.

The current co-rotational material we used cannot deal with
extreme deformation of volumetric elements which make the de-
formation unstable. This problem may be eliminated by applying
with indefiniteness correction [16].
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