
Vol. 45 No. SIG 14(TOD 24) IPSJ Transactions on Databases Dec. 2004

Regular Paper

PO-P: A Concurrency Control Protocol for Parallel B-trees

Damdinsuren Amarmend,† Masayoshi Aritsugi†

and Yoshinari Kanamori†

A number of parallel and distributed B-tree structures for shared-nothing parallel database
systems have been proposed in connection with the related technological advancements such
as clustered computers. We focus on the performance of the concurrency control protocols
for such parallel B-trees and consider the possibility and the suitability of introduction of
preparatory operations such as preemptive node split or merge to them in this paper. Since
the early top-down concurrency control protocols were only designed for shared-everything
architecture, it is inappropriate to directly apply them to the distributed environment because
the way update processes traverse the B-tree may cause significant degradations in the system
performance. In this paper, we propose a protocol, named preparatory operations-parallel
(PO-P), in which such preparatory operations are used during traversals of update processes.
The results of our implementation of PO-P on a parallel B-tree in comparison with the
existing protocol INC-OPT prove that the PO-P can serve as a good alternative protocol for
distributed parallel B-trees.

1. Introduction

Shared-nothing parallel database systems are
being considered suitable for large-scale data
processing applications with high performance
and high capacity and availability require-
ments. An instance of such a system consists
of some independent processing elements (PE)
each of which has its own memory, storage and
CPU while interconnected through high speed
networks.

To provide effective data processing and man-
agement in such systems, parallel distributed
B-tree structures have been proposed (e.g.,
Refs. 10), 12)). The effectiveness of the concur-
rency control protocol applied to the parallel
B-tree is crucial for the systems performance.

Although there have been several concur-
rency control protocols proposed for the ordi-
nary B-trees, none of them are considered to
be suitable for parallel B-trees because their
direct application is potential to create dead-
locks and may require expensive synchroniza-
tions between distributed nodes in case of up-
date operations 6). Therefore, an appropriate
concurrency control method is needed for con-
currently running transaction processes on par-
allel B-trees to meet the high performance re-
quirement. An incremental optimistic protocol
named INC-OPT 6) has been proposed for this
purpose.

In this paper we aim at improving the INC-

† Faculty of Engineering, Gunma University

OPT protocol, in which every update operation
is done only after all the necessary latches are
obtained on the whole update scope. For dis-
tributed parallel B-tree, performing an update
operation in this manner is potentially expen-
sive. Because its synchronization with other
PEs can block many other processes which want
to traverse the parallel B-tree in parallel until
the whole update operation is complete. For ex-
ample, all updates whose scope is from the leaf
to the root node of the tree create such long
waits.

This situation can be improved by using top-
down methods in which preparatory operations
(POs) 3),9) are used. When the POs are intro-
duced to the parallel B-tree, there will not be
any highly cascaded update operations. Be-
cause update processes preemptively split or
merge nodes through their traversals. That
means, the POs can help to get more concurrent
processes run on the tree than in the INC-OPT.
However, the original top-down protocols such
as POM 9), TD-OPT 3) can not be directly ap-
plied to the parallel B-tree because their use of
the X, S and SIX latches on the upper part of
the tree may cause unnecessary expensive syn-
chronizations between PEs.

In this paper, we consider the possibility and
the suitability of using the POs in parallel B-
trees, propose an optimistic protocol named
preparatory operations-parallel, or PO-P, and
evaluate its effectiveness in comparison with the
INC-OPT.

The rest of the paper is organized as follows:

30



Vol. 45 No. SIG 14(TOD 24) PO-P: A Concurrency Control Protocol for Parallel B-trees 31

In Section 2, we discuss the related work in de-
tail. Section 3 describes the PO-P protocol.
Section 4 presents the implementation details
and explains the results of experiments on that.
Finally, Section 5 concludes the paper.

2. Related Work

In Ref. 6), the concurrency control proto-
cols such as B-X, B-SIX, B-OPT 1), OPT-
DLOCK 11), ARIES/IM 7),8) and B-link 5) for
conventional B-tree are considered to be not
suitable for parallel B-trees, and the INC-
OPT 6) has been thus proposed as a new op-
timistic protocol for parallel B-trees.

The INC-OPT is based on the B-OPT, but
differs from it in the second phase of the update
process. An update process in the INC-OPT
traverses the tree from the root to the desired
leaf node using the IX latch-coupling 2),6)∼8). If
the process finds that the leaf node needs any
structure modification operation (SMO) such
as node split or merge of nodes, the process
releases the all acquired latches. In the sec-
ond phase, the process retraverses from the
root by the IX latch-coupling until the process
reaches the top node of the update scope. From
that point, it traverses getting X latches on the
whole update scope. In this way, the process
may have to traverse again if the top node of the
scope needs any SMO. In the worst case, the
update scope could be the path from the root
to the desired leaf and latched by X latches. In
brief, the INC-OPT uses the latches at appro-
priate places.

However, there is a case where the INC-
OPT’s performance may degrade. In an up-
date intensive environment, there will be much
occurrences of SMO which involves more than
two levels of the parallel B-tree. Due to the
nature of the distributed parallel B-tree, some
nodes of the tree can be copied on several PEs
for the sake of parallel access 4),12). Also, it is
appropriate to have more copy nodes at the up-
per levels of the tree while less copy nodes at the
lower levels because updates are likely to occur
often in the lower levels and retrievals are likely
to occur often at the upper levels 6). During any
update, which involves these copy nodes, they
must be synchronized and reflected.

Upon this facts, if the update scope is higher
and involve more copy nodes, then the INC-
OPT may block other local and remote pro-
cesses waiting for longer time. For example, if
the update scope equals the path from the leaf

to the root, other PEs can not even access the
root node until the update is finished.

To improve this situation, we study the suit-
ability of introduction of preparatory opera-
tions into parallel B-tree.

If a node has full or insufficient entries then
it is referred to as an unsafe node otherwise as
a safe node. If an update process finds any un-
safe node on the path, it can preemptively split
the node or merge with another node making
the node safe. These operations are referred
to as preparatory operations. This idea was al-
ready embodied in the top-down protocols such
as POM 9), TD-X, TD-SIX, and TD-OPT 3).
However, they were only designed for conven-
tional B-trees.

In the TD-X, update processes use the X
latch-coupling during their traversals, not al-
lowing other processes to read the latched
nodes. At each level the process checks the child
node and performs PO if the node is unsafe.

Update processes in the TD-SIX use the SIX
latch-coupling allowing other retrieval processes
to read the latched node but disallowing other
update processes. If the process encounters any
unsafe node, it tries to convert the SIX latches
into the X latches.

In contrast, an update process in the TD-
OPT has two phases when it faces an unsafe
node. In the first, it traverses using the IX
latch-coupling from the root to the leaf node. If
the leaf node is unsafe then the process releases
the latch and traverses again from the root us-
ing the SIX latch-coupling like in the TD-SIX.
As for the performance, the TD-OPT is better
than the other two protocols, but in the second
phase it still blocks other update processes in
the upper part of the tree.

The direct application of the TD-OPT to the
parallel B-tree is inappropriate because using
the SIX latch on the upper part of the tree is
expensive. It means, for example, the root node
will be latched often while the root node is not
included in the actual update scope. Thus, it
may keep other remote processes unnecessarily
waiting for a long time.

Therefore, we combine the PO with the INC-
OPT’s use of the latches in order to effectively
use the POs for parallel B-trees.

3. PO-P Protocol

We propose an optimistic PO-P (preparatory
operations-parallel) concurrency control as an
alternative protocol for parallel distributed B-



32 IPSJ Transactions on Databases Dec. 2004

tree structure. The PO-P is a deadlock free
protocol as proved in Theorem 1. The PO-P
employs the POs only for update processes. For
retrieval processes, they traverse using the IS
latch-coupling as in other optimistic protocols.

A PE which initiates a PO is called an initia-
tor. A PE which has a copy of a node is named
a copy PE. The initiator always has all the
addresses of the copy nodes of its local nodes.
That address consists of a copy PE number and
its local node address. Before doing any PO,
the parent node and its copies and the unsafe
child node and its copies must be latched with
X latches. A PO in the PO-P is rather different
than the conventional one because it deals with
distributed nodes.

A PO in the PO-P is defined as follows:
( 1 ) Inform all the copy PEs of the unsafe

node to start the PO. It means, the
initiator sends a special message to each
copy PE including the copy node address.

( 2 ) Each copy PE, including the initiator,
performs the POs which can be split or
merge, and updates the parent nodes.
These POs are assumed to be done in
parallel. Each participating PE has a
process to perform the PO.

( 3 ) They also define the state(s) of the re-
sulting node(s) from the PO to be local
or remote. If a node does not contain any
local pointer, it is referred to as a remote
node, and it must be removed from the
PE. Otherwise, it is referred to as a local
node and will be kept locally.

( 4 ) Each copy PE sends the address of
the resulting node(s) together with their
state(s) to the initiator PE.

( 5 ) The initiator PE collects the information,
then sends all the information to the copy
PEs. The initiator must also send the in-
formation to the copy PEs of the parent
node, which have remote pointers to the
unsafe node but have no local copy of it.
They update the parent node and its re-
mote child pointer.

( 6 ) Based on the information, each PE ad-
justs the pointers in the parent. If the
child node is remote, the pointer in the
parent must point to the address of its
copy nodes. Also, the addresses of the
copy nodes of the child node(s) must be
updated.

To obtain latches on the copy nodes, the PO-
P uses linear order latching as used in the INC-

OPT. According to this method, for example,
PE1 will have the highest priority to get a latch
on the root.

Based upon the definition given above, we de-
scribe the protocol in Fig. 1. Let H be the
height of the tree. The variable height is used
to indicate the level of any unsafe node while
the variable unsafe node is used to indicate the
occurrence of any unsafe node. Initially, height
is set to H and unsafe node is to No.

At first, each update process optimistically
traverses the tree down using the IX latch-
coupling. The target leaf node will be latched
with an X latch. If the leaf node is safe, the
process updates it and completes its opera-
tion by unlatching the leaf. This part is de-
scribed in Main Module in Fig. 1 in detail. If
the leaf node is unsafe, then the process sets
unsafe node to Y es and decreases height by
one to get an X latch on the parent of the leaf.
Then, the process releases the leaf’s latch and
restarts from the root as described in Module
2 in Fig. 1. According to Module 2, the pro-
cess now pessimistically checks every node on
the way whether it is safe or not, even though
the leaf node could happen to be made safe by
another process during the restart. If any un-
safe node is encountered, the process makes it
safe. In order to do that, it first gets X latches
on the parent and its copies and on the child
node and its copies in the retraversal(s). Only
after all the necessary latches are obtained, the
process starts the appropriate PO as defined
above. After finishing the PO, the process re-
leases the X latches and continues its traversal.
The update process completes finally updating
the leaf node. Until then several retraversals
can be made.

The fundamental property of the PO-P is the
adaptation of the conventional POs for the par-
allel B-tree. The PO-P allows multiple pro-
cesses to traverse the parallel B-tree concur-
rently, even performing multiple POs unless
their update scopes do not affect each other.

The PO-P is similar to the INC-OPT except
for the fact that it uses the POs for update op-
erations. The update scope of the INC-OPT
may reach from the leaf to the root node while
any update of the PO-P involves only two lev-
els of the tree. For a distributed environment
in which multiple PEs participate, performing
highly cascaded SMOs is considered to be ex-
pensive. Therefore, the PO-P is expected to
have more degree of concurrency than INC-



Vol. 45 No. SIG 14(TOD 24) PO-P: A Concurrency Control Protocol for Parallel B-trees 33

1. Parent := NULL; Child :=ROOT; 
2. while h < height do begin
3.     latch Child with IX; unlatch Parent; 
4.     if Child is unsafe then
5.          begin
6.              height := h-1; unsafe_node := Yes; 
7.              unlatch Child; goto 1; 
8.          end
9.     else begin
10.            Parent := Child; Determine nextChild;
11.            Child := nextChild; h := h+1;
12.          end;
13.    end;
14.  end;
15.  if unsafe_node == Yes then begin
16.    latch Child and its copies with X; 
17.    unlatch Parent; Parent := Child;
18.    Determine nextChild; Child := nextChild; 
19.    latch Child and its copies with X;
20.    perform the POs on Child and its copies;
21.    unlatch Parent’s copies, Child and its copies;
22.    Determine the appropriate Child;
23.    unsafe_node := No; height := H;
24.    h := h+1; goto 1;
25.  end;
26.  latch Child with X; unlatch Parent;
27.  if Child is unsafe then  goto 5;
28.  else begin
29.    update Child; unlatch Child; 
30.  end.

1.   height := H; unsafe_node := No;
2.   Parent := NULL; Child := ROOT;
3.   h := 1;
3.   while h < height do begin
4.      latch Child with IX; 
5.      unlatch Parent; 
6.      Parent := Child; 
7.      Determine nextChild;
8.      Child := nextChild; 
9.      h := h+1;
10.   end;
11. latch Child with X; 
12. unlatch Parent;
13. if Child is unsafe then  begin
14.    height := h-1;
15.    unsafe_node := Yes;
16.    unlatch Child; 
17.    goto Module 2.
18.    return;
19. end
20. else begin
21.    update Child; unlatch Child;
22. end.  

Main Module

Module 2

Fig. 1 PO-P protocol.

OPT in the update intensive cases.
The second phase of the TD-OPT uses the

SIX latch-coupling starting from the root to the
target leaf node. Thus it needs to synchronize
many PEs while it is actually unnecessary. This
will create an intolerable degradation in the sys-
tem performance. In contrast, the PO-P uses
the IX latch-coupling until the update scope to
avoid the above situation.

Theorem 1 The PO-P protocol is deadlock
free.
Proof. The latching remote copy nodes are
deadlock free, since the linear order technique
never creates cyclic waits. Therefore, we should
consider deadlocks that involve different nodes.
Suppose any two processes, say P and Q, the
latter preceding the former along the same
path. If a deadlock occurs between these two
processes, then that must be a situation in
which Q waits for a node on which P already
has a latch. However, this situation never hap-
pens because the B-tree does not have cyclic
links, and the latch-coupling and the PO-P al-
low latches only in descendant order. Even the
retraversals of Q cannot create such waits be-
cause, according to the PO-P, Q must release
all the latches it had acquired in the previous

traversal. Hence, Q preceding P never waits for
the node on which P already has a latch. �

Although the PO-P is expected to be more
efficient than the TD-OPT in performing the
POs for parallel B-trees, it has a problem to be
solved because of its optimistic behavior. Be-
low, we only mention about the problem and
its possible solution. In the future work, this
aspect will be discussed in detail.

Suppose an update process, say P , finds its
target leaf node unsafe. In the retraversal, P
may also find an unsafe internal node, say U .
According to the PO-P, P makes U safe. If a
safe node, say S, exists along the path between
U and the leaf, the PO on U can be considered
unnecessary. If the number of such costly POs
is high, it will hurt the performance. Moreover,
during the retraversal of P after making U safe,
U can be made unsafe in repetition by the ef-
fect of other update processes. This means that
those unnecessary POs can create a chance that
P can fall into an endless loop. This chance can
be reduced by increasing the node size. In con-
trast, the INC-OPT performs the SMOs on the
exact update scope, and thus the retraversals
of its update processes are limited to the height
of the B-tree in the worst case.



34 IPSJ Transactions on Databases Dec. 2004

The problem can be fixed by learning from
the previous traversal. From the first traversal
path, the process P can find a safe node which
is the closest to the leaf node. We call this a
safe point. P traverses using IX latch-coupling
until the safe point and acquires X latch on it.
From the safe point to down, the process as-
sumes that every node, including the leaf, on
the path is unsafe. Then the process performs
the cascading POs on all of them not doing any
retraversal. This method eliminates the unnec-
essary POs, and also limits the retraversals to
the height of the B-tree as the INC-OPT does.

4. Experiments and Results

In order to see the PO-P’s performance prac-
tically, we implemented it together with the
INC-OPT on Fat-Btrees 6),12) on a shared-
nothing parallel machine. Our shared-nothing
parallel machine consists of 8 PCs each of which
is running Red Hat Linux version 9 and con-
nected through a Gigabit Ethernet. We used
LAM/MPI 7.0.3 implementation for the point-
to-point communication between PEs.

According to the Fat-Btree’s structure defi-
nition each node can have separate pages (let
us name it as ptrPage) in which the addresses
of copy nodes and remote children nodes are
contained. A copy node address consists of two
parts:[PE number, local node address].

In our implementation, we put the ptrPage’s
address in the location of the remote child’s ad-
dress so that the process is able to recognize
if the determined next child is remote or local
node. Then, we inserted the position of the
remote child’s address in the right position in
the ptrPage along with the corresponding [PE
number, local node address] pair.

We implemented two Fat-Btrees, in which
one had small size nodes while another had
larger size nodes. The former was used for ob-
serving an update intensive environment where
multiple SMOs occurred often while the lat-
ter was used for simulating environments where
SMOs happened rarely.

For the small size nodes, we used 133B, and,
an index node can thus have �(133−32−4)/8� =
12 entries. 32 B is saved for the administration
section of a node. For the larger size nodes, we
used 4096 B. Thus, �(4096−32−4)/8� = 507 is
the maximum number of entries in an internal
node. A leaf node can have �(4096−32)/208� =
19 tuples at the maximum as a tuple takes
208B.

Fig. 2 System structure.

Table 1 Specifications of PEs.

Processing Elements PE0-PE7
CPU speed 1.4GHz
Memory size 512MB
OS Linux Red Hat 9.

4.1 System Structure
The general system structure is illustrated

in Fig. 2. The PEs numbered 0 through 7
have the same specifications which are shown
in Table 1. All the implementations are done
in the main memory of the machines because
we focused only on measuring the performance
of concurrency control protocols. We used PE0
for the tree initialization, tree distribution and
also request set generation. PE0 does the fol-
lowings:
( 1 ) Initialize the B-tree.
( 2 ) Distribute the tree to PE1 through PE7

according to the right value ranges.
( 3 ) Produce request sets and request type

sets (retrieval or update) according to the
given update ratio.

( 4 ) Send appropriate request sets with the
corresponding type sets to the PEs ac-
cording to the value ranges.

( 5 ) Start PE1 through PE7 to process their
assigned sets of requests.

( 6 ) When all the PEs complete their job,
they inform PE0. Then PE0 finishes the
PEs.

We assigned the request sets to the PEs before
the actual request processing starts to highlight
the effectiveness of parallelization.

In Table 2, the initial B-tree configurations
used in the experiments are shown. The first



Vol. 45 No. SIG 14(TOD 24) PO-P: A Concurrency Control Protocol for Parallel B-trees 35

Table 2 The initial B-tree configurations.

Tuples H Nn(1) Nn(2) Nn(3) Nn(4)
6K 4 1 8 77 753
2M 3 1 254 64516

Table 3 System performance.

Communication throughput
of the network 37.6Mbps
Message setup time 93µs
Access time to a page in memory 1.5 µs
Latch overhead in local PE 2.5 µs
Remote latch overhead 419µs

column is the number of initially inserted tu-
ples and the subsequents are the tree height and
the number of nodes in the corresponding lev-
els. We set the initial tree nodes with 50–100%
occupancies in all the experiments.

A request consists of:
( 1 ) Request type (retrieval | update)
( 2 ) Key (tuple’s attribute value).
The keys were randomly chosen integer num-
bers from the range [1, 225]. We assigned 4 M
of the requests for the Fat-Btree with the nodes
of small size in order to create an update inten-
sive environment. We assigned 2 M of the re-
quests for the Fat-Btree with the nodes of larger
size. We assumed here only insert operations
for update and read operations for retrieval. In
Table 3, the system’s initial performance data
is given. The remote latch cost was rather high
than the local latch cost because of the message
cost plus the waiting time for the latch releases.

4.2 Performance Results
We ran the two protocols (the INC-OPT and

the PO-P) on different number of PEs under
increasing update ratio in the request sets. The
graphs Figs. 3, 4, 5 and 6 illustrate the results
of the experiments which are done on the Fat-
Btree with the nodes of small size. The graphs
Figs. 7, 8 and 9 show the results for the Fat-
Btree with the nodes of larger size.

The vertical axis of the graphs denotes the
throughput which shows the number of opera-
tions done per second. The horizontal axis of
the graphs but Fig. 6 describes the changes of
the ratio of update operations in the request set.
The update ratio increases from 0% to 100% by
10.

In the first type of the experiments, the root
node split occurred three times, which means
the tree height increased from 4 to 7.

In Fig. 3, the results of an experiment in
which 2 PEs participated are shown. From this
figure, we can see that the PO-P has slightly

better performance than the INC-OPT when
update ratio increases from 50% to 100%, al-
though almost the same in the first half range.
When the number of PEs is lower, the number
of copy nodes is also lower according to Fat-
Btree’s design. That means copy node splits oc-
cur less frequently in the configuration in which
fewer PEs participated than that of more PEs
participated in. In one PE case, we have also
conducted a similar experiment that shows the
PO-P has slightly better performance than the
INC-OPT. But in that case all the operations
are locally done without doing any communi-
cation with other PEs, and its throughputs are
the lowest among the other configurations due
to less processing elements.

In Figs. 4 and 5, the results of the same ex-
periment but the number of PEs are 5 and 7,
respectively, are shown. In these experiments,
the performance difference is almost constant
between 20% to 80% of update ratios. How-
ever, it slightly increases between 80% to 100%
of update ratios. During the experiments, only
10% of the node splits led to the intermedi-
ate node splits and 0.3% of them involved copy
node splits or copy parent reflections. There-
fore, any big differences between the two proto-
cols are not seen when the update ratio is low.
On the other hand, the Fat-Btree’s structure
has its own character, that is, it has more node
copies in the upper part of the distributed tree
but less copies in the lower part. Then perform-
ing any SMOs in the upper part is much more
costly than doing in the lower part because of
the communication cost.

Fig. 6 shows the compared performance of the
two protocols under different number of PEs
while the request set consists of 100 percent up-
date operations. From the figure, it is seen that
the difference is gradually increasing when the
number of PEs increases under a high update
ratio.

Finally, we show the results of the experi-
ments with the nodes of larger size in Fig. 7
through Fig. 9 where the number of PEs are 2,
5 and 7. It is clear that the larger the nodes
are, the fewer the SMOs or the POs occur. In
the experiments, only 3% of the total insert
requests led to the SMOs. From the experi-
ments we saw that the performances of the PO-
P and the INC-OPT were identical. The larger
size nodes kept the tree height low. This pre-
cluded any highly cascaded SMOs which involve
many copy nodes. Therefore, any differences



36 IPSJ Transactions on Databases Dec. 2004

Fig. 3 Performance comparison of the two protocols
under 2PEs (node size: 133B, number of tuples
inserted: 4M).

Fig. 4 Performance comparison of the two protocols
under 5PEs (node size: 133B, number of tuples
inserted: 4M).

Fig. 5 Performance comparison of the two protocols
under 7PEs (node size: 133B, number of tuples
inserted: 4M).

will not be observed between the protocols in
cases where SMOs rarely occur.

5. Conclusions

We have proposed a protocol named PO-P
for shared-nothing parallel B-trees such as Fat-

Fig. 6 Performance comparison at the highest update
rate (node size: 133B, number of tuples in-
serted: 4M).

Fig. 7 Performance comparison of the two protocols
under 2PEs (node size: 4K, number of tuples
inserted: 2M).

Fig. 8 Performance comparison of the two protocols
under 5 PEs (node size: 4K, number of tuples
inserted: 2M).

Btree as an alternative. In our protocol we
adapted preparatory operations for update pro-
cesses when they encounter unsafe nodes. By
using this method any update operations are
done in small atomic operations which require
only two levels’ nodes latched at a time on the



Vol. 45 No. SIG 14(TOD 24) PO-P: A Concurrency Control Protocol for Parallel B-trees 37

Fig. 9 Performance comparison of the two protocols
under 7PEs (node size: 4K, number of tuples
inserted: 2M).

global parallel B-tree. Therefore, the PO-P in-
creases the degree of parallel operations by de-
creasing the latch wait time for processes which
run in parallel on many PEs.

In contrast, the current method INC-OPT
creates longer wait times for processes in high
SMOs occurences. Our experimental results
show that the PO-P works at least at the same
performance with the INC-OPT but shows bet-
ter performance in the cases in which highly
cascaded updates occur often when many PEs
are involved. The main merit of this paper is
that it showed that top-down method is not
only applicable for ordinary B-trees but can also
be used for parallel B-trees with more effective
results.

Our further work will consider the versions of
the implementations involving cache usage and
also recovery issues. The future work will also
include the implementation of the solution for
the problem mentioned in Section 3.

Acknowledgments The authors wish to
thank the editor and anonymous reviewers for
their valuable comments and suggestions.

References

1) Bayer, R. and Schkolnick, M.: Concurrency of
Operations on B-trees, Acta Informatica, Vol.9,
No.1, pp.1–21 (1977).

2) Gray, J. and Reuter, A.: Transaction Process-
ing: Concepts and Techniques, Morgan Kauf-
mann (1993).

3) Haritsa, J.R. and Seshadri, S.: Real-time In-
dex Concurrency Control, IEEE Trans.Knowl-
edge and Data Engineering, Vol.12, No.3,
pp.429–447 (2000).

4) Kröll, B. and Widmayer, P.: Distributing a
Search Tree Among a Growing Number of

Processors, Proc. 1994 ACM SIGMOD Inter-
national Conference on Management of Data,
Minneapolis, Minnesota, May 24–27, 1994,
Snodgrass, R.T. and Winslett, M.(eds.), ACM
Press, pp.265–276 (1994).

5) Lehman, P.L. and Yao, S.B.: Efficient Locking
for Concurrent Operations on B-Trees, ACM
Trans. Database Syst., Vol.6, No.4, pp.650–670
(1981).

6) Miyazaki, J. and Yokota, H.: Concurrency
Control and Performance Evaluation of Paral-
lel B-tree Structures, IEICE Trans.Inf.& Syst.,
Vol.E85-D, No.8, pp.1269–1283 (2002).

7) Mohan, C.: ARIES/KVL: A Key-Value Lock-
ing Method for Concurrency Control of Mul-
tiaction Transactions Operating on B-Tree In-
dexes, Proc. 16th International Conference on
Very Large Data Bases, August 13–16, 1990,
Brisbane, Queensland, Australia, McLeod, D.,
Sacks-Davis, R. and Schek, H.-J.(eds.), Morgan
Kaufmann, pp.392–405 (1990).

8) Mohan, C. and Levine, F.: ARIES/IM: An
Efficient and High Concurrency Index Man-
agement Method Using Write-Ahead Log-
ging, Proc. 1992 ACM SIGMOD Interna-
tional Conference on Management of Data, San
Diego, California, June 2–5, 1992, Stonebraker,
M.(ed.), ACM Press, pp.371–380 (1992).

9) Mond, Y. and Raz, Y.: Concurrency Control
in B+-Trees Databases Using Preparatory Op-
erations, VLDB’85, Proc. 11th International
Conference on Very Large Data Bases, Au-
gust 21–23, 1985, Stockholm, Sweden, Pirotte,
A. and Vassiliou, Y.(eds.), Morgan Kaufmann,
pp.331–334 (1985).

10) Seeger, B. and Larson, P.-Å.: Multi-Disk B-
trees, Proc. 1991 ACM SIGMOD International
Conference on Management of Data, Denver,
Colorado, May 29–31, 1991, Clifford, J. and
King, R.(eds.), ACM Press, pp.436–445 (1991).

11) Srinivasan, V. and Carey, M.J.: Performance
of B+ Tree Concurrency Algorithms, VLDB J.,
Vol.2, No.4, pp.361–406 (1993).

12) Yokota, H., Kanemasa, Y. and Miyazaki,
J.: Fat-Btree: An Update-Conscious Parallel
Directory Structure, Proc. 15th International
Conference on Data Engineering, 23–26 March
1999, Sydney, Australia, IEEE Computer Soci-
ety, pp.448–457 (1999).

(Received June 20, 2004)
(Accepted October 14, 2004)

(Editor in Charge: Jun Miyazaki)



38 IPSJ Transactions on Databases Dec. 2004

Damdinsuren Amarmend
received his B.E. in computer
science from Computer Sci-
ence and Management School of
Mongolian Technical University,
Mongolia, in 1996, and his M.E.
degree in computer science from

Gunma University, Japan, in 2003. He is cur-
rently a Ph.D. student at the Department of
Computer Science, Gunma University. His re-
search interests include database systems, spe-
cially parallel and distributed database sys-
tems.

Masayoshi Aritsugi re-
ceived his B.E. and D.E. de-
grees in computer science and
communication engineering from
Kyushu University in 1991 and
1996, respectively. Since 1996,
he has been working at the Fac-

ulty of Engineering, Gunma University, where
he is now an Associate Professor. His research
interests include database systems and paral-
lel and distributed data processing. He is a
member of IPSJ, IEICE, IEEE-CS, ACM, and
DBSJ.

Yoshinari Kanamori re-
ceived his D.E. degree from To-
hoku University in 1975. Since
1991, he has been a Profes-
sor at the Department of Com-
puter Science, Gunma Univer-
sity. His research interests in-

clude database systems and image processing.
He is a member of IPSJ, IEICE, ACM, and
IEEE-CS.


