
Electronic Preprint for Journal of Information Processing Vol.24 No.6

Regular Paper

Adaptive Function to Ensure Robustness of MCMC-based
Autonomous Decentralized Control Mechanism

against Changing Environment

Yusuke Sakumoto1,a) Masaki Aida1,b) Hideyuki Shimonishi2,c)

Received: January 18, 2016, Accepted: July 5, 2016

Abstract: In our previous work, we proposed an autonomous decentralized control mechanism (ADCM) to be able
to control the probability distribution of a system performance variable on the Markov chain Monte Carlo method.
As interesting features of our ADCM, we proved the probability distribution controlled by our ADCM is described
by a few macro parameters, and discovered a law between the macro parameters and the external environment of the
system in our ADCM. In this paper, on the basis of the law, we design an autonomous decentralized adaptive function
to adapt to change in the external environment. This function ensures the robustness of our ADCM against changing
environment. We apply our ADCM with the proposed adaptive function to a virtual machine placement problem in
data center networks (DCNs). Simulation experiments confirm that the proposed adaptive function effectively deals
with several DCN scenarios with changing environment.

Keywords: large-scale and wide-area system, autonomous decentralized control, data center network, virtual machine
placement problem, adaptive control

1. Introduction

Information technology plays important role in people’s life.
Several systems supporting information technology are con-
structed on worldwide networks, and its system scale is rapidly
increasing to improve or maintain service quality required by
people. Examples of such a large-scale and wide-area system
are Microsoft and Google’s data centers [1], [2]. Currently, these
data centers are composed of approximately one million comput-
ers distributed all over the world. In the future, the number of
computers in these systems will continue to increase at a rapid
rate. Hence, such large-scale and wide-area networks need scal-
able control mechanisms to accommodate the sheer number of
computers anticipated.

Centralized control is one commonly-used approach to system
management. In a centralized control mechanism, a supervising
node gathers and processes complete state information from the
entire system, and then controls the other nodes. The supervising
node knows system behavior from the gathered state information,
and would be able to adjust the states of the other nodes appropri-
ately. Thanks to the supervising node, centralized control mecha-
nisms are simple, and offer good usability. However, it is impos-
sible to apply centralized controls to large-scale and wide-area
systems because of information gathering limitation, and control
frequency requirement. In a wide-area system, the gathering of

1 Tokyo Metropolitan University, Hino, Tokyo 191–0065, Japan
2 NEC Corporation, Kawasaki, Kanagawa 211–0011, Japan
a) sakumoto@tmu.ac.jp
b) aida@tmu.ac.jp
c) h-shimonishi@cd.jp.nec.com

state information from all nodes will take too long, and so the su-
pervising node cannot control the other nodes frequently. How-
ever, the appropriate states of the nodes in a large-scale system are
always changing due to unpredictable reasons (e.g., device fail-
ure and sudden increase in service demand), and so the supervis-
ing node should control them frequently. Therefore, centralized
controls are not scalable, and an alternative to centralized control
mechanism is needed for large-scale and wide-area systems.

For controlling large-scale and wide-area systems, several
autonomous decentralized control mechanisms (ADCMs) have
been proposed in Refs. [3], [4], [5], [6], [7]. They do not depend
on supervising nodes. In an ADCM, each node gathers infor-
mation from its local area and takes action to control its state.
ADCMs would be scalable, but the problem of not depending on
supervising nodes is that it is difficult to control the entire behav-
ior of a large-scale and wide-area system in a desirable direction.
Fortunately, the ADCMs [3], [6], [7] solved this problem with the
inspiration from the physical universe.

The physical universe contains many examples of large-scale
and wide-area systems. For example, water in a beaker is com-
posed of innumerable molecules, and its overall extent is many
orders of magnitude larger than that of its constituent molecules.
Each molecule behaves autonomously, but it is easy to know and
control its overall behavior with a macroscopic operation, despite
numerous degrees of freedom of molecules. We, for instance, can
measure and control the water’s temperature with a heater. This
property is understood with the hierarchical structure (Fig. 1) to
be able to simplify numerous degrees of freedom in the physical
system. Thanks to this hierarchical structure, the system can be
described by a few degrees of freedom at the macroscopic scale.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

Fig. 1 The hierarchical structure in physical systems.

In Ref. [7], inspired by the hierarchical structure in the physical
system, we have proposed an ADCM that offers good usability
and quick response in large-scale and wide-area systems.

In Ref. [7], we designed an ADCM based on Markov chain
Monte Carlo (MCMC) [8] for large-scale and wide-area systems.
MCMC is used to design a state transition probability for control-
ling the probability distribution of a state quantity (e.g., energy)
in models (e.g., Ising spin model) of statistical mechanics. In
our ADCM, each node autonomously changes its state using the
MCMC-based state transition probability that is able to indirectly
control probability distribution of a system performance variable
in a desirable direction. Moreover, we proved that the controlled
probability distribution is described by just a few macro parame-
ters, and discovered the law between these macro parameters and
the external environment of the system. This law would have ap-
plication potentiality to design macroscopic operations like phys-
ical systems. However, we have not discussed the application
potentiality.

In this paper, to realize macroscopic operations like physical
systems, we design an autonomous decentralized adaptive func-
tion based on the law of our ADCM. This function ensures the
robustness of our ADCM. From the law, we first derive a condi-
tion to adapt to change in the external environment for ensuring
the robustness. Then, we design an adaptive function with au-
tonomous decentralized manner to satisfy the derived condition
against changing environment. Moreover, we apply the proposed
adaptive function to a virtual machine (VM) placement problem
in a data center network (DCN) as in Ref. [7]. To investigate the
performance of the proposed adaptive function, we perform sim-
ulation experiment with changing traffic rates among VMs. Sim-
ulation experiments confirm that the proposed adaptive function
can deal effectively with several scenarios with changing envi-
ronment. In the conference paper [9], we have reported simula-
tion results when homogeneously changing traffic rates among
VMs. In this paper, we also show the effectiveness of the pro-
posed adaptive function against changing traffic rates heteroge-
neously. Moreover, we investigate the effect of the graph diam-
eter on the effectiveness of the proposed adaptive function. This
investigation would help in estimating performance of the pro-
posed adaptive function in large-scale systems.

This paper is organized as follows. Section 2 explains the sys-
tem model used in this paper. Section 3 introduces our ADCM
proposed in Ref. [7]. Section 4 proposes the autonomous decen-
tralized adaptive function that ensures control robustness against
changing environment. Section 5 details the experiments con-
ducted to investigate the effectiveness of the proposed adaptive
function. Section 6 describes the related work for the MCMC-

Fig. 2 An example of the system model for NS = 4 and N = 10.

based ADCM and the proposed adaptive function. Finally, in
Section 7, we conclude this paper and discuss future work.

2. System Model

We assume a system with NS subsystems and N nodes. Each
node is assigned to a subsystem, and collaborating with some
other nodes by using the subsystem’s resource. Node state xi

of node i is the identification number of its assigning subsys-
tem (xi ∈ {1, . . . ,NS }). Let φk be the set of nodes assigned to
subsystem k. Each subsystem has adjacency relationship with
other subsystems. Let ak be the set of subsystems that have adja-
cency relationship with subsystem k. A node i ∈ φk is permitted
to move to one of the other subsystems, l ∈ ak. Figure 2 shows
an example of the system model for NS = 4 and N = 10.

System state X is given by all node states (x1, x2, . . . , xN). In
Ref. [7], we define system performance variable M(X) for node
collaboration as

M(X) =
N∑

i=1

∑

j∈χi

mi j(xi, x j), (1)

where χi is the set of nodes collaborating with node i. mi j(xi, x j)
represents the weakness of the collaboration between nodes i and
j. System performance variable M(X) represents system-level
weakness of the collaboration among nodes. Small mi j(xi, x j)
means that nodes i and j collaborate strongly. If nodes i and
j are assigned to one subsystem (i.e., xi = x j), they are most
strongly collaborating. When all nodes are assigned to one sub-
system, M(X) is minimized. In this assignment, all nodes can
most strongly collaborate, but load of the assigning subsystem is
terrible. Hence, M(X) should be controlled by considering the
strengths of node collaboration and node distribution.

We assume mi i(xi, xi) = 0 and mi j(xi, x j) = mj i(x j, xi). Other
values of mi j(xi, x j) are determined by information of the exter-
nal environment. Hence, external environment affects mi j(xi, x j)
and M(X).

3. MCMC-based ADCM

3.1 Autonomous Node Action
In Ref. [7], on the basis of MCMC [8], [10], we designed an

autonomous node action to indirectly control the probability dis-
tribution of system performance variable M. We showed the de-
signed node action can adjust the strengths of node collaboration
and node distribution, simultaneously.

In the designed node action, node i changes its state xi to
x′i ∈ axi according to the following probability

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

Ti(xi → x′i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
|axi |

e−αλΔmi(xi→x′i)

if Δmi(xi → x′i) < 0
1
|axi |

e−(1−α)λΔmi(xi→x′i)

otherwise

, (2)

where λ is the control parameter used in common by nodes, and α
is a positive parameter (0 < α < 0.5). In Eq. (2), Δmi(xi → x′i) is
the difference in system performance variable M for node states
xi and x′i ; it is calculated by

Δmi(xi → x′i) =
∑

j∈χi

[
mi j(x′i , x j) − mi j(xi, x j)

]
. (3)

If λ = 0, Ti(xi → x′i)’s for any x′i are the same value, and so xi be-
haves as a uniformly distributed random variable. As λ increases,
each node tends to select a node state to realize smaller M(X),
and so the collaboration among nodes becomes strong.

3.2 Global Property
In Ref. [7], we derived Eq. (2) so as to have stationary distri-

bution p(X) = A e−λM(X) where A is a normalizing constant of
p(X). According to MCMC [10], system state X follows a sta-
tionary distribution p(X) = A e−λM(X) if state transition probabil-
ity p(X′|X) satisfies the condition

p(X′|X) p(X) = p(X|X′) p(X′), (4)

and the ergodic condition, that is, the probabilities of Markov
chains of X with arbitrary length more than a certain value mov-
ing from one system state to any of the other system states is
larger than 0.

Ti(xi → x′i) given by Eq. (2) satisfies the condition Eq. (4).
Consider X′ = (x′1, . . . , x

′
N) where xi � x′i and x j = x′j to focus

on the autonomous node action of node i. If p(X) = Ae−λM(X),
Eq. (4) is rewritten by

p(X′|X)
p(X|X′) =

p(X′)
p(X)

= e−λ (M(X′)−M(X))

= e−λ
∑

j∈χi (mi j(x′i ,x j)−mi j(xi ,x j))

= e−λΔmi(xi→x′i)

=
e−αλΔmi(xi→x′i)

e(1−α) λΔmi(xi→x′i)

=

1
|axi |e

−αλΔmi(xi→x′i)

1
|axi |e

−(1−α) λΔmi(x′i→xi)

=
Ti(xi → x′i)
Ti(x′i → xi)

. (5)

In the process of deriving Eq. (5), we conventionally replace 2λ
with λ. Hence, changing node state xi using Eq. (2), probability
distribution p(X) is controlled to A e−λM(X) according to the above
discussion.

Following p(X) by A e−λM(X), system states X’s with the same
value of system performance variable M(X) occur with the same
probability, and cannot be distinguished. Hence, by summing
probabilities p(X) with the same M(X), probability distribution
p(M) of system performance variable M is given by

p(M) =
G(M)e−λM

∑
Y∈ΩM

G(Y)e−λY
=

e−λF(M)

∑
Y∈ΩM

e−λF(Y)
, (6)

where ΩM is the set of all possible M, and F(M) := M −
1/λ log G(M). G(M) is the system state distribution, which is the
number of system states X with the same value of system perfor-
mance variable M.

Equation (6) shows that the autonomous node action can in-
directly control the distribution of system performance variable
M in the direction desired. If λ = 0, p(M) is simply propor-
tional to G(M), and all possible system states are realized with
equal probability. Hence, our ADCM with λ = 0 corresponds
to a mechanism that randomly selects system state X from sys-
tem state space Ω. As λ increases, the probability distribution
is shifted according to e−λM , and system states with small M(X)
become realized with higher probability.

In statistical mechanics, the probability distribution given by
Eq. (6) is called the Boltzmann distribution, which is well under-
stood. Some variables in our ADCM are related to variables in
statistical mechanics; λ, M, F(M), and log G(M) correspond to
the inverse of temperature, the energy, the Helmholtz free energy,
and the entropy in statistical mechanics. In Ref. [7], we clarified
the global property of our ADCM on the basis of statistical me-
chanics. According to the clarified global property, we found that
our ADCM yields a hierarchical structure that has node-level and
system-level layers. At the system-level layer, there is the law
between statistics (i.e., average and standard deviation) of M and
statistics depending on the external environment of the system.

We explain the law on the system-level layer found in Ref. [7].
According to the assumption of Ref. [7], we first assume that sys-
tem performance variable M can be modeled as a continuous
quantity. This assumption is valid for large-scale systems. In
Ref. [7], we discussed the global property around M∗ because it
is dominant in large-scale systems. F(M) in Eq. (6) determines
the maximum point, M∗, of Boltzmann distribution. Namely, M∗

can be derived by solving dF(M)/dM = 0. To discuss the global
property around M∗, we convert F(M) to a Taylor series at M∗.
The Taylor series of F(M) at M∗ is given by

F(M) = F(M∗) +
1
λ

∞∑

k=2

Ck

k!
(M − M∗)k, (7)

where

Ck := − dk

dMk
log G(M)

∣∣∣∣∣
M=M∗

. (8)

Because M is generally a monotonically increasing function of
N, the derivatives of log G(M) for k ≥ 3 decrease more quickly
than that for k = 2 as N increases. Hence, in large-scale systems,
F(M) can be approximated by

F(M) 	 F(M∗) +
C2

2λ
(M − M∗)2. (9)

By substituting Eq. (9) to Eq. (6) and normalizing the substi-
tuted equation with

∑
M∈ΩM

p(M) = 1, p(M) is given by the fol-
lowing normal distribution

p(M) 	 1√
2πσλ

exp

⎡⎢⎢⎢⎢⎣− (M − μλ)2

2σ2
λ

⎤⎥⎥⎥⎥⎦ , (10)

where μλ = M∗ and σλ = 1/
√

C2. μλ and σλ are the average and
standard variance of M when our ADCM uses control parameter

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

λ, respectively. By substituting Eq. (9) to G(M) = eλ(M−F(M)) and
normalizing the substituted equation with

∑
M∈ΩM

G(M) = |Ω|,
G(M) is approximated by

G(M) 	 |Ω|√
2πσG

exp

⎡⎢⎢⎢⎢⎣− (M − μG)2

2σ2
G

⎤⎥⎥⎥⎥⎦ , (11)

where μG = M∗ + λ/C2 and σG = 1/
√

C2. μG and σG are the
average and standard variance of M, respectively, for all system
states in Ω. They are also given by

μG =
1
|Ω|
∑

X∈Ω
M(X), (12)

σ2
G =

1
|Ω|
∑

X∈Ω
(M(X) − μG)2 . (13)

When repeating the random selection of system state X from Ω,
the average and standard variance of occurred M approach μG and
σG, respectively. Hence, μG and σG mean the average and stan-
dard variance of M for such a random selection. Since mi j(xi, x j)
in M(X) is given by information of the external environment, μG

and σG depend on the external environment. Hence, changes in
the environment alter μG and σG. According to Eqs. (10) and
(11), μλ = M∗, μG = M∗ + λ/C2, and σλ = σG = 1/

√
C2. Hence,

on the system-level layer, μλ and σλ are given by using μG and
σG as follows

μλ = μG − λσ2
G, (14)

σλ = σG. (15)

According to the above equations, we find μ0 = μG and σ0 = σG.
From the law given by Eqs. (14) and (15), we can understand the
relation between the external environment and our ADCM.

4. Autonomous Decentralized Adaptive Func-
tion to Ensure Control Robustness

4.1 Condition to Ensure Control Robustness against
Changes in the Environment

To ensure the robustness, we should retain the control
strength (i.e., strength of collaboration among nodes) of our
ADCM against changing environment. Control strength is mea-
sured by the difference between states with randomly selected
states (λ = 0) and states controlled by our ADCM. Since ran-
domly selected states depend on the environment, changing en-
vironment fluctuates the average of system performance variable
M for randomly selected states (i.e., μG). There are several def-
initions of control strength. In this paper, we define the control
strength by the ratio of μλ divided by μG. In this definition, when
the ratio of μλ is small, the control of our ADCM is strong. Hence,
the ratio of μλ means the weakness of control by our ADCM. This
definition is reasonable because it allows us to design an adaptive
function with the autonomous decentralized manner.

Following the definition of the above-mentioned control
strength, we introduce variable R by

R =
M
μG
. (16)

R represents the instantaneous control weakness of our ADCM,
and its average is invariant against changes in the environment,

Fig. 3 System performance variable M vs. weakness index R; the average
of R, μλ/μG , is invariant against changing environment if the target
control strength of our ADCM is unchanged.

see Fig. 3. In what follows, we call R weakness index since the
average of R represents the weakness of our ADCM.

In what follows, we derive a condition to retain the probabil-
ity distribution of R against changes in the environment. With
the change of variables from M to R for probability distribution
p(M), probability distribution p(R) is given by

p(R) 	 1√
2πσR

exp

⎡⎢⎢⎢⎢⎣− (R − μR)2

2σ2
R

⎤⎥⎥⎥⎥⎦ , (17)

where μR = μλ/μG and σR = σλ/μG.
To retain control strength, μR and σR in p(R) should remain

constant against changes in μG and σG, that is

μR =
μλ
μG
= 1 − λσ

2
λ

μG
= Kμ, (18)

σR =
σλ
μG
= Kσ, (19)

where Kμ and Kσ are variables depending on the environment, but
should be constant against change in μG and σG. The conditions
Eqs. (18) and (19) are reduced to single condition

λ μG = K, (20)

where K = (1 − Kμ)/K2
σ. K is set to a value considering target

control strength of our ADCM by a system manager.

4.2 Design
According to condition Eq. (20), to ensure the robustness, our

ADCM should reconfigure control parameter λ(t) at time t by

λ(t) =
μ̃G

μG
λ(t − ΔTλ), (21)

where μ̃G is the average used in the last reconfiguration, and ΔTλ
is time interval of the reconfiguration of λ. The value of ΔTλ
depends on the time needed to obtaining μG from the system.
Hence, the rapid obtaining of μG leads to fast response to an en-
vironment fluctuation. To reduce the setting value of ΔTλ, we de-
sign a method for obtaining μG in an autonomous decentralized
manner.

For easy understanding, in what follows, we use mi j(xi, x j) de-
fined as

mi j(xi, x j) = fi j dxi x j , (22)

where fi j is a coefficient for the collaboration between nodes i

and j, and dk l is a cost to communicating between subsystems k

and l. We assume that fi j and dk l are independent of each other.
Smaller dxi x j means stronger collaboration between nodes i and j.

According to Eq. (12), μG with Eq. (22) is given by

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

Fig. 4 Equalizing the parts of S (X), S (X)
k for all subsystems in the adaptive

function.

μG =
1

NS (NS − 1)

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

i=1

∑

j∈χi

fi j

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
NS∑

k=1

NS∑

l=1

dk l

⎞⎟⎟⎟⎟⎟⎟⎠

=
1

NS (NS − 1)
S (F) S (D), (23)

where S (F) is the sum of fi j for all pairs of nodes, and S (D) is
the sum of dk l for all pairs of subsystems. To calculate μG and
reconfigure λ, we need to obtain S (F) and S (D).

We explain here that each subsystem can obtain S (F) and S (D)

by using the autonomous decentralized method based on the dif-
fusion equation. A subsystem cannot directly calculate S (F) and
S (D) from own information, but it can calculate a part of S (F) and
S (D). For example, subsystem k can calculate

(∑
i∈φk

∑
i∈χi

fi j

)
,

which is a part of S (F). Each subsystem has a different part
of S (F), but each subsystem obtains S (F)/NS by equalizing their
parts of S (F) while conserving the sum of parts of S (F) for all sub-
systems, see Fig. 4. This equalization of S (F) can be performed
by using the autonomous decentralized method based on the dif-
fusion equation. The same thing is possible for S (D). By using
S (F)/NS and S (D)/NS obtained in the above manner, each subsys-
tem can reconfigure control parameter λ by Eq. (21).

The autonomous decentralized method based on the diffusion
equation is summarized as follows. Let S (F)

k (t) and S (D)
k (t) be

parts of S (F) and S (D) at time t for subsystem k, respectively.
1) Every ΔTλ, subsystem k updates S (F)

k (t) and S (D)
k (t) by using

the following equations

S (F)
k (t) ← S (F)

k (t − ΔTλ) +
1
2

∑

i∈φk

∑

j∈χi

(
fi j − f̃i j

)
, (24)

S (D)
k (t) ← S (D)

k (t − ΔTλ) +
1
2

NS∑

l=1

(
dk l − d̃k l

)
, (25)

where fi j and dk l are the values at a referenced time. f̃i j

and d̃k l are the values of fi j and dk l used in the last update
by Eqs. (24) and (25). By using the previous information of
S (F)

k (t − ΔTλ) and S (D)
k (t − ΔTλ)), S (F)

k (t) and S (D)
k (t) can be

equalized rapidly.
2) Every ΔTD, subsystem k updates S (X)

k (t) (X ∈ F,D) by using
the following discrete diffusion equation

S (X)
k (t) ← S (X)

k (t − ΔTD)

+ κD
∑

l∈ak

(
S (X)

l (t − ΔTD) − S (X)
k (t − ΔTD)

)
,

(26)

where κD is the diffusion coefficient (0 < κD < 1/ΔTD).
Equation (26) can be calculated using only S (X)

l (t − ΔTD) of
adjacency subsystems l ∈ ak. ΔTD can be determined from

Fig. 5 Examples of VM placement in a DCN.

the maximum communication delay of adjacency subsys-
tems. Subsystem k repeats the update by Eq. (26) ND times.
Thus, ΔTλ > ND ΔTD.

3) Subsystem k reconfigures own control parameter λk(t) at
time t according to Eq. (21). Specifically, λk(t) is updated
by

λk(t) =
S (F)

k (t − ΔTλ)S
(D)
k (t − ΔTλ)

S (F)
k (t)S (D)

k (t)
λk(t − ΔTλ). (27)

Note that we assume that NS is invariant during [t − ΔTλ, t].
4) Node i in subsystem k uses control parameter λk to calculate

state transition probability Ti.
The proposed adaptive function works in the MCMC-based

ADCM. Hence, its restrictions to apply to solve a given prob-
lem are followed by those of the MCMC-based ADCM. Due to
paper limits, we omit the explanation of the restrictions from this
paper. Please see Section 2 of Ref. [7].

4.3 Application to Virtual Machine Placement
In Ref. [7], we applied our ADCM to a VM placement problem

in DCNs. In a DCN, the distribution of traffic rates between VMs
is uneven [11], and it is difficult to alter the topology to suit the
traffic rates since they change frequently. Hence, for better net-
work performance, a DCN controller should realize traffic con-
centration in the given topology by placing VMs that are handling
high traffic rates in the neighborhood of physical machines (PMs).
Traffic concentration may lead to concentrating VM loads on a
few PMs, and thus degrade their computing performance (Fig. 5).
Hence, load balancing between PMs should be performed with
traffic concentration, simultaneously. In Ref. [7], we proposed an
ADCM that performs traffic-aware VM placement with load bal-
ancing based on MCMC, and confirmed its effectiveness.

In Ref. [7], we formulated the VM placement problem on the
basis of the system model explained in Section 2. VM and PM
correspond to node and subsystem in our system model, respec-
tively. As mi j(xi, x j), we use the traffic-cost product, which is a
variable for traffic concentration also used in Ref. [11]. fi j and
dk l in Eq. (22) correspond to the traffic rate between VMs i and
j and the communication cost between PMs k and l, respectively.
A smaller traffic-cost product mi j(xi, x j) is better for traffic con-
centration because a small dxi x j indicates that VMs i and j are in
the neighborhood of PMs. By controlling the probability distri-
bution of traffic-cost product sum M, our ADCM can adjust both
the strengths of traffic concentration and load balancing in DCNs.

5. Experiment

Through simulation experiments, we confirm that the proposed
adaptive function improves the robustness against changing envi-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

ronment. The simulation examines the placement of VMs by our
ADCM.

5.1 Experiment Model
Due to space limitation in this paper, we describe only the fat-

tree topology, one of the network topologies often found in data
center studies (e.g., Ref. [11]). PMs are placed in layer 0 of the
network topology, and separated into NG groups. The communi-
cation cost of a pair of PMs is given by the sum of link costs on
the shortest path. PM k is assigned to group �k/NG + 1. PMs in
group i have an adjacency relationship (edge) with PMs in groups
i and i±1. As the exception, PMs in groups 1 and NG have mutual
adjacency relationship. VM i is permitted to migrate to a neigh-
bor PM of PM xi. Let diameter of the adjacency relationship
graph of PMs be the maximum number of relationships between
any PM pair. In the setting of this paper, the diameter is given by
NG − 1. In general, equalization speed of the diffusion equation
in a graph depends on its diameter. Hence, the diameter of the
adjacency relationship graph may affect the effectiveness of the
proposed adaptive function.

Figure 6 shows an example of the network topology with 16
PMs and 4 groups. In the example, the diameter is 3.

For investigating the effectiveness of the proposed adaptive
function, we introduce a traffic model that generates chang-
ing environment. The traffic model is based on measured re-
sults [12], [13]. In Ref. [12], the authors investigated the total
traffic amount in a DCN, and showed that the total traffic amount
increases and decreases rapidly. In Ref. [13], the authors inves-
tigated the link bandwidth utilization of a DCN router, and re-
ported gradual changes (increase and decrease) in the utilization
rate. According to the findings [12], [13], the proposed adap-
tive function should be effective regardless of the rate of traffic
change. On a day timescale, the time evolution of traffic reported
in Ref. [13] is divided into increasing periods and decreasing peri-
ods. Hence, we assume the overall period to consist of increasing
and decreasing periods, and confirm the effectiveness of the pro-
posed adaptive function in each period. According to the above
discussion, the traffic model should be able to (a) adjust the aver-
age rate of traffic, and (b) switch the behavior of changing traffic
to increase or decrease. We design such a traffic model that satis-
fies the above requirements with the fewest parameters to reduce
the complexity involved in investigation.

We illustrate the basic ideas that underlie the traffic model in
Fig. 7. In the traffic model, we divide the overall traffic behavior
into increasing periods and decreasing periods, and approximate

Fig. 6 An example of the network topology for NS = 16 and NG = 4.

the continuous time evolution as a series of discrete time events.
There are unpredictable factors that are likely to change the traffic
in a real system, and so the simulation randomly generates each
traffic change event. The time interval between each pair of con-
secutive traffic change events follows an exponential distribution
with average time ΔT f . When a traffic change event for traffic rate
fi j occurs, traffic rate fi j increases by amount Δ fi j with probabil-
ity of p+, or otherwise decreases by amount Δ fi j. In the traffic
model, the average change rate for fi j, fi j, is given by

fi j =
Δ fi j (2 p+ − 1)

ΔT f
. (28)

According to Eq. (28), the traffic model can adjust the average
change rate fi j by changing Δ fi j or ΔT f , and switch increase pe-
riod or decrease period by changing p+.

At the start of each simulation run, we place N VMs in a ran-
domly chosen PM, and set control parameter of PM k, λk, to λINIT.
At each simulation time unit, a VM uses the local action to de-
termine to which PM it should migrate. If the proposed adaptive
function is activated, PM k adjusts its control parameter λk every
ΔTλ by using the procedures explained in Section 4.

Initially, each VM communicates with randomly chosen
NH (average) VMs with high traffic rate TH , and other VMs with
low traffic rate TL. Let f (INIT)

i j be the initial value of traffic rate
fi j between nodes i and j. During a simulation, we change (a) all
traffic rates or (b) only high rates (i.e., fi j if f (INIT)

i j = TH), ac-
cording to the above traffic model. It is unnatural to assume that
the high rates change with the same rule as the low rates. Hence,
we should consider not only homogeneous traffic changes like
setting (a) but also heterogeneous traffic changes like setting (b).
Since only some traffic rates are changed in traffic setting (b), the
variance of traffic rates in setting (b) is larger than in setting (a).
Unless explicitly stated, we use setting (a). As the configuration
of initial traffic rates (TH , TL) in settings (a) and (b), we use values
shown in Table 1.

The other parameters are set to the values shown in Table 2. In
particular, we set Δ fi j to cover the large range that includes the
change rates shown in Refs. [12], [13]. We examine a small-scale
system with N = 160 due to our computation limits. However,
thanks to the statistical effect, our ADCM works more effectively
as N increases [7]. In principle, the results obtained in this simu-
lation are also valid for large-scale networks.

Fig. 7 Traffic model to generate changing environment.

Table 1 Configuration of initial traffic rates (TH ,TL).

p+ = 0.7 p+ = 0.3
κ = 0.001, 0.1 κ = 0.001 κ = 0.1

setting (a) (10, 0.1) (810, 8.1) (80,010, 800.1)
setting (b) (10, 0.1) (810, 0.1) (80,010, 0.1)

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

Table 2 Parameter configuration.

number of PMs, NS 16
number of VMs, N 160
number of groups, NG 4
average number of high traffic VMs, NH 10
internal communication cost of a PM 0.0001
link cost for the network topology 0.1
interval of traffic changes, ΔT f 1
changing amount Δ fi j for f (INIT)

i j = TH 10 κ

changing amount Δ fi j for f (INIT)
i j = TL 0.1 κ

coefficient in Δ fi j, κ 0.1 or 0.001
VM load ρ(V M) 1
parameter α 0.1
simulation time 150,000
diffusion coefficient κD 0.1
number of updates, ND 5
update interval of λ, ΔTλ 1

The VM placement with our ADCM yields load balancing of
PMs. As the metric for load balancing in DCNs, we use PM load
variance Var[ρ] (ρ = (ρ1, . . . , ρNS)) of PM loads

Var[ρ] =
1

NS

∑

l=1

(ρl − E[ρ])2 , (29)

where ρl =
∑

i∈φl
ρ(VM)

i and ρ(VM)
i is VM i’s load. ρT is the average

of PM loads, which is given by

E[ρ] =
1

NS

NS∑

l=1

ρl. (30)

There is a trade-off between weakness index R and PM load
variance Var[ρ]. The VM placement problem in DCNs is for-
mulated by multi-objective functions R and Var[ρ]. Following a
given control strength, our ADCM tries to adjust the balance of
R and Var[ρ], but the attempt would fail against changing traffic.
We expect that our ADCM with the proposed adaptive function
retains R and Var[ρ] against traffic changes, solving the problem
of our ADCM. In what follows, through simulation experiments,
we will confirm that the expectation is true whether

5.2 Simulation Results
The figures of this section illustrate the result of using or not

using the proposed adaptive function with the legend w adapt or
w/o adapt, and result of changing or not changing traffic rate with
the legend fluc. or no fluc., respectively.

We first visually confirm that the problem of our ADCM for
changing environment occurs, and the adaptive function can solve
the problem of our ADCM. Figures 8 and 9 show the time evo-
lution of weakness index R and PM load variance Var[ρ] when
the traffic rate gradually increases (i.e., p+ = 0.7 and κ = 0.001).
According to these figures, when the proposed adaptive function
is disabled, weakness index R decreases drastically, and PM load
variance Var[ρ] increases dramatically. In this simulation, our
ADCM places all VMs into a PM. This phenomenon means that
our ADCM allows high traffic concentrations without the pro-
posed adaptive function due to the increasing traffic. However,
when the proposed adaptive function is enabled, weakness index
R and PM load variance Var[ρ] remain roughly constant in the
face of the traffic changes. Hence, the proposed adaptive function
can effectively deal with traffic fluctuation.

We next confirm the effectiveness of the proposed adaptive

Fig. 8 Time evolution of weakness index R when traffic rate gradually in-
creases (i.e., λINIT = 0.05, p+ = 0.7 and κ = 0.001); the red and blue
lines are almost the same time evolution of R.

Fig. 9 Time evolution of PM load variance Var[ρ] when traffic rate gradu-
ally increases (i.e., λINIT = 0.05, p+ = 0.7 and κ = 0.001); the red
and blue lines plot almost the same time evolution of Var[ρ].

function against traffic changes. Figures 10 and 11 show the
probability distribution of weakness index R and PM load vari-
ance Var[ρ] when traffic rate gradually or rapidly increases (i.e.,
p+ = 0.7 and κ = 0.001 or 0.1), and gradually or rapidly de-
creases (i.e., p+ = 0.3 and κ = 0.001 or 0.1). These results
confirm that the proposed adaptive function ensures control ro-
bustness against changing traffic. The proposed adaptive function
can almost retain the probability distribution of weakness index R

and PM load variance Var[ρ] against changing traffic regardless
of initial control parameter λINIT, so we can confirm its effective-
ness. While there is a little gap in the probability distribution
for our ADCM with the proposed adaptive function when traffic
rates rapidly increase, we believe that this will not be a problem
in practical use. The small gap is explained by the equalization
delay of the diffusion equation in the proposed adaptive function.
Such delay allows each node to use control parameter λk that does
not really suit the actual environment (i.e., μG). Figure 12 shows
time evolution of the variance coefficient of subsystem k’s con-
trol parameters λk when traffic rate increases. According to this
result, the variance coefficient for κ = 0.1 is larger than that for
κ = 0.001. This result implies that the equalization achieved
by the diffusion equation is slightly slow if the traffic increase
is rapid.

Figure 13 shows the average of weakness index R, μR, for dif-
ferent diameters of the adjacency relationship graph of PMs when
traffic rate increases (i.e., p+ = 0.7). According to this result, re-
gardless the diameter, the proposed adaptive function retains μR

against changing traffic, so the diameter hardly alters the effec-
tiveness of the proposed adaptive function. This result implies
that the proposed adaptive function would keep its effectiveness
in large-scale DCNs that consist of many PMs, having a large
diameter.

Finally, we confirm the effectiveness of the proposed adaptive
function when using traffic setting (b). This traffic setting has a
larger variance in traffic rates compared with traffic setting (a).
Figures 14 and 15 show the probability distribution of weakness
index R and PM load variance Var[ρ] when traffic rate gradually
or rapidly increases (i.e., p+ = 0.7 and κ = 0.001 or 0.1), and
gradually or rapidly decreases (i.e., p+ = 0.3 and κ = 0.001 or

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

Fig. 10 Probability distribution (PD) of weakness index R when traffic rate increases (p+ = 0.7) or
decreases (p+ = 0.3).

Fig. 11 Probability distribution (PD) of PM load variance Var[ρ] when traffic rate increases (p+ = 0.7)
or decreases (i.e., p+ = 0.3).

Fig. 12 Time evolution of variance coefficient of subsystem k’s control pa-
rameters λk when traffic rate increases (i.e., p+ = 0.7).

0.1). These results also confirm the effectiveness of the proposed
adaptive function similar to Figs. 14 and 15. Namely, the pro-
posed adaptive function can almost retain the probability distri-
bution of weakness index R and PM load variance Var[ρ] against
changing traffic for λINIT = 0.01 and 0.05, so we can confirm its
effectiveness to retain weak and medium control strengths of the
MCMC-based ADCM. For λINIT = 0.1 and p+ = 0.7, the pro-
posed adaptive function needs more than ND = 10 to keep the

Fig. 13 Average of weakness index R for different diameters in the neighbor
relationship graph when traffic rate increases (i.e., p+ = 0.7).

probability distribution unchanged. Hence, we should set ND to a
sufficiently large value if traffic rate variance is large.

6. Related Work

We first describe the difference between the MCMC-based

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

Fig. 14 Probability distribution (PD) of weakness index R when traffic rate increases (p+ = 0.7) or
decreases (p+ = 0.3) under traffic setting (b).

Fig. 15 Probability distribution (PD) of PM load variance Var[ρ] when traffic rate increases (p+ = 0.7)
or decreases (i.e., p+ = 0.3) under traffic setting (b).

ADCM [7] and ADCMs [3], [6] inspired by the physical universe.
ADCMs [3], [6] can make a spatially structure used for network
clustering and layering. However, they do not address other engi-
neering problems (e.g., resource allocation) formulated by a sys-
tem performance variable. The MCMC-based ADCM remedies
that omission. Since the proposed adaptive function works in the
MCMC-based ADCM, it contributes to the solutions of such im-
portant engineering problems.

Many centralized control mechanism were proposed in
Refs. [11], [14], [15], [16]. However, these mechanisms must
gather information from the whole system, so their control times
increase as the size of the system increases. On the contrary, the
MCMC-based ADCM and the proposed adaptive function only
use local information around each node. Hence, the MCMC-
based ADCM with the proposed adaptive function offers quick
response also in large-scale and wide-area systems.

7. Conclusion and Future Work

In this paper, we designed an autonomous decentralized adap-
tive function to ensure the robustness of our ADCM [7] against
changing environment. We first derived the condition to adapt
to change in the external environment on the basis of the global
property of our ADCM [7]. Following the condition, we designed
an autonomous decentralized adaptive function that ensures the
robustness of our ADCM, and applied it to a VM placement prob-
lem in a DCN. Simulation experiments confirmed that the adap-
tive function effectively deals with several scenarios with chang-
ing environment. For the scenarios, we generated several patterns
of traffic changes. We showed that the adaptive function can en-
sure the robustness regardless of traffic changes.

As future work, we are planning to clarify the relation between
the frequency of environment changes and the optimum setting of

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.6

the control parameters (i.e., kD and ND) of the proposed adaptive
function, and create a policy for setting control parameter K con-
sidering several situations. We intend to implement our ADCM
with the proposed adaptive function in an actual environment, and
investigate its effectiveness in realistic tests. Specifically, we will
demonstrate the effectiveness of the proposed adaptive function
in an actual system with many VMs and PMs.

Acknowledgments This work was supported by JSPS
KAKENHI Grant Number 15K15985.

References

[1] Ballmer, S.: Worldwide Partner Conference 2013 Keynote, available
from 〈http://www.microsoft.com/en-us/news/speeches/2013/
07-08wpcballmer.aspx〉 (accessed 2016-01-15).

[2] Google: Data Centers, available from 〈http://www.google.com/about/
datacenters/inside/index.html〉 (accessed 2016-01-15).

[3] Takano, C., Masaki, A., Murata, M. and Imase, M.: Proposal for
Autonomous Decentralized Structure Formation Based on Local In-
teraction and Back-Diffusion Potential, IEICE Trans. Communica-
tions (Special Section on Frontiers of Information Network Science),
Vol.E95-B, No.5, pp.1529–1538 (2012).

[4] Jiang, J.W., Lan, T., Ha, S., Chen, M. and Chiang, M.: Joint VM Place-
ment and Routing for Data Center Traffic Engineering, Proc. IEEE
INFOCOM 2012, pp.2876–2880 (2012).

[5] Chen, M., Liew, S.C., Shao, Z. and Kai, C.: Markov Approxima-
tion for Combinatorial Network Optimization, Proc. IEEE INFOCOM
2010, pp.1–9, IEEE (2010).

[6] Masaki, A.: Using a Renormalization Group to Create Ideal Hier-
archical Network Architecture with Time Scale Dependency, IEICE
Trans. Communications (Special Section on Frontiers of Information
Network Science), Vol.E95-B, No.5, pp.1488–1500 (2012).

[7] Sakumoto, Y., Aida, M. and Shimonishi, H.: Autonomous Decentral-
ized Control for Indirectly Controlling System Performance Variable
of Large-Scale and Wide-Area Networks, IEICE Trans. Communica-
tions, Vol.E98-B, No.11, pp.2248–2258 (2015).

[8] Hastings, W.: Monte Carlo Sampling Methods Using Markov Chains
and Their Applications, Biometrika, Vol.57, No.1, pp.97–109 (1970).

[9] Sakumoto, Y., Aida, M. and Shimonishi, H.: An Autonomous
Decentralized Adaptive Function for Retaining Control Strength in
Large-Scale and Wide-Area System, Proc. IEEE GLOBECOM 2014,
pp.1958–1964 (2014).

[10] Gilks, W.R., Richardson, S. and Spiegelhalter, D.J.: Markov Chain
Monte Carlo in Practice, CRC press (1996).

[11] Meng, X., Pappas, V. and Zhang, L.: Improving the Scalability of
Data Center Networks with Traffic-aware Virtual Machine Placement,
Proc. IEEE INFOCOM 2010, pp.1154–1162 (2010).

[12] Kandula, S., Sengupta, S., Greenberg, A., Patel, P. and Chaiken, R.:
The Nature of Data Center Traffic: Measurements & Analysis, Proc.
ACM IMC 2009, pp.202–208 (2009).

[13] Benson, T., Akella, A. and Maltz, A.D.: Network Traffic Characteris-
tics of Data Centers in the Wild, Proc. ACM IMC 2010, pp.267–280
(2010).

[14] Hyser, C., Mckee, B., Gardner, R. and Watson, B.J.: Autonomic
Virtual Machine Placement in the Data Center, Technical Report of
Hewlett Packard Laboratories (HPL-2007-189) (2007).

[15] Tarighi, M., Motamedi, S.A. and Sharifian, S.: A New Model for
Virtual Machine Migration in Virtualized Cluster Server Based on
Fuzzy Decision Making, Journal of Telecommunications, Vol.1, No.1,
pp.901–907 (2010).

[16] Xu, H. and Li, B.: Anchor: A Versatile and Efficient Framework for
Resource Management in the Cloud, IEEE Trans. Parallel and Dis-
tributed Systems, Vol.24, No.6, pp.1066–1076 (2013).

Yusuke Sakumoto received M.E. and
Ph.D. degrees in the Information and
Computer Sciences from Osaka Univer-
sity in 2008 and 2010, respectively. He
is currently an assistant professor at Grad-
uate School of System Design, Tokyo
Metropolitan University, Japan. His re-
search work is in the area of autonomous

decentralized control for large-scale and complex systems. He is
a member of IEEE, IPSJ and IEICE.

Masaki Aida received B.S. degree in
Physics and M.S. degree in Atomic
Physics from St. Paul’s University, Tokyo,
Japan, in 1987 and 1989, respectively,
and received Ph.D. in Telecommunica-
tions Engineering from the University of
Tokyo, Japan, in 1999. After joining NTT
Laboratories in April 1989, he has been

engaged in research on traffic issues in computer communication
networks. From April 2005 to March 2007, he was an Associate
Professor at the Faculty of System Design, Tokyo Metropolitan
University. He has been a Professor of the Graduate School of
System Design, Tokyo Metropolitan University since April 2007.
Prof. Aida is a member of IEEE, IEICE, and the Operations Re-
search Society of Japan.

Hideyuki Shimonishi received M.E.
and Ph.D. degrees from the Graduate
School of Engineering Science, Osaka
University, Osaka, Japan, in 1996 and
2002. He joined NEC Corporation in
1996 and has been engaged in research
on traffic management in high-speed
networks, switch and router architectures,

and traffic control protocols. As a visiting scholar in the Com-
puter Science Department at the University of California at Los
Angeles, he studied next-generation transport protocols. He
now works in Knowledge Discovery Research Laboratories at
NEC Corp., engaged in researches on networking technologies
including SDN, OpenFlow and NFV for carrier, data center and
enterprise networks. He is a member of IEICE.

c© 2016 Information Processing Society of Japan

