線形発展方程式のための Inexact Shift-invert Arnoldi法

橋本 悠香^{1,a)} 野寺 隆^{2,b)}

受付日 2016年1月27日, 採録日 2016年7月5日

概要:1階の時間微分を含む線形発展方程式の初期値境界値問題を考える.例として移流拡散方程式など がある.このような問題の数値解法として,空間方向にのみ離散化を行い,1階の多次元常微分方程式を 導く方法が効率的である.ただし,この方法は,特殊な形式の大規模行列指数関数の計算を必要とする. 大規模行列指数関数を計算するための方法には,Arnoldi法を利用するものがあるが,離散化により導か れる行列の性質や求めたい近似解によっては,多くの反復回数を必要とする.これを改善する方法として Shift-invert Arnoldi法 [BIT Numerical Mathematics, pp.595–615, 2004] が提案されている.本稿では, 問題を適切に離散化する方法について述べ,行列指数関数を高速に計算する Shift-invert Arnoldi法に基づ く新しい算法を提案する.

キーワード:線形発展方程式, Krylov 部分空間法, 行列指数関数, Arnoldi 法, BiCGStab 法

Inexact Shift-invert Arnoldi Method for Linear Evolution Equations

Yuka Hashimoto^{1,a)} Takashi Nodera^{2,b)}

Received: January 27, 2016, Accepted: July 5, 2016

Abstract: We consider initial and boundary value problems of linear evolution equations with the first order time derivatives, such as convection diffusion equations. The effective way to solve these problems numerically is deriving differential algebraic equations of first order after the space discretization. However, it requires the computation of a large matrix exponential which has special form. To compute the large matrix exponential, we can use the Arnoldi method, but it requires a number of iterations depending on the behavior of discretized matrix and the solution we want. Dealing with this matter, the Shift-invert Arnoldi method [BIT Numerical Mathematics, pp.595–615, 2004] was proposed. In this paper, we propose a new method for the fast computation of matrix exponential based on the Shift-invert Arnoldi method.

 $\label{eq:keywords:keywords:keywords:keywords:keywords:keywords:keywords:keywords:keywords:keywordsk$

1. 序論

1.1 背景

線形発展方程式の数値解を求めることは、物理学、工学 において重要な意味を持つ.移流拡散方程式はその代表 例であり、建築物理学や流体の流れを解析するトレーサ 試験などに応用されている [2], [20].本稿では, $\Omega \subseteq \mathbb{R}^d$

- ^{a)} yukahashimoto@keio.jp
- ^{b)} nodera@math.keio.ac.jp

を Lipschitz 連続な境界を持つ有界開集合とし、 $[0,T] \times \overline{\Omega}$ (T > 0)上で定義された次の初期値境界値問題を考える.

$$\begin{cases} \frac{\partial u(t,x)}{\partial t} = \mathcal{L}u(t,x) & \text{in } (0,T] \times \Omega\\ u(t,x) = \phi(x) & \text{on } \{0\} \times \overline{\Omega}\\ u(t,x) = \psi(x) & \text{on } (0,T] \times \partial\Omega_1\\ \frac{\partial u(t,x)}{\partial n} = \tau_1(x)u(t,x) + \tau_2(x) & \text{on } (0,T] \times \partial\Omega_2 \end{cases}$$
(1)

ただし,解は $\mathcal{V} \subseteq L^2((0,T] \times \Omega)$ を満たす解空間 \mathcal{V} で 探すものとする.ここで, $\partial \Omega = \partial \Omega_1 \cup \partial \Omega_2$ であり,nは $\partial \Omega$ への単位法線ベクトル, \mathcal{L} は \mathcal{V} 上の微分作用素 で, $u(t, \cdot) \in L^2(\Omega)$ ($\forall t \in (0,T]$) に関して線形でtに依

² 慶應義塾大学理工学部 Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan

存しないものである.また、 $\phi \in L^2(\overline{\Omega}), \psi \in L^2(\partial\Omega_1),$ $\tau_1 \in L^{\infty}(\partial\Omega_2), \tau_2 \in (L^2(\partial\Omega_2))^{\sharp}, (L^2(\partial\Omega_2))^{\sharp}$ は、 $L^2(\partial\Omega_2)$ の双対空間とする.一般的に、式(1)で表される問題の近 似解を求めるためには空間方向と時間方向両方に対する離 散化を行うことになる [17] (pp.22–27).しかし、この方法 では時間方向のステップサイズが細かくなるほど、また、t が大きくなるほど多くの線形方程式を解かなければならな いため、計算コストが増大する.

一方,空間方向にのみ離散化を行うと次式が導かれる.

$$\begin{cases} B\dot{y}(t) = -Ay(t) + c\\ y(0) = v \end{cases}$$

$$\tag{2}$$

ただし, $A, B \in \mathbb{R}^{n \times n}$, $c, v \in \mathbb{R}^{n}$, $y(t) \in (L^{2}((0,T]))^{n}$ で ある. ここで, $\exists \beta \in \mathbb{R}$, $\exists \theta \in (0, \pi/2)$, $W(B^{-1}A) \subseteq \Sigma_{\beta,\theta}$ とする. ただし,

$$W(A) = \{ u^* A u; u \in \mathbb{C}^n, \ u^* u = 1 \},$$

$$\Sigma_{\alpha,\theta} = \{ z \in \mathbb{C}; |\arg(z - \alpha)| < \theta \}.$$
(3)

式 (2) の多次元常微分方程式の解は,行列 B が正則であ れば次式のようになる.

$$y(t) = e^{-tB^{-1}A}v + e^{-tB^{-1}A} \int_0^t e^{sB^{-1}A} dsB^{-1}c$$

さらに、行列 A が正則であれば次式のようになる.

$$y(t) = e^{-tB^{-1}A}(v - A^{-1}c) + A^{-1}c$$
(4)

ここで, $A \in \mathbb{R}^{n \times n}$, $v \in \mathbb{R}^n$, $t \in \mathbb{R}$ に対し, $e^{-tA}v$ という形式の行列指数関数を計算する方法は, 文 献 [7], [8], [11], [13], [14] において提案されている. 大規模 行列に対しては、この中でも Krylov 部分空間法が有効であ る. 文献 [7], [13] で提案された Arnoldi 法 (AE 法) で計算す ると、一般には ||tA||2 が大きいほど収束に必要な反復回数 が増加する.また、行列 Aの固有値分布によっては Arnoldi 法の収束に必要な反復回数が増加するため,全体的な反復回 数も増加する. これを避けるために, Shift-invert Arnoldi 法 (SIAE 法) [14] が提案されている. この方法では, 収束 が ||tA||2 にはよらず, 行列 A の固有値分布も改善される ため、収束に必要な反復回数は大幅に減少する [11], [14]. 一方, SIAE 法は各反復において $(I + \gamma A)^{-1}v_m$ を計算す る必要がある.ただし、 $\gamma > 0$ はパラメータ、 $v_m \in \mathbb{R}^n$ で ある.このため、 e^{-tA_v} の計算においては、1回の反復に 必要な計算コストが AE 法に比べて大きくなる.しかし, 式 (4) に現れる行列指数関数は $e^{-tB^{-1}A}v$ という形式をし ている.これを計算するには、AE法では各反復において $B^{-1}Av_m$, SIAE 法では $(I + \gamma B^{-1}A)^{-1}v_m$ を計算する必 要がある.前者は $Bx = Av_m$ という線形方程式を解くこ とで計算でき、後者は $(I + \gamma B^{-1}A)^{-1} = (B + \gamma A)^{-1}B$ よ り, $(B + \gamma A)x = Bv_m$ を解くことで計算できる. よって,

このような行列指数関数に対しては、AE法とSIAE法で1 回の反復に必要な計算コストがほぼ等しくなるため、SIAE 法が適しているといえる.ただし、SIAE法を用いたとし ても、各反復に現れる線形方程式は反復法または直接法で 解く以外に方法がない.反復法を用いた場合は、内部反復 が生まれ、1回の外部反復にかなりの計算時間を必要とす る.直接法を用いた場合は、LU分解は1度だけ行えばよ いが、分解された行列の疎性が fill in により低下するため、 多くのメモリを必要とする場合がある.

本稿では,式(1)を式(2)の形に離散化する方法について 述べる.そのうえで,必要なy(t)の近似の精度を保障しな がら,各反復で現れる線形方程式を反復法で解の精度を調 整しながら解くことで,高速化を行う Inexact Shift-invert Arnoldi 法(ISIAE 法)を提案する.

2章では,行列指数関数のための AE 法と SIAE 法につ いて述べる.3章では,式(1)を離散化する方法について 述べる.さらに4章では,離散化された方程式を ISIAE 法 で解く方法とその理論的背景について述べる.最後に5章 で数値実験の結果を示し,3章,4章で述べた方法の有効 性を示す.

1.2 記法

本稿では、 $||\cdot|| = ||\cdot||_2$ とし、行列 A に対して $\kappa(A)$ を、 A の 2 ノルム条件数とする.また、単位行列 I に対して Iの j 列目を e_j と表すことにする.さらに、行列 A の (i,j)成分を a_{ij} と表す.

2. 行列指数関数のための Krylov 部分空間法

本章では, $A \in \mathbb{R}^{n \times n}$, $v \in \mathbb{R}^n$ に対して, $e^{-tA}v$ を計算 するものとする.

2.1 AE法

 $\beta := ||v||, 初期ベクトル v_1 := v/\beta$ として Arnoldi 法の 反復を行うと, m 回目の反復で次式のように変形できる.

 $V_m^T A V_m = H_m$

ただし、 $V_m = [v_1 \cdots v_m] \in \mathbb{R}^{n \times m}$ は列ベクトルが正規直交 する行列、 $H_m \in \mathbb{R}^{m \times m}$ は上ヘッセンベルグ行列である. これを用いて、次式のように近似する

$$e^{-tA}v \approx V_m V_m^T e^{-tA}v$$
$$= \beta V_m V_m^T e^{-tA} V_m e_1$$
$$\approx \beta V_m e^{-tV_m^T A V_m} e_1$$
$$= \beta V_m e^{-tH_m} e_1$$

この方法による誤差は、 $\mu(B) := \lim_{h \to 0+} (||I + hB|| - 1)/h$ とおくと、次式のようになる [7].

$$||e^{-tA}v - \beta V_m e^{-tH_m} e_1|| \le 2\beta \frac{||tA||^m}{m!} \max(1, e^{\mu(tA)})$$

特に, ||tA|| が大きくなるにつれて収束に必要な反復回 数が増加するという特徴がある.

2.2 SIAE法

 $(I + \gamma A)^{-1}, \gamma > 0$ に対して Arnoldi 法の反復を行うと, m 回目の反復で次式のように変形できる.

$$(I + \gamma A)^{-1}V_m = V_m H_m + h_{m+1,m} v_{m+1} e_m^T$$
(5)
$$V_m^T (I + \gamma A)^{-1} V_m = H_m$$

行列 H_m が正則なら,式(5)より次式が成り立つ.

$$H_m^{-1} = V_m^T (I + \gamma A) V_m + h_{m+1,m} V_m^T (I + \gamma A) v_{m+1} e_m^T H_m^{-1}$$

ここで, $H_m^{-1} \approx V_m^T (I + \gamma A) V_m$ と近似すれば, $V_m^T A V_m \approx \gamma^{-1} (H_m^{-1} - I)$ が得られる.よって,これを用いて次式のように近似する.

$$e^{-tA}v \approx V_m V_m^T e^{-tA}v$$

= $\beta V_m V_m^T e^{-tA} V_m e_1$
 $\approx \beta V_m e^{-\frac{t}{\gamma}(H_m^{-1}-I)} e_1$
=: $V_m a_m(t)$

この方法による誤差は, $S_{\rho,\theta} := \{z \in \mathbb{C}; z \in \Sigma_{0,\theta}, 0 < |z| \leq \rho\}, \Pi_s := \{次数 s 以下のすべての多項式\}, \Gamma^* を <math>S_{\rho^*,\theta^*}(\rho^* \geq 1/(1 - \sin(\theta^* - \theta)), \theta < \theta^* < \pi/2)$ を含む円 周, $g(z) := e^{-\frac{t}{\gamma}(z^{-1}-1)}$ とすると

$$W((I + \gamma A)^{-1}) \subseteq \overline{S_{\rho,\theta}} \tag{6}$$

ならば、次式のようになる [11], [14].

$$||e^{-tA}v - V_m a_m(t)|| \le \frac{1+\beta}{2\pi\sin(\theta^* - \theta)} \min_{p \in \Pi_{m-1}} \int_{\Gamma^*} \left|\frac{g(\lambda) - p(\lambda)}{\lambda}\right| |d\lambda|$$
(7)

ただし, $W((I+\gamma A)^{-1}) \subseteq \overline{S_{\rho,\theta}}$ という仮定は, $W(A) \subseteq \Sigma_{\beta,\theta}$ であれば, 適切な γ を選ぶことにより満たすことができ る [14]. また, Walsh の定理 [11], Theorem 3.1 より, 式 (7) の被積分関数は m の増加とともに減少していくことが 分かる. このとき, $\gamma \in t$ の影響を打ち消すような値とし て選べば, 収束に必要な反復回数は ||tA|| によらずに決定 できる.

3. 線形発展方程式の離散化

3.1 有限差分法

有限差分法により式 (1) を空間方向に離散化すると,式 (2) において, B = I となる.ただし,Dirichlet 境界条件 が与えられているノード x_i については,行列 A, B の対 応する行を対角成分以外すべて 0 とする.このノードに対 して, $\frac{dy_i(t)}{dt} = 0$ なので, $0 = -y_i(t) + c_i$ が満たされるように, $c_i = \psi(x_i)$ とする.また, Neumann 境界条件が与えられているノードについては, ポアソン方程式など時間 微分が入っていない方程式と同様に $\frac{\partial u(x,t)}{\partial n}$ の情報を c に 組み込むこととする [6] (pp.203–204).

3.2 有限要素法

写像 $\mathbf{u} : [0,T] \to \mathcal{V}_x \ \varepsilon \ t \mapsto u(t,\cdot) \ \varepsilon \varepsilon$ める.ただし, $\mathcal{V}_x \subseteq L^2(\overline{\Omega})$ である.式(1)を弱形式に変形すると、次式を 満たす $\mathbf{u} \in L^2(0,T;\mathcal{V}_x)$ で、 $\frac{d\mathbf{u}(t)}{dt} \in L^2(0,T;\mathcal{V}_x^{\sharp})$ となるも のを求める問題となる [5] (pp.373–374).

$$\begin{cases} \int_{\Omega} \frac{d\mathbf{u}(t)}{dt} v dx = a(\mathbf{u}(t), v) + l(v) \\ & \forall v \in \mathcal{V}_0, \ \forall t \in (0, T] \\ \mathbf{u}(0) = \phi \end{cases}$$
(8)

ただし, $\mathcal{V}_0 := \{ v \in \mathcal{V}_x; v = 0 \text{ on } \partial \Omega_1 \}$ であり, aは双線 形形式, lは線形汎関数である. たとえば, 熱方程式の場 合には次式のようになる.

$$a(\mathbf{u}(t), v) = -\int_{\Omega} \nabla \mathbf{u}(t) \cdot \nabla v dx + \int_{\partial \Omega_2} \tau_1 \mathbf{u}(t) v dS$$
$$l(v) = \int_{\partial \Omega_2} \tau_2 v dS$$

有限次元空間 $\mathcal{V}_h \in \mathcal{V}_h := \operatorname{span}\{\eta_1, \cdots, \eta_{N(h)}\}$ と定 める.ここで,h > 0はパラメータ, $N(h) \in \mathbb{N}$ であ り, η_i は $\eta_i \in \mathcal{V}_0$ を満たす区分多項式である.この空 間 \mathcal{V}_h を用いて式 (8)を離散化すると,次式を満たす $\mathbf{u}_h \in \{u = \sum_{j=1}^{N(h)} y_j \eta_j; y_j \in L^2((0,T])\}$ を求める問題 となる.

$$\begin{cases} \int_{\Omega} \frac{d\mathbf{u}_{h}(t)}{dt} \eta_{i} dx = a(\mathbf{u}_{h}(t), \eta_{i}) + l(\eta_{i}) \\ & \forall i = 1, \cdots, N(h), \ \forall t \in (0, T] \\ \mathbf{u}_{h}(0) = \phi \end{cases}$$
(9)

ここで,式(9)の左辺は次式のようになる.

$$\int_{\Omega} \frac{d\mathbf{u}_h(t)}{dt} \eta_i dx = \sum_{j=1}^{N(h)} \frac{dy_j(t)}{dt} \int_{\Omega} \eta_j \eta_i dx \tag{10}$$

式 (10) の右辺は $\sum_{j=1}^{N(h)} a(\eta_j, \eta_i) y_j(t) + l(\eta_i)$ と変形すれ ば, $y = [y_1, \dots, y_{N(h)}]^T$ として,式 (2) が導かれる [1], [17]. ただし, Dirichlet 境界条件が与えられているノードについ ては 3.1 節と同様に扱うこととする.

4. Inexact shift-invert Arnoldi法(ISIAE 法)

3 章で述べた方法により離散化された式 (2) の解 (4) は, 2 章において行列 A を行列 $B^{-1}A$ に置き換えることで計算 できる. $W(B^{-1}A) \subseteq \Sigma_{\beta,\theta}$ であるから, SIAE 法において 式(6)で表される仮定はつねに成り立つ.2章の2つの方 法を比較すると、1.1節で述べたように、SIAE法が適して いる. SIAE 法では各反復において $(I + \gamma B^{-1}A)^{-1}v_m$ を計 算する必要がある.この値は、一般には $(B+\gamma A)x = Bv_m$ を解くことによって得られる. B = I, かつ, Aが Toeplitz 行列であるときは、 $I + \gamma A$ の逆行列を精度を落として構 成することで、高速に解くことができる [8], [11]. しかし、 一般の行列に対しては、反復法または直接法で解く以外に 方法はないため、かなりの計算コスト、メモリ、またはそ の両方が必要である. そこで, 我々は, 線形方程式を解く 部分にかかる計算コストを少なくすることを考える. 概略 を述べると、まず、最初の外部反復に現れる線形方程式の 解の精度を、必要な y(t) の近似の精度に応じて決定する. その後の外部反復においては、1つ前の外部反復で計算し た値を用いて精度を決定していく.この精度は反復ごとに 悪くなっていくから、外部反復が進むにつれて1回の外部 反復に必要な計算コストは減少していく.具体的には以下 のようにして精度を決定すればよい.

m 回目の外部反復において $(B + \gamma A)x_m = Bv_m \ \varepsilon \ x_m$ について解いたときに生じる誤差を $f_m := x_m - \tilde{x}_m$ とし, $F_m := [f_1 \cdots f_m]$ とする. さらに, $r_{sys,m} := Bv_m - (B + \gamma A)\tilde{x}_m$ (残差ベクトル) とし, $R_m := [r_{sys,1} \cdots r_{sys,m}]$, $\beta := ||v - A^{-1}c||, v_1 := (v - A^{-1}c)/\beta$ とすると, m回の 外部反復を行うことにより, 次が得られる.

$$(B + \gamma A)^{-1}BV_m - F_m = V_m H_m + h_{m+1,m} v_{m+1} e_m^T$$
(11)

よって,次式が成立する.

$$BV_m H_m^{-1} + R_m H_m^{-1} = (B + \gamma A) V_m + h_{m+1,m} (B + \gamma A) v_{m+1} e_m^T H_m^{-1}$$
(12)

ここで,行列 V_m , H_m は式(5)のものと形は同じだが, ($B + \gamma A$) $x_m = Bv_m$ を精度を落として計算した結果とし て得られる値であるから,値は異なることに注意する.こ の行列 V_m , H_m に対して,以下のように近似する.

$$H_m^{-1} \approx V_m^T (I + \gamma B^{-1} A) V_m,$$
(13)
$$y(t) \approx \beta V_m e^{-\frac{t}{\gamma} (H_m^{-1} - I)} e_1 + A^{-1} c$$
$$=: V_m b_m(t) + A^{-1} c$$
(14)

この近似を,多次元微分方程式 (2) の解の近似と考えて 残差 $r_{exp.m}^{real}$ を計算すると,次式のようになる.

$$r_{exp,m}^{real} := -AV_m b_m(t) - AA^{-1}c + c - BV_m \dot{b}_m(t)$$

= $-AV_m b_m(t) + \frac{1}{\gamma} BV_m (H_m^{-1} - I)b_m(t)$
= $-\frac{1}{\gamma} (B + \gamma A)V_m b_m(t) + \frac{1}{\gamma} BV_m H_m^{-1} b_m(t)$

$$= -\frac{1}{\gamma} (B + \gamma A) V_m b_m(t) + \frac{1}{\gamma} (B + \gamma A) V_m b_m(t) + \frac{1}{\gamma} h_{m+1,m} \left(e_m^T H_m^{-1} b_m(t) \right) (B + \gamma A) v_{m+1} - \frac{1}{\gamma} R_m H_m^{-1} b_m(t) \quad (\because \vec{\mathbf{x}} (12)) = \frac{1}{\gamma} h_{m+1,m} \left(e_m^T H_m^{-1} b_m(t) \right) (B + \gamma A) v_{m+1} - \frac{1}{\gamma} R_m H_m^{-1} b_m(t)$$

$$||r_{exp,m}^{real}|| \leq \frac{1}{\gamma} |h_{m+1,m} \left(e_m^T H_m^{-1} b_m(t) \right) | ||(B + \gamma A) v_{m+1}|| + \frac{1}{\gamma} ||R_m H_m^{-1} b_m(t)||$$
(15)
ここで、次の命題が成立する.

Proposition 4.1 $f(z) := \beta z^{-1} e^{-\frac{t}{\gamma}(z^{-1}-1)}$ とおく. H_m を正方な上へッセンベルグ行列とし,式(3)で定義される H_m の値域が,

$$W(H_m) \subset \{ z \in \mathbb{C}; \Re(z) > 0 \}$$
(16)

を満たすと仮定すると、ある定数 $K > 0 \ge 0 < \lambda < 1$ が存在して、次式が成立する.

$$\left| \left(f(H_m) \right)_{i,j} \right| < K \lambda^{i-j} \quad (i \ge j) \tag{17}$$

Proof: H_m と f は Benzi ら [3] の Theorem 11 の仮定 を満たす.実際, $W(H_m)$ は有界凸だから, $W(H_m) \subset$ $\mathcal{F} \subset \{z \in \mathbb{C}; \Re(z) > 0\}$ を満たす単連結なコンパクト 集合で境界が Jordan 閉曲線になる F をとることができ る. Riemann の写像定理より、 $\overline{\mathbb{C}} \setminus \mathcal{F}$ ($\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$)か ら $\{w \in \overline{\mathbb{C}}; |w| > \rho\}$ $(\rho > 0)$ への全射な等角像 Φ (す なわち双正則写像 [10] (pp.137-138)) で, $\Phi(\infty) = \infty$, $\lim_{z\to\infty} (\Phi(z)/z) = 1$ を満たすものが存在する [3]. $\partial \mathcal{F}$ は Jordan 閉曲線であるから、Carathéodoryの定理 [4] より、 この写像は Ĉ\Fに, 位相同型写像として拡張できる. ここ で、 Φ の逆写像を Ψ とする. Ψ は連続だから、 $R_0 > \rho$ で、 $\Psi(\{w \in \overline{\mathbb{C}}; |w| = R_0\})$ の Jordan 領域が 0 を含まないよ うな R_0 が存在する.よって、この Jordan 領域を $I(C_{R_0})$ とすると, $I(C_{R_0}) \subseteq \overline{\mathbb{C}} \setminus \{0\}$ となる. $f \mathrel{\mathrm{tc}} \setminus \{0\}$ で正則 だから, $I(C_{R_0})$ でも正則である. H_m は上ヘッセンベルグ 行列であるから, Benziら [3] の Theorem 11 よりこの命題 が成立する.

Remark 4.1 Proposition 4.1 は,式 (16) で表される仮 定が満たされれば, $f(H_m)$ がヘッセンベルグ行列に近い形 となることを示している.また, $K \ge \lambda$ はFのみに依存 する. Proposition 4.1 より,式(15)の第1項目は次式のよう になる.

$$\begin{split} &\frac{1}{\gamma} \left| h_{m+1,m} \left(e_m^T f(H_m) e_1 \right) \right| ||(B + \gamma A) v_{m+1}|| \\ &\leq \frac{1}{\gamma} |h_{m+1,m}| \left| (f(H_m))_{m,1} \right| ||(B + \gamma A)||||v_{m+1}|| \\ &\leq \frac{1}{\gamma} |h_{m+1,m}|||(B + \gamma A)||K\lambda^{m-1} \\ & \text{ここで, 次式が成立する.} \end{split}$$

$$|h_{m+1,m}| = ||(B + \gamma A)^{-1} B v_m - f_m - h_{1,n} v_1 - \dots - h_{m,m} v_m||$$

$$\leq ||(B + \gamma A)^{-1} B v_m|| + ||f_m||,$$

$$||f_m|| \leq ||(B + \gamma A)^{-1}||||r_{sys,m}||$$

よって,

1

 $||r_{sys,m}|| \le \delta \quad (\delta > 0) \tag{18}$

とすると、次式が成立する.

$$\frac{1}{\gamma} \left| h_{m+1,m} \left(e_m^T f(H_m) e_1 \right) \right| \left| \left| (B + \gamma A) v_{m+1} \right| \right|$$
$$\leq \frac{1}{\gamma} (||B|| + \delta) \kappa (B + \gamma A) K \lambda^{m-1}$$

よって,式(15)の第1項目は m の増加とともに任意に 小さくなる.

上の議論では式 (16) と式 (18) の 2 つを仮定している. 式 (18) に関しては, m 回目の外部反復において, これを 満たすように線形方程式 $(B + \gamma A)x_m = Bv_m$ を解けばよ いから特に問題はない.式 (16) を保障するために, 次の補 題を利用する.

Lemma 4.1 行列 A を正方行列とし、 $A^{sym} := (A + A^T)/2, A^{skew} := (A - A^T)/2$ とすると、次式が成立する.

 $W(A) \subseteq W(A^{sym}) + W(A^{skew})$

 $\exists \exists \mathfrak{C}, W(A^{sym}) \subseteq \mathbb{R}, W(A^{skew}) \subseteq i\mathbb{R} \ \mathfrak{C}\mathfrak{s}\mathfrak{d}.$

Proof: $x \in W(A)$ とすると、 $\exists u \in \mathbb{C}$ に対して次式が成立する.

$$\begin{aligned} x &= u^*Au \\ &= u^*A^{sym}u + u^*A^{skew}u \in W(A^{sym}) + W(A^{skew}) \end{aligned}$$

後半部分は, *A^{sym}* は対称行列, *A^{skew}* は歪対称行列であることから得られる. □

これより, 行列 $H_m^{sym} = (H_m + H_m^T)/2$ の最小固有値が正 になれば, 式 (16) で表される仮定が満たされることが分か る.よって, 各外部反復において, 行列 H_m^{sym} の最小固有値 が正になっているかを確認すればよい.実際, $F_m = O$ であ れば, $W(H_m) \subseteq W((I+\gamma B^{-1}A)^{-1}) \subset \{z \in \mathbb{C}; \Re(z) > 0\}$ だから, 正にならない場合, δをより小さくし,内部反復 の精度を上げるか, γを小さくし,行列 $(I+\gamma B^{-1}A)^{-1}$ の 値域がより原点から離れるようにすればよい.

Remark 4.2 $Z := I + \gamma B^{-1}A$ とおく. $W(B^{-1}A) \subseteq \Sigma_{\beta,\theta}$ より, $\forall x \in W(B^{-1}A)$ に対して $\exists \alpha > 0$, $\exists \phi \in (0,\theta)$, $x = \beta + \alpha e^{i\phi}$ だから, $\forall u \in \mathbb{C}^n$, ||u|| = 1に対して次式が成立する.

$$\begin{split} \Re \left(u^* Z^{-1} u \right) \\ &= \Re \left(u^* Z^{-*} u \right) \\ &= \Re \left(u^* Z^{-*} Z Z^{-1} u \right) \\ &= ||Z^{-1} u||^2 \Re \left(1 + \gamma \frac{\{ Z^{-1} u \}^* B^{-1} A\{ Z^{-1} u \}}{||Z^{-1} u||^2} \right) \\ &= ||Z^{-1} u||^2 \Re \left(1 + \gamma (\beta + \alpha e^{i\phi}) \right) \ ({}^\exists \alpha > 0, \ {}^\exists \phi \in (0, \theta)) \end{split}$$

よって、 $1 + \gamma\beta > 0$ なる γ を選べば次式が成立する.

 $\Re(u^* Z^{-1} u) \ge \sigma_{\min}(Z^{-1})^2 |1 + \gamma\beta|$ (19)

ただし, $\sigma_{min}(A)$ は行列 A の最小特異値である.よって, $\sigma_{min}(Z^{-1})^2 |1 + \beta \gamma| > ||F_m||$ ならば, $\forall u \in \mathbb{C}^n$, ||u|| = 1に対して,次式が成立する.

$$\Re(u^*H_m u) = \Re\left(u^*\left(V_m^T Z^{-1} V_m\right) - V_m^T F_m\right)u\right)$$

$$\geq \Re(u^* V_m^T Z^{-1} V_m u) - |u^* V_m^T F_m u|$$

$$\geq \Re(u^* V_m^T Z^{-1} V_m u) - ||F_m||$$

$$\geq \sigma_{min}(Z^{-1})^2 |1 + \beta\gamma| - ||F_m||$$

$$\geq 0$$

ここで, $||F_m|| \leq \sqrt{m} \max_{1 \leq j \leq m} ||f_j||$ が成立するから, $j = 1, \cdots, m$ に対し次式が成立すれば仮定は満たされる.

$$||f_j|| < \frac{\sigma_{min}(Z^{-1})^2 |1 + \gamma\beta|}{\sqrt{m_{max}}}$$

 $||f_j|| \le ||(B + \gamma A)^{-1}||||r_j|| (j = 1, \dots m) よ り, ||r_j|| に対$ して次式が成立すればよい.

$$||r_j|| \le \frac{|1 + \beta \gamma|}{\sqrt{m_{max}} ||(B + \gamma A)^{-1}||||Z||^2} =: \delta_a$$

ただし、 m_{max} は最大反復回数である.よって、 $\delta \leq \delta_a$ と 定めれば、仮定 (16) は満たされる.ただし、この値を計算 するにはコストがかかりすぎる.さらに、上の一連の導出 には多くの不等式評価が含まれる.これらの不等号は真の 不等号であることが多い.よって、実際の計算では、 δ_a よ り大きな値を δ として選んでも問題ない場合もある.

式(15)の第2項目については、次の定理が成立する.

Theorem 4.1 $f(H_m) \mathcal{O}(i,j)$ 成分を $g_{i,j}^m$ とし, $tol_{exp} > 0$

を外部反復の収束判定条件とする.その他の記号はこれま での定義に従うものとする.さらに,式(16)を仮定する. このとき

$$||r_{sys,1}|| \le \frac{\gamma \cdot tol_{exp}}{m_{max}||H_m^{-1}b_m(t)||}$$
 (20)

$$||r_{sys,j}|| \le \frac{|g_{1,1}^m|}{|g_{j-1,1}^m|} ||r_{sys,1}|| \quad (2 \le j \le m)$$
(21)

ならば,次式が成立する.

$$\frac{1}{\gamma}||R_m f(H_m)e_1|| \le tol_{exp}$$

Proof: 次式が成立する.

1

$$\begin{aligned} &\frac{1}{\gamma} ||R_m f(H_m) e_1|| \\ &\leq \frac{1}{\gamma} |g_{1,1}^m| ||r_{sys,1}|| + |g_{2,1}^m| ||r_{sys,2}|| + \dots + |g_{m,1}^m| ||r_{sys,m}|| \end{aligned}$$

ここで,式(20),式(21)より次式が成立するから定理が成 立する.

$$\begin{split} \frac{1}{\gamma} |g_{1,1}^{m}|||r_{sys,1}|| + |g_{2,1}^{m}|||r_{sys,2}|| + \dots + |g_{m,1}^{m}|||r_{sys,m}|| \\ &\leq \frac{1}{\gamma} |g_{1,1}^{m}|||r_{sys,1}|| + |g_{2,1}^{m}|\frac{|g_{1,1}^{m}|}{|g_{1,1}^{m}|}||r_{sys,1}|| \\ &+ |g_{3,1}^{m}|\frac{|g_{1,1}^{m}|}{|g_{2,1}^{m}|}||r_{sys,1}|| + \dots + |g_{m,1}^{m}|\frac{|g_{1,1}^{m}|}{|g_{m-1,1}^{m}|}||r_{sys,1}|| \\ &= \frac{1}{\gamma} |g_{1,1}^{m}|||r_{sys,1}|| \left(1 + \frac{|g_{2,1}^{m}|}{|g_{1,1}^{m}|} + \frac{|g_{3,1}^{m}|}{|g_{2,1}^{m}|} + \dots + \frac{|g_{m,1}^{m}|}{|g_{m-1,1}^{m}|}\right) \\ &\leq \frac{1}{\gamma} ||f(H_{m})e_{1}||||r_{sys,1}|| \left(1 + \lambda + \dots + \lambda\right) \quad (\because \vec{x} \pmod{17}) \\ &\leq \frac{1}{\gamma} ||H_{m}^{-1}b_{m}(t)||||r_{sys,1}|| \cdot m_{max} \\ &\leq tol_{exp} \qquad \Box \end{split}$$

Remark 4.3 上の定理より, m回目の外部反復において, 式 (20),式 (21) を満たすように線形方程式 $(B + \gamma A)x_j =$ Bv_j (1 $\leq j \leq m$) が解かれていれば,式 (15) の第1項 $||r_{exp,m}^{comp}|| := |h_{m+1,m} (e_m^T f(H_m)e_1)| ||(B + \gamma A)v_{m+1}||/\gamma$ のみを計算し,これが収束判定条件 tol_{exp} に達するまで外 部反復を行えばよい.

Remark 4.4 実際の計算では,式(20),式(21)に現れる *m*の入っている行列を事前に計算することはできない. そこで,式(20)は,次の近似式を用いて計算する.

$$\begin{split} ||H_m^{-1}b_m(t)||||r_{sys,1}|| \\ &\approx ||r_{sys,1}|||V_m^T B^{-1}(B+\gamma A)V_m b_m(t)|| \quad (\because \vec{\pi} \ (13)) \\ &\approx ||r_{sys,1}||||V_m^T B^{-1}(B+\gamma A)(y(t)-A^{-1}c)|| \quad (\because \vec{\pi} \ (14)) \\ &\lesssim ||r_{sys,1}||||B^{-1}(B+\gamma A)(v-A^{-1}c)|| \end{split}$$

よって,式(20)の代わりに次式を用いる.

Algorithm 1 ISIAE 法

- **Require:** $A, B \in \mathbb{R}^{n \times n}$, $v, c \in \mathbb{R}^n$, $t \in (0, T]$, $\gamma > 0$, $\delta > 0$, $tol_{exp} > 0$, m_{max}
- **Ensure:** $y_m(t)$ such that $||r_{exp,m}^{real}|| \leq tol_{exp}$

1: $\beta = ||v - A^{-1}c||, v_1 = (v - A^{-1}c)/\beta$ 2: $tol_{w_1} = 2tol_{w_2}/(m_{w_1}c)||B^{-1}(B + 2A)(v - A^{-1}c)||)$

2:
$$tol_{sys,1} = \gamma tol_{exp} / (m_{max} ||B^{-1}(B + \gamma A)(v - A^{-1}C)||)$$

3: for $m = 1, 2, \cdots, m_{max}$ do

4: Compute \tilde{x} such that $||Bv_m - (B + \gamma A)\tilde{x}|| \le tol_{sys,m}$

5: **for**
$$k = 1, 2, \cdots, m$$
 do
6: $h_{k,m} = \tilde{x}^T v_k$

 $7: \qquad \tilde{x} = \tilde{x} - h_{k,m} v_k$

- 9: $h_{m+1,m} = ||\tilde{x}||, \ v_{m+1} = \tilde{x}/h_{m+1,m}$
- 10: **if** $\lambda_{min}((H_m + H_m^T)/2) \leq 0$ **then**
- 11: **print** Warning
- 12: end if
- 13: $f_m = H_m^{-1} e^{-\frac{t}{\gamma} (H_m^{-1} I)} e_1$
- 14: $r = |h_{m+1,m}(f_m)_1|||(B + \gamma A)v_{m+1}||/\gamma$
- 15: $tol_{sys,m+1} = \min\{tol_{sys,1}|(f_m)_1|/|(f_m)_m|,\delta\}$
- 16: **if** $r \leq tol_{exp}$ **then**
- 17: $y_m(t) = V_m b_m(t) + A^{-1}c$, break

18: end if 19: end for

$$||r_{sys,1}|| \le \frac{\gamma \cdot tol_{exp}}{m_{max}||B^{-1}(B+\gamma A)(v-A^{-1}c)||}$$
 (22)

式 (22) は,式 (20) に現れる m の入っている各行列を, Krylov 部分空間に射影する前の行列で置き換えたもので ある.式 (21) は,式 (17) の $K \ge \lambda$ が, H_m の次元 m に 依存しない集合 \mathcal{F} のみに依存して決まるから, $2 \le j \le m$ に対して $|g_{1,1}^m| \approx |g_{1,1}^{j-1}|$, $|g_{1,j-1}^m| \approx |g_{1,j-1}^{j-1}|$ と近似して計 算する.また,相対残差が tol_{exp} になることを収束判定条 件にしたい場合は,次式を用いればよい.

$$\begin{aligned} ||r_{exp,m}^{comp}|| &\leq tol_{exp}||B^{-1}(-Ay(t)+c)|| \\ &\approx tol_{exp}||B^{-1}(-Av+c)|| \end{aligned}$$

4 章の内容をまとめると、Algorithm 1 のようになる. ただし、 $(f_m)_j$ は f_m の第 j成分である. 2 行目および 15 行目では、線形方程式 $(B + \gamma A)x_m = Bv_m$ を解く際の収 束判定条件を計算しており、この部分に SIAE 法との本質 的な違いがある. 15 行目の $|(f_m)_m|$ の値は、式 (17)より、 mの増加とともに小さくなる. これにより、 $tol_{sys,m+1}$ の 値は mの増加とともに大きくなるから、線形方程式を解 く計算コストは減少していく.

5. 数值実験

本章では,数値実験により3章,4章で述べた解法の有効 性を示す.すべての数値実験は,OS:Ubuntu14.04LTS, CPU:Intel(R) Xeon(R) E3-1270 V2 @ 3.50 GHz,メモ リ:16 GB,プログラム言語:MATLAB 2015a を用いて 行った.

各外部反復において、 $(B + \gamma A)x_m = Bv_m$ または $Bx_m = Av_m$ は、前処理したBiCGStab法[21]を用いて解

表 1 Example 1:小さい n に対する δ_a Table 1 Example 1: δ_a for small n.

n	δ_a
9^{2}	0.10
17^{2}	0.11
33^{2}	0.047

いた. AE 法, SIAE 法ではこの線形方程式を残差ノルム が 10⁻¹⁴ 以下となるように計算した.また, $e^{-\frac{t}{\gamma}(H_m^{-1}-I)}e_1$ の計算には, MATLAB 関数 expm を用いた (文献 [9], [12] 参照).さらに,相対誤差の計算には, AE 法で相対残差ノ ルムが 10⁻¹⁴ 以下となるように計算した解を正確な値とし て用いた.

Example 1 $\Omega = (0, 10) \times (0, 10) \subseteq \mathbb{R}^2$,

 $\begin{cases} \frac{\partial u}{\partial t} = -\mu \Delta^2 u & \text{in } (0, T] \times \Omega \\ u = \phi & \text{on } \{0\} \times \Omega \\ u = 0 & \text{on } (0, T] \times \partial \Omega \end{cases}$ (23)

ただし, μ = 0.01,

$$\phi(x_1, x_2) = \begin{cases} 1 & \text{in } (0, 10) \times (0, 10) \\ 0 & \text{on } \partial\Omega. \end{cases}$$

式 (23) は、重調和熱方程式 [19] と呼ばれる. ここでは、 $10/(n_s-1) \times 10/(n_s-1)$ の一様な正方形メッシュにより有 限差分法で離散化し,式(2)の形に変形した. ここで, B = I となる. $n_s = 65$, 129, $257(n = n_s^2)$ に対して, ISIAE 法と SIAE 法, AE 法により残差ノルムが $tol_{exp} = 10^{-8}$ 以下と なるような解を計算し、比較を行った.ただし、ISIAE法, SIAE 法では, t = 0.1, $\gamma = 10^{-2}$, $\delta = 10^{-2}$, $m_{max} = 100$ とし、線形方程式 $(B + \gamma A)x_m = Bv_m$ を解く際の前処理 行列として近似逆行列 [16](pp.337–342)を用いた.γ,δ は式 (16) の仮定を満たすように決定した. Remark 4.2 よ り,式(16)の仮定を満たすための十分条件は, $1 + \gamma\beta > 0$ かつ, $\delta \leq \delta_a$ である. $W(A) \subseteq \{z \in \mathbb{C}; \Re z > 0\}$ [15] であ るから、 $\forall \gamma > 0$ に対して、 $1 + \gamma \beta > 0$ が成立する.よっ $\tau, \delta \leq \delta_a$ を満たす δ を選べばよい.ここでは, δ_a がある 程度大きくなるように $\gamma = 0.01$ とし,式 (23) を小さい n で離散化した際の、 δ_a の値を計算した.表1に、結果を 示す. nが変化しても、 δ_a は大きく変化しないことが分か る.よって、表1のすべてのnに対して $\delta \leq \delta_a$ が成立す る値として、 $\delta = 0.01$ を採用した.以上のような γ 、 δ を用 いて,実行時間,外部反復回数と相対誤差の比較を行った. 結果を表2に示す.AE法はnが増加するにつれて反復回 数が増加している.これは, nの増加とともに ||tA|| が増加 するからである. 実際, $n = 65^2$ のとき $||tA|| \approx 1.1 \times 10^7$ であるのに対し、 $n = 257^2$ のとき、 $||tA|| \approx 2.7 \times 10^9$ と なる. 一方, SIAE 法と ISIAE 法の収束は ||tA|| によらな いため, n が増加しても反復回数はあまり変化しない. 相

表 2 Example 1: ISIAE 法, SIAE 法, AE 法の比較 Table 2 Example 1: Comparison of ISIAE, SIAE, and AE.

n	Algorithm	実行時間 (s)	反復回数	相対誤差
65^{2}	ISIAE	0.3880	22	1.3093e - 11
	SIAE	0.4170	22	1.3093e - 11
	AE	0.0676	52	2.2285e - 13
129^{2}	ISIAE	2.4619	30	3.3201e - 13
	SIAE	2.9813	30	3.2791e - 13
	AE	1.7614	209	6.1373e - 14
257^{2}	ISIAE	31.5411	37	1.4442e - 12
	SIAE	48.8624	37	1.5380e - 12
	AE	263.3547	857	1.8168e - 14

表 3 Example 1: $n = 129^2$, 外部反復回数 $m \ge tol_{sys,m}$ の関係 Table 3 Example 1: $n = 129^2$, Number of outer iterations and $tol_{sys,m}$.

m	$tol_{sys,m}$	m	$tol_{sys,m}$
1	8.2151e - 15	16	2.3806e - 07
2	4.5585e - 14	17	1.0616e - 07
3	8.9537e - 14	18	1.0058e - 05
4	1.6121e - 13	19	5.8912e - 07
5	3.6981e - 13	20	3.9546e - 06
6	1.2479e - 12	21	3.4553e - 06
7	1.1556e - 11	22	9.4372e - 06
8	2.1546e - 11	23	2.5472e - 05
9	4.8182e - 11	24	3.5410e - 05
10	1.0150e - 09	25	1.1308e - 03
11	3.7421e - 10	26	1.3948e - 04
12	5.8668e - 09	27	1.0734e - 03
13	2.8030e - 09	28	1.2035e - 03
14	2.7003e - 08	29	1.9012e - 03
15	1.8290e - 08	30	1.0000e - 02

対誤差については、AE 法のほうが幾分小さくなっている が、これは、AE 法で高精度になるよう計算した解を正確 な値として用いているためと考えられる.以上の考察よ り、特にnが大きいときに ISIAE 法の有効性が分かる. さらに、 $n = 129^2$ のときの外部反復回数 m と線形方程式 $(B + \gamma A)x_m = Bv_m$ を解く際の収束判定条件 tol_{sys,m} を 表3,外部反復回数mと相対残差ノルムの関係を図1に 示す. 表 3 より, ISIAE 法は, tol_{sys,m} が m の増加とと もに大きくなっていくことで解を効率良く計算しているこ とが分かる.また、図1より、十分な外部反復を行えば、 Theorem 4.1 が示すように残差が tolexp 以下になっている ことが分かる.しかし、真の相対残差ノルム $||r_{exp,m}^{real}||$ の 減少は tolexp に達した時点で頭打ちとなっている.これは Theorem 4.1 により $||r_{exp,m}^{real}||$ をコントロールしているた めであり, ISIAE 法が解を効率良く計算していることがこ の図 1 からも分かる. さらに, $r_{exp,m}^{real}$ と $r_{exp,m}^{comp}$ は tol_{exp} までは同じ振舞いをしている.よって、 $r_{exp,m}^{comp}$ を収束判定 に用いてよいことが分かる.

図 1 Example 1: $n = 129^2$, 外部反復回数 $m \geq ||r_{exp,m}^{real}||$, $||r_{exp,m}^{comp}|| の関係$

Fig. 1 Example 1: $n = 129^2$, Number of outer iterations and $||r_{exp,m}^{real}||$, $||r_{exp,m}^{comp}||$.

図 2 Example 2:領域分割メッシュ

Fig. 2 Example 2: Domain partition mesh.

Example 2 $\Omega = ((-1.5, 1.5) \times (-1, 1)) \setminus ([-0.5, 0.5] \times [-0.25, 0.25]) \subseteq \mathbb{R}^2$,

$$\begin{cases} \rho c_p \frac{\partial u}{\partial t} = \lambda \Delta u + \nabla \cdot cu & \text{ in } (0, T] \times \Omega \\ u = \phi & \text{ on } \{0\} \times \Omega \\ u = 300 & \text{ on } (0, T] \times \partial \Omega_1 \\ -\lambda \frac{\partial u}{\partial n} = \alpha (u - 280) & \text{ on } (0, T] \times \partial \Omega_2 \\ -\lambda \frac{\partial u}{\partial n} = -10 & \text{ on } (0, T] \times \partial \Omega_3 \end{cases}$$
(24)

ただし, $\partial\Omega_1 = ([-0.5, 0.5] \times \{-0.25, 0.25\}) \cup (\{-0.5, 0.5\} \times [-0.25, 0.25]), \ \partial\Omega_3 = \{1.5\} \times [-1, 1], \ \partial\Omega_2 = \partial\Omega \setminus (\partial\Omega_1 \cup \partial\Omega_3), \ c = [-5\ 0], \ \rho = 1.3, \ c_p = 1000, \ \lambda = 0.025, \ \alpha = 9.3,$

$\phi(x_1, x_2) = \int$	300	in $(-1,1) \times (-1,1) \cap \Omega$
$\varphi(x_1, x_2) = $	280	otherwise.

式 (24) は,熱の移流拡散を表す方程式であり,次のよう な現象のモデルである.中央に穴が空いた部屋 Ω があり, 壁 $\partial\Omega_1$ はつねに温度 300 K に保たれている.壁 $\partial\Omega_2$ には つねに一定の熱流束 -10 W/m があり,壁 $\partial\Omega_3$ では 280 K の外気と壁を通して熱のやりとりがある.さらに,部屋の 中にはつねに 5 m/s の空気の流れがある.u(t,x) は,時刻 t,位置 x における温度を表している.ここでは,図 2 に示

表 4 Example 2:小さい n に対する δ_a Table 4 Example 2: δ_a for small n.

n	δ_a
118	13.31
426	13.15
1612	8.86

表 5	Example 2: ISIAE 法, SIAE 法, A	E 法の比較	
Table 5	Example 2: Comparison of ISIAE,	SIAE, and	AE

n	Algorithm	実行時間 (s)	反復回数	相対誤差
6264	ISIAE	0.4903	49	1.5536e - 07
	SIAE	0.3737	49	1.5535e-0 7
	AE	1.3523	170	7.4955e-0 9
24688	ISIAE	1.3149	53	2.8688e - 07
	SIAE	1.4777	53	2.8683e-0 7
	AE	12.8744	339	3.6155e-0 8
98016	ISIAE	6.8115	47	5.8913e - 06
	SIAE	10.3211	47	5.8910e - 06
	AE	210.0390	743	1.6450e - 07

すような三角形メッシュにより Galerkin 法で離散化し,式 (2)の形に変形した[1],[17]. n = 6264, 24688, 98016 に対 して ISIAE 法と SIAE 法, AE 法により相対残差ノルムが $tol_{exp} = 10^{-8}$ 以下となるような解を計算し比較を行った. ただし, ISIAE 法, SIAE 法では t = 300, $\gamma = 5$, $\delta = 1$, $m_{max} = 100$ とし、線形方程式 $(B + \gamma A)x_m = Bv_m$ また は $Bx_m = Av_m$ を解く際の前処理にはILU(0)を用いた. 表 4 に,式 (24) を小さい n で離散化した際の, δ_a の値を 示す.これを用いて,Example 1 と同様に γ,δを決定し た.実行時間,外部反復回数と相対誤差の比較を表5に 示す. Example 1 と同様に, AE 法は n が増加するにつれ て反復回数が増加している.一方で SIAE 法と ISIAE 法は nが増加しても反復回数は変化しない.この問題に対して は、AE法でも内部反復が必要となる.よって、Example 1よりも SIAE 法, ISIAE 法の有効性が分かる. さらに, n = 98016のときの外部反復回数mと相対残差ノルムの 関係を図3,求まった解の様子を図4に示す.ここでも、 ISIAE 法は、欲しい精度の解を効率良く、正しく計算して いることが分かる.

Example 3 $\Omega = \{x \in \mathbb{R}^2; |x| < 1\} \subseteq \mathbb{R}^2,$

$$\begin{cases} \rho c_p \frac{\partial^2 u}{\partial t} = \lambda \Delta u + f & \text{in } (0, T] \times \Omega \\ u = 280 & \text{in } \{0\} \times \overline{\Omega} \\ u = 280 & \text{on } (0, T] \times \partial \Omega_1 \\ \frac{\partial u}{\partial n} = 0 & \text{on } (0, T] \times \partial \Omega_2 \end{cases}$$
(25)

図 3 Example 2:n = 98016, 外部反復回数 $m \geq ||r_{exp,m}^{real}||/||B^{-1}(-Av+c)||, ||r_{exp,m}^{comp}||/||B^{-1}(-Av+c)|| の関係$

Fig. 3 Example 2: n = 98016, Number of outer iterations and $||r_{exp,m}^{real}||/||B^{-1}(-Av+c)||, ||r_{exp,m}^{comp}||/||B^{-1}(-Av+c)||.$

図 4 Example 2: n = 98016, 解の様子 Fig. 4 Example 2: n = 98016, Solution.

図 5 Example 3:領域分割メッシュ Fig. 5 Example 3: Domain partition mesh.

$$f(x_1, x_2) = \begin{cases} 1.0 \times 10^6 & \text{in } \{x \in \Omega; \ |x| < 0.1\} \\ 0 & \text{otherwise.} \end{cases}$$

式 (25) は供給された熱の拡散を表す方程式であり,次の ような現象のモデルである.半径 1mの円形銅板の中心部 分に一定エネルギー 1.0×10⁶ J/m² が供給される.銅板の 端の一方 $\partial\Omega_1$ はつねに温度 280 K に保たれ,もう一方 $\partial\Omega_2$ はつねに断熱状態である.u(t,x)は、時刻 t,位置 x にお ける温度を表している.ここでは、図 5 に示すような三角 形メッシュにより Galerkin 法で離散化し,式(2)の形に変 形した [1], [17].n = 8257 かつ t = 500, 1000, 5000 と, t = 10000 かつ n = 2097, 8257, 32769 に対して ISIAE 法 と SIAE 法, AE 法により相対残差ノルムが $tol_{exp} = 10^{-8}$ 以下となるような解を計算し比較を行った.ただし, ISIAE

© 2016 Information Processing Society of Japan

表 6 Example 3: n = 8257, ISIAE 法, SIAE 法, AE 法の比較 Table 6 Example 3: n = 8257, Comparison of ISIAE, SIAE, and AE.

t	Algorithm	実行時間 (s)	反復回数	相対誤差
500	ISIAE	0.9635	32	9.6874e - 14
	SIAE	1.7465	32	9.6559e-14
	AE	10.3807	352	2.9622e - 14
1000	ISIAE	0.8505	26	2.5138e - 13
	SIAE	1.4895	26	1.6393e - 13
	AE	27.6263	482	6.2271e - 14
5000	ISIAE	1.0761	28	2.8036e - 12
	SIAE	1.4989	28	2.6161e - 12
	AE	195.1430	820	4.4408e - 13

表 7 Example 3:t = 10000, ISIAE 法, SIAE 法, AE 法の比較 Table 7 Example 3: t = 10000, Comparison of ISIAE, SIAE, and AE.

n	Algorithm	実行時間 (s)	反復回数	相対誤差
2097	ISIAE	0.3211	33	7.4517e - 13
	SIAE	0.2887	33	2.8989e - 13
	AE	4.4245	422	9.1694e-13
8257	ISIAE	1.2879	33	5.1891e - 12
	SIAE	1.8898	33	3.5386e-12
	AE	244.2348	863	1.6745e-12
32769	ISIAE	7.0855	32	9.5537e-12
	SIAE	12.5104	32	6.0404e-12
	AE	3457.0557	1743	1.5931e - 12

法, SIAE 法では $\gamma = 100$, $\delta = 10$, $m_{max} = 100$ とし,線 形方程式 $(B + \gamma A)x_m = Bv_m$ または $Bx_m = Av_m$ を解く 際の前処理には ILU(0) を用いた.実行時間,外部反復回数 と相対誤差の比較を**表 6**,表 7 に示す. AE 法は t が増加 するにつれて反復回数が増加している.これは, t の増加と ともに $||tB^{-1}A||$ が増加するためである.また, Example 1 と同様に, AE 法は n が増加するにつれても反復回数が 増加している.一方で SIAE 法と ISIAE 法は $t \approx n$ が増 加しても反復回数は変化しない.特に, ISIAE 法はすべて の場合で高速に解を計算できている.さらに, MATLAB 関数 parabolic により解を計算し [12], [18], ISIAE 法と parabolic で求まった解を比較した.結果を図 6 に示す. 得られた解はほぼ一致していることが分かる.

6. 結論

1 階の時間微分項が含まれる線形発展方程式に対しては, 空間方向のみ離散化を行い, ISIAE 法を用いて解を近似す るのが効率的である.これにより,欲しい解の時間変数 *t* の値や離散化により生じた行列の次元に依存しない反復回 数で解を計算できる.さらに,ISIAE 法は,各反復に現れ る線形方程式を効率良く解くことで,大規模問題に対して も1回の反復を少ない計算時間で行うことができる.よっ て,特に,細かいメッシュでの離散化が必要な問題や大き な*t*の値に対する解が必要な場合はこの方法が有効である. 今後は,*A*, *B*, *c*が*t*に依存する場合や,*A*が正則でない 場合の拡張について検討したい.また,別な種類の偏微分 方程式に対しても,解を計算する効率的なアルゴリズムを 検討したい.

参考文献

- Alberty, J., Carstensen, C. and Funken, S.A.: Remarks Around 50 Lines of Matlab: Short Finite Element Implementation, *Numerical Algorithms*, Vol.20, No.2, pp.117– 137 (1999).
- [2] António, A., Adérito, A. and Ercília, S.: Application of the Advection-dispersion Equation to Characterize the Hydrodynamic Regime in a Submerged Packed Bed Reactor, Advances in Computational & Experimental Engineering & Sciences, Atluri, S.N. and Tadeu, A.J.B. (Eds.), Maderia, Portugal, ICCES, Tech Science Press, pp.548–553 (2004).
- [3] Benzi, M. and Boito, P.: Decay Properties for Functions of Matrices over C*-algebras, *Linear Algebla and its Apprications*, Vol.456, No.1, pp.174–198 (2014).
- [4] Carathéodory, C.: Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen Kreis, *Mathematische An*nalen, Vol.73, No.2, pp.305–320 (1913).
- [5] Evans, L.C.: Partial Differential Equations Second Edition, AMS, Providence (2010).
- [6] Forsythe, G.E. and Wasow, W.R.: Finite-difference Methods for Partial Differential Equations, John Wiley & Sons Inc., New York-London-Sydney (1960).
- [7] Gallopoulos, E. and Saad, Y.: Efficient Solution of Parabolic Equations by Krylov Approximation Methods, *SIAM Journal on Scientific Statistics*, Vol.13, No.5, pp.1236–1264 (1992).
- [8] Gang, W., Feng, T. and Yimin, W.: An Inexact Shiftand-invert Arnoldi Algorithm for Toeplitz Matrix Exponential, *Numerical Linear Algebra with Applications*, Vol.22, No.4, pp.777–792 (2015).
- [9] Higham, N.J.: The Scaling and Squaring Method for the Matrix Exponential Revisited, SIAM Journal on Matrix Analysis and Applications, Vol.26, No.4, pp.1179–1193 (2005).
- [10] 小平邦彦:複素解析, 岩波書店 (1991).
- [11] Lee, S., Pang, H. and Sun, H.: Shift-invert Arnoldi Approximation to the Toeplitz Matrix Exponential, *SIAM Journal on Scientific Computing*, Vol.32, No.2, pp.774–792 (2010).
- [12] Mathworks: Matlab Documentation, Mathworks (online), available from (http://jp.mathworks.com/help/

matlab/mathematics.html \rangle (accessed 2016-01-15).

- [13] Moler, C. and Van Loan, C.F.: Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twentyfive Years Later, *SIAM Review*, Vol.45, No.1, pp.3–49 (2003).
- [14] Moret, I. and Novati, P.: RD-rational Approximations of the Matrix Exponential, *BIT Numerical Mathematics*, Vol.44, No.3, pp.595–615 (2004).
- [15] Rodrigue, G. and Varga, R.: Convergence Rate Estimates for Iterative Solutions of the Biharmonic Equation, *Journal of Computational and Applied Mathematics*, Vol.24, No.1, pp.129–146 (1988).
- [16] Saad, Y.: Iterative Methods for Sparse Linear Systems Second Edition, SIAM, Philadelphia (2003).
- [17] Segal, I.A.: Finite Element Methods for the Incompressible Navier-Stokes Equations, Delft Institute of Applied Mathematics, Delft, The Netherlands (2015).
- [18] Shampine, L.F. and Reichelt, M.W.: The MATLAB ODE Suite, SIAM Journal on Scientific Computing, Vol.18, No.1, pp.1–22 (1997).
- [19] Simon, M. and Wheeler, G.: Some Local Estimates and a Uniqueness Result for the Entire Biharmonic Heat Equation, Advances in Calculus of Variations, Vol.9, No.1, pp.77–99 (2016).
- [20] Svoboda, Z.: The Convective-diffusion Equation and Its Use in Building Physics, *International Journal on Architectural Science*, Vol.1, No.2, pp.68–79 (2000).
- [21] Van der Vorst: Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems, *SlAM Journal on Scientific and Statistical Computing*, Vol.13, No.2, pp.631–644 (1992).

橋本 悠香

1993年生.現在,慶応義塾大学大学 院理工学研究科修士課程基礎理工学専 攻在学中.行列計算アルゴリズムに興 味を持つ.

野寺隆 (正会員)

1982 年慶應義塾大学大学院工学研究 科博士課程(数理工学専攻)修了.現 在,同大学教授.その間,1986年よ り1年間米国スタンフォード大学客員 教授.大規模な行列計算の算法の研究 開発に従事.ハイパフォーマンス・コ

ンピューティングや文書処理に興味を持つ.著書に『楽々 IAT_EX』(共立出版)等がある.工学博士.エッセイスト. SIAM,日本応用数理学会会員.