
Vol. 46 No. SIG 18(TOD 28) IPSJ Transactions on Databases Dec. 2005

Regular Paper

A Unified Framework for Evaluating Data-Dependent

Access Control Systems

Bat-Odon Purevjii,† Masayoshi Aritsugi,†

Yoshinari Kanamori† and Cherri M. Pancake††

We present a flexible framework for evaluating data-dependent access control systems.
Based on logical formalism, the framework is general enough to simulate all existing sys-
tems. In this paper, we analyze and compare currently available access control systems and
demonstrate how they can be simultaneously extended and simplified using our framework.
A series of examples and a cross-comparative analysis clearly demonstrate the advantages of
our framework over previous methods.

1. Introduction

Fine-grained access control has become a cru-
cial issue for some applications of computing
and information systems. Medical information
systems and e-commerce enterprises are just a
few of such applications. A large amount of
data in those information systems are stored
and manipulated in underlying database man-
agement systems. Since data in relational
database is accessed through SQL queries and
is manipulated by set oriented relational oper-
ations, deploying fine-grained access control in
database systems is more challenging than sys-
tems based on operating systems, flat files, or
HTML and XML documents. In particular, en-
forcing and administering data-dependent ac-
cess control in the level of a single cell or row
in database systems is a non-trivial problem.
There is no direct way to assign and manage au-
thorization privileges on a single cell or row of
relational tables. Some data-dependent access
control systems have been proposed since the
origin of the early database systems 10),15),25).
Recent works improved them and had been im-
plemented within the database systems 18),22).

Enforcing security policies for fine-grained
data-dependent access control directly by ap-
plication codes is usual in database systems.
There is no straightforward way to analyze such
application oriented policies. Policy specifi-
cation, analysis, and maintenance are failure-
prone in this approach, since fine-grained au-
thorization objects are specified and manip-
ulated separately from the actual authoriza-

† Gunma University
†† Oregon State University

tion rules. That separation makes the pro-
cess of analyzing and maintaining policies even
more difficult. Because of its complexity,
database security administration is often ig-
nored at fine granularity, with security admin-
istered mostly at the level of entire tables (not
cells or columns 23)). There is a strong need for
a unified framework that is capable of simulat-
ing, analyzing, and simplifying data-dependent
access control in databases. We believe that for-
mal, yet simple, policy specification languages
can provide a practical foundation for achieving
this goal.

Various kinds of logic-based access control
models and languages have been proposed in
the literature 1). Their advantages include
clean foundations, flexibility, expressiveness,
and declarative nature 2),5),24). However, since
the control models are not targeted to database
systems 23) there is a significant gap between
how policy can be specified and the underly-
ing mechanisms that are actually available to
enforce policy specifications. To derive a for-
mal framework requires exploration and cross-
comparison that can reveal how the systems dif-
fer in terms of the granularity of authorization
objects, features of policy languages, the rel-
ative complexity of policy administration and
analysis, and so on.

In this paper, we present a logical framework
that is capable of simulating and evaluating ex-
isting data-dependent access control systems.
The framework is based on a simple logical lan-
guage. Having a formal description language
for data-dependent access control offers a num-
ber of advantages. It becomes possible to com-
pare the features of distinct systems and to
identify which are most promising in terms of

29

30 IPSJ Transactions on Databases Dec. 2005

practical importance.
The framework allows us to specify and ma-

nipulate fine-grained authorization objects and
the corresponding authorization rules in a uni-
fied way. Consequently, it offers a way to eval-
uate policy analysis and update complexity in
the systems, while remaining independent of
them. We used this platform to investigate ac-
cess control systems that are proposed by re-
search papers 10),15),22), major database text-
books 8),21) and vendor documentation 16),18).
Based on that investigation, we report differ-
ences and capabilities of the systems.

The remainder of the paper is organized
as follows. Section 2 describes related work.
In Section 3, we introduce our access control
framework with its authorization description
language. We simulate and evaluate existing
access control systems in Section 4. In section
5, we report their access control capabilities and
their complexities of policy analysis and update
compared to our framework. Our conclusions
and directions for future work are described in
Section 6.

2. Related Work

Fundamental investigations on data-
dependent access control for relational
databases were done in System R as a view-
based mechanism 10) and in INGRES as a
query-modification mechanism 25). The former
approach is standardized in SQL and is widely
employed in many commercial products avail-
able on the market today. The latter has suc-
cessfully been deployed in Oracle under the
name of Virtual Private Database (VPD)16),18),
and recent work 22) has rectified some draw-
backs of the original VPD query-modification
approach. None of the systems supports a for-
mal framework that is capable of specifying, an-
alyzing and updating access control policies in
a unified way. We partially reported the com-
plexities of policy administration in the existing
systems in a previous paper 20). (Comprehen-
sive lists of materials on database security were
reported in Refs. 6), 8)).

Among the formal approaches, Refs. 4), 11)
offer the most flexible frameworks and are
therefore the most directly comparable with our
work. Reference 11) is a powerful formal lan-
guage supporting multiple kinds of high-level
security policies for centralized data systems.
Although it offers richer kinds of policies than
our framework, it cannot be used to define

fine-grained authorization objects as ours can;
the language simply has no appropriate con-
structs. Similarly, although Ref. 4) introduced
a mediator-based enforcement mechanism, its
data granularity is defined at the table level
only.

The authors of works Refs. 12), 13) employed
Prolog to define security policies. They focused
on extending an industry standard architecture,
however, and did not include policy analysis
and update.

With the emergence of XML technologies,
several recent efforts 3),7),19) have proposed fine-
grained access control for XML-based formats,
in particular Ref. 14). The authors classified
such mechanisms as built-in, view-based, pre-
processing and post-processing approaches. (A
short introduction of these approaches will be
given in Section 4.) A similar classification with
slight changes will be employed in our paper,
but we subsume “pre-processing” within our
query-modification category and we do not con-
sider post-processing. Investigation into pol-
icy semantics in several promising XML access
control models has been carried out in Ref. 9).
The authors claim that a simple and unam-
biguous language is needed to state the declar-
ative semantics of any XML access control pol-
icy. Similarly, our declarative language sup-
ports a simple and unified way to define policies
in RDBMSs.

3. Formal Access Control Framework

3.1 Preliminaries
Datalog 26) is a version of Prolog and is em-

ployed in databases as a declarative language.
Tables are expressed in Datalog by predicate
symbols. A fixed number of arguments are
assigned to each predicate and the arguments
correspond to attributes of tables. The pred-
icate followed by its arguments is called an
atom. An atom consisting of the predicate p
with arguments A1, A2, . . . , An takes the form
p(A1, A2, . . . , An). We can assume a predicate
as the name of a function that returns a boolean
value true or false. If T is a table that has n
attributes in some fixed order, then we may use
t as the name of a predicate corresponding to
this table. The predicate t is true for its argu-
ments if those arguments form a tuple of the
corresponding table. That means a tuple in a
table corresponds to a fact in a predicate. An
argument in Datalog can either be a variable
or a constant. In an extended form of Datalog,

Vol. 46 No. SIG 18(TOD 28) A Unified Framework for Evaluating Access Control Systems 31

given in the area between page 736 and page
753 of the second volume of Ref. 26), function
symbols can be used as arguments and an ar-
gument takes the form f(B1, B2, . . . , Bn) and,
principally, it is as expressive as Prolog. Pro-
log can be used to declare facts about objects,
which are denoted by arguments, and their re-
lationships, which are denoted by predicates,
to define rules about objects and their rela-
tionships, and to ask questions about objects
and their relationships. Since B1, B2, . . . , Bn

are also arguments, they can either be a vari-
able, constant or a function as well. Predicates,
functions and constants begin by lowercase let-
ters and variables begin by uppercase letters.
We will follow this convention only when defin-
ing logical rules throughout the paper; the cap-
italization is not applied for any other defi-
nitions and examples. Numbers are used as
constants. The atoms can also be constructed
with the arithmetic comparison predicates, >,
≤, and so on; these predicates are called as
built-in predicates. Atoms with built-in pred-
icates are written in the usual infix notation,
e.g., X < Y instead of < (X, Y). The arith-
metic comparisons are equal to the names of
relations that contain all the true pairs. Logi-
cal statements, called rules, are written in the
form q ← p1 & p2 . . .& pn., where q is the head
and p1 & p2 . . . & pn is the body of the rule. As
we see a body consists of one or more atoms,
called subgoals, and the atoms are connected
by (logical) AND. The symbol ← denotes “if”
condition. We translate the head q is true if
all subgoals p1 & p2 . . .& pn in the body are
true. An alternative translation is “to solve q
solve p1 & p2 . . .& pn”. Let us assume two
tables EMPLOYEES(Name, Dept) and DE-
PARTMENTS(Dept, Manager) to demonstrate
expressive and computational power of Prolog.
The logical rule manages(Name, Manager)←
employees(Name, Dept) & departments(Dept,
Manager). defines a new knowledge or ta-
ble MANAGES on the two other tables. The
manages predicate returns true if employees
predicate and departments predicate return
true, that is, there exists a tuple (bob, john)
in MANAGES table if there exist a tuple
(bob, finance) in EMPLOYEES table and a tu-
ple (finance, john) in DEPARTMENTS table.
In other words, we compute the body of the
rule to compute the head of the rule. We can
ask a question “? - manages(bob, Manager).”
from a Prolog interpreter to find who manages

Bob. The Prolog interpreter returns names of
all managers who manage Bob’s department.

3.2 Basic Components
As basic building blocks of our access con-

trol framework we assume a set of database
users, a set of fine-grained objects derived
from database tables, and a set of SQL data
privilege modes, or just privileges, select,
insert, delete, and update. In this framework
authorization rules describe who can execute
which privilege on what objects. The fine-
grained authorization objects are implicitly de-
fined within the authorization rules. We give
the formalism of the mentioned components in
the next subsection. In general, an access con-
trol policy is mapped or transformed into a se-
ries of several authorization rules; in the sim-
plest case, we may assume an authorization rule
as an implementation of a security policy. We
consider several domains d1, d2, . . . , dn in this
framework. A non-exhaustive list of the domain
set is d = {integer, real, char, string, boolean,
date, time, time-stamp, user-defined type}. We
define here a special domain set sd as sd =
{char, string, user-defined type} and the user-
defined type here denotes only character and
string based types.

3.3 Authorization Description Lan-
guage (ADL)

We now give the definition of our language
and, based on that, the definition of authoriza-
tion rules. ADL consists of the following con-
structs:

- A set of constant symbols a, b, c, d, e, . . .,.
- A set of variable symbols X, Y, Z, V, U, . . .,.
- A set of predicate symbols p, q, r, . . .,.

In addition, tab is a predicate symbol. The
terms “predicate symbol” and “predicate” are
used interchangeably throughout the paper.
The symbols express tables and appear in the
body of logical rules. Each predicate sym-
bol has a fixed arity, that is, the number
of arguments, and the arities correspond to
the number of attributes of tables. In ad-
dition, permitted, time, oType, oExclude and
constraint are predicate symbols used within
logical rules as well. The definition of these
predicate symbols is given separately.

- A set of built-in predicates.
- A set of function symbols f, g, . . . , .

The terms “function symbol” and “function”
are used interchangeably throughout the paper.
The number of arity of a function symbol is
fixed as well. The function symbols help us to

32 IPSJ Transactions on Databases Dec. 2005

define fine-grained authorization objects within
the permitted predicate given in the next defi-
nition. Additionally, current, typek, semantick

and user are function symbols that can be used
within the predicates time, oType, oExclude
and constraint, respectively. The definition of
the mentioned predicates is given separately.
Moreover, ftab is always a function symbol.

- A predicate permitted.
It is a 3-ary predicate that takes the form
permitted(s, o, m), where s, o, m are expres-
sions. s and m can either be a constant
symbol or a variable symbol and o can be
a function symbol. The domain of s is a
set of ID’s, and the domain of m is data
privileges of SQL. The latter domain has
fixed number of members, namely, select, in-
sert, delete and update. We assume a fixed
database schema that has k number of ta-
bles. The function o has k number of argu-
ments and each argument is a function in turn.
It takes the form o(g1(X1,X2,. . .,Xj),. . .,gk

(Y1,Y2,. . .,Yl)), where the function symbols
g1,. . .,gk correspond to tables of the database
and the variable symbols X1, X2, . . . , Xj and
Y1, Y2, . . . , Yl correspond to attributes of the ta-
bles. The arities of g1, . . . , gk are equal to the
numbers of attributes of the corresponding ta-
bles. The semantics of function o might be de-
fined as follows. It takes k domain elements,
functions in turn, and returns an “object” of
type “record of k functions”. Each function
takes the corresponding number of domain ele-
ments and returns an “object” of type “record
of i elements”, where i varies on each function.
Then, we can assume o as a function that takes
h domain elements and return “object” of type
“record of h elements”, where h is equal to the
number of all attributes of a given database.
When specifying logical rules in our framework
we omit unnecessary function symbols and ar-
guments from them and use view names as func-
tion symbols for space utilization. However, we
still assume all function symbols and arguments
are in place in each logical rule.

Now we give definitions of other predicates.
We call them additional predicates to refer
later.

- A predicate time.
It is formed as time(current(X)). The time
instances can be defined by this predicate.

- A predicate oType.
It is formed as oType(typek(e), di) where
typek(e) denotes a function that return the type

of the k-th attribute of table e and di denotes
a particular type or domain. This predicate re-
turns true if the type of the attribute is same
as di.

- A predicate oExclude.
It is formed as oExclude(semantick(e), b),
where semantick(e) denotes a function that re-
turns semantics of k-th attribute of table e and
b is a value in sd that denotes an arbitrary text.
The predicate returns true when the attribute
does not contain the given text.

- A predicate constraint.
It is formed as constraint(user(Y)). IDs of
users can be defined by this predicate.

The constant, variable, predicate and func-
tion symbols all can be subscripted depending
on usage.

Authorization rule is defined in this subsec-
tion and examples on it are given in the next
subsection.

Definition (Authorization rule). An au-
thorization rule is a logical rule that takes the
form:
permitted(s, o, m) ← N1, N2, . . . , Nn.
where s, o and m are defined previously and
N1, N2, . . . , Nn are subgoals. A subgoal Ni can
either be a predicate, that corresponds to a ta-
ble, a built-in predicate or an additional predi-
cate.

Before providing some examples of autho-
rization rules, we discuss completeness of the
proposed language. In order to verify the
complete correctness of the language we need
to employ some higher-order logics to specify
its constructs. It will be hard to implement
such higher-order logic languages in real sys-
tems. However, we believe, all necessary func-
tions we need are possible to implement if we
make some restrictions in such higher-order lan-
guages. This will be included in our future
work.

3.4 Examples of ADL Specifications
In this subsection we give some examples of

authorization rules defined in ADL.
Example 1. Consider the following autho-

rization rule assuming that there is a table
with schema TAB1(X1,X2,X3,X4). Let us as-
sume s1 denotes a user ID. In addition,
let us assume tab1 and ftab1 denotes corre-
sponding predicate symbol and function sym-
bol for TAB1 table. As mentioned before
the capitalization convention is not strictly fol-
lowed in the definition of the table schema.
permitted(s1, ftab1(X2, X3), select) ←

Vol. 46 No. SIG 18(TOD 28) A Unified Framework for Evaluating Access Control Systems 33

tab1(X1, X2, X3, X4) &
X3 > 20.
Meaning of the rule: Assume that the vari-

ables in the rule ranging over all possible val-
ues. If there is a fact (a1, a2, a3, a4) that makes
tab1 true and a3 > 20 is true then there is a
fact that says “s1 is permitted to “select” a2

and a3”. In other words, if there is a tuple
(a1, a2, a3, a4) in table TAB1 and a3 > 20 then
user s1 is permitted to select the subset (a2, a3)
of tuple (a1, a2, a3, a4).

Example 2. Consider the following autho-
rization rule assuming that there is a table
with schema TAB2(Y1,Y2,Y3). In addition, let
us assume tab2 and ftab2 denotes correspond-
ing predicate symbol and function symbol for
TAB2 table.
permitted(s2, ftab2(Y3), select) ←

tab2(Y1, Y2, Y3) &
oExclude(semantic3(tab2), c).

This rule states that user s2 is permitted to
select the value of attribute Y3 if it does not
include c. c can be a text like cancer and so on.

4. Investigation of Access Control Sys-
tems

In this section we analyze the access control
systems given in Refs. 8), 10), 15), 16), 18), 21),
22). The approaches they use can be classi-
fied generally as built-in 22), view-based 8),10) or
query-modification 15),18). In the first, autho-
rization evaluation is done during query pro-
cessing, while in the other two it is performed
ahead of time. (The Non-Truman model 22)

is the only system that actually performs au-
thorization evaluation during query processing;
evaluation is done by the query optimizer.) In
the following subsections, we analyze the gran-
ularities they support, the languages used for
access control, and the complexity of policy ad-
ministration, analysis and update.

The authors of the system 22) considered a
very specific kind of authorization or inference
information that cannot be expressed within
view definitions. The authors claim that the in-
ference information depends on some database
states and users may be aware of these states.
Because the inference information depends on
users’ knowledge, that is not completely pre-
dictable, it is hard to express it in logical forms.
The issue needs more investigation and we do
not consider it here. The authors’ examples on
views, without the inference information, can
similarly be expressed with view-based systems.

Fig. 1 Database schema, view definitions and
authorization rules.

Thus, we do not provide concrete examples;
however, we introduce some useful concepts and
unique features from the system at the end of
this section.

4.1 View-based Systems
Griffiths et al.’s system 10) is typical of the

view-based approach. Fine-grained authoriza-
tion objects are defined in terms of views, with
authorization rules defined on the views and are
stored in a separate system table. Examples of
database schema, authorization rules and view
definitions are given in Fig. 1.

Granularity and language for access
control: The smallest authorization object is
a view on a table. A view can be defined on
a row of a table as well as an individual cell;
however, users must write individual definitions
for each view in order to implement row-level
protection. This is not practical for systems
with large number of users and objects. The
system does not support a formal language for
specifying and analyzing access control policies.
The author of a recent view-based system 8) de-
scribed a hypothetical language to specify au-
thorization rules, but the language has no fa-
cilities to analyze and maintain authorization
rules. One interesting idea the author men-
tioned is to assign a name to each authorization
rule to possibly help in checking policy conflicts
in database systems. He also noted the possibil-
ity of integrating context-based access control
into view-based systems. As an example, the
author provided the following view definition.

Example 3a. A view definition based on con-
text.
CREATE VIEW S NINE TO FIVE AS

34 IPSJ Transactions on Databases Dec. 2005

SELECT *
FROM EMPLOYEE
WHERE Current time ≥ Time ‘09:00:00’
AND Current time ≤ Time ‘17:00:00’;

We assume N, S, M, D, and F correspond
to Name, Salary, Manager, Department, and
Floor, respectively.

Example 3b. The corresponding authoriza-
tion rule on the previous view can be specified
by ADL as follows:
permitted(user1, employee(N, S, M, D),

select) ←
employee(N, S, M, D) &
time(current(X)) &
X ≥ 9 &
X ≤ 17.

(Note that for readability and space utiliza-
tion we shorten the names of arguments in log-
ical specifications; this convention is followed
throughout the paper.)

Authorization evaluation: The autho-
rization evaluation is very simple in this sys-
tem. Authorization objects and the corre-
sponding authorization rules are defined in ad-
vance. Generally, queries are written in terms
of views and the authorization subsystem eval-
uates each query by checking user privileges on
the requested views. A query is accepted if the
user holds all corresponding privileges on the
views (and is rejected otherwise).

The following example shows how ADL han-
dles authorization rules defined on the views
and base relations in Fig. 1. It demonstrates
that authorization objects and rules are speci-
fied in a unified way in our framework.

Example 4.1. The corresponding specifica-
tions in ADL framework are:
(1) permitted(user1, employee(N, S, M, D),

select) ← .
(2) It can be specified as 1.
(3) permitted(user2, vemp(N, S),

select) ←
employee(N, S, M, toy).

(4) permitted(user3, locemp(N, F),
select) ←

employee(N, S, M, D) &
dept(D, F).

Example 4.2a. Policy analysis in a view-based
system. Let us assume that the security ad-
ministrator needs to know which users are SE-
LECTing values of Name and the Salary at-
tribute of employees who work in the toy de-
partment. The goal can be achieved in view-
based system, but it can be quite complex way.

The process goes as follows:
(1) Search the system catalog for all view

definitions that include Name and
Salary attribute in the SELECT clause
and “Department = ‘toy’ ” predicate in
the WHERE clause.

(2) If there exists such a view definition make
a query on the system authorization table
to retrieve user IDs who have the select
privilege on this view.

(3) Make a query on VEMP to retreive the
names and salaries of the employees.

Example 4.2b. Same policy analysis using the
ADL framework. This goal can be achieved in
our framework in two steps as follows:
(1) Search for an authorization rule that in-

cludes Name and Salary arguments in
the second argument of the head and the
constant “toy” in the fourth argument of
predicate “employee” (in the body).

(2) Ask the following question to retrieve the
values.
?- permitted(X, vemp(N, S), select).

Example 4.3a. Policy update in a view-based
system. Let us assume that an new individual
(user4) is hired for the toy department. Conse-
quently the administrator needs to update the
definition of VEMP as follows:
CREATE VIEW VEMP AS
SELECT Name, Salary
FROM EMPLOYEE
WHERE Department = “toy” and Salary ≤
2000;
and assign the select privilege to the new user.
The goal can be achieved in view-based systems
as follows:
(1) Define the new view definition.
(2) Define the new authorization rule on the

view.
Example 4.3b. Same policy update using the

ADL framework. This goal can be achieved by
defining a new rule in one step as follows:
permitted(user4, vemp(N, S), select) ←

employee(N, S, M, toy) &
S ≤ 2000.
4.2 Query-modification Systems
In this section we consider Oracle VPD 16),18)

as an examplar of query-modification systems.
With this approach, authorization objects are
not defined in terms of views; instead, fine-
grained authorization objects are generated dy-
namically.

Granularity and language for access
control: Row-level access control is enforced

Vol. 46 No. SIG 18(TOD 28) A Unified Framework for Evaluating Access Control Systems 35

in VPD with the help of a proprietary proce-
dural programming language, PL/SQL. To en-
force access control at the cell-level, this system
must be combined with a view-based mecha-
nism. Authorization policies and corresponding
policy functions are created in PL/SQL. The
system does not support a formal language for
specifying and analyzing access control policies.
However, there are some facilities for getting
information on defined policies and the corre-
sponding policy functions.

Domain-relational calculus is used to define
authorization rules in an alternative query-
modification system 15). In this case, however,
the language has no facilities to analyze or
maintain authorization rules. The author of
the system noted an interesting access control
case, where a policy was defined for instances
from the same table, which had the schema EM-
PLOYEE (Name, Title, Salary) and the follow-
ing view definition.

Example 5a. A view definition based on re-
cursion.
CREATE VIEW EST AS
SELECT Name1, Title, Name2
FROM EMPLOYEE
WHERE EMPLOYEE:1.Title =
EMPLOYEE:2.Title;

In our next example, we assume N1, N2, T,
S1 and S2 correspond to Name1, Name2, Title,
Salary1 and Salary2, respectively.

Example 5b. The corresponding authoriza-
tion rule on the previous view can be specified
in ADL as follows:
permitted(user5, est(N1, T, N2), select) ←

employee(N1, T, S1) &
employee(N2, T, S2).
Authorization evaluation: Authorization

policies are defined separately for each table.
Taking the user query, the system reads cor-
responding policies and calls policy functions.
The functions return WHERE clause predi-
cates to be assigned to the original query.
The modified query is then executed. For in-
stance, when the doctor whose ID is N makes
a query on the PATIENTS table as “SELECT
* FROM PATIENTS” the original query will
be modified to “SELECT * FROM PATIENTS
WHERE doctor id = N”. This database
schema and the policy and policy function are
portrayed in Fig. 2. The values of doctor id
in GET DOCTOR ID policy function change
dynamically depending on the value of doc-
tor name, a value assigned through the func-

Fig. 2 Database schema, a policy on PATIENTS
table and the corresponding policy function.

tion call USER (which returns the login ID of
the current user).

Example 6. The corresponding ADL speci-
fications for the policy and policy function ap-
pear below. We assume Did, Dname, G, Pid, P,
and D correspond to Doctor id, Doctor name,
Group id, Patient id, Patient name, and Dis-
ease, respectively.
permitted(Did, patients(Pid, Did, P, D),

select) ←
doctors(Did, Dname, G) &
patients(Pid, Did, P, D) &
constraint(user(Dname)).
Policies in VPD can also be dependent on

other policies. For instance, the policy for the
TREATMENTS table can depend on the policy
for the PATIENTS table. The corresponding
policy and its policy function appear in Fig. 3.

When a doctor (doctor id of 2) makes a query
against the TREATMENTS table as “SE-
LECT * FROM TREATMENTS” the original
query will be modified to “SELECT * FROM
TREATMENTS WHERE patient id IN (SE-
LECT patient id FROM PATIENTS WHERE
doctor id = 2)”.

Example 7.1. The corresponding ADL spec-
ifications of the policy and policy function are

36 IPSJ Transactions on Databases Dec. 2005

Fig. 3 A policy on TREATMENTS table and the
corresponding policy function.

shown below. We assume Td and T correspond
to Treatment dt and Treatment respectively:
permitted(Dname, treatments(Pid, Td, T),

select) ←
doctors(Did, Dname, G) &
patients(Pid, Dname, P, D) &
treatments(Pid, Td, T) &
constraint(user(Dname)).
Example 7.2a. Policy analysis in a query-

modification system. Let us assume that the
administrator needs to know who is updating
Treatment dts and Treatments of patients who
are under the treatment refresh. We have ob-
served that no authorization rules are stored
physically. This makespolicy analysis very com-
plex in VPD. The goal could be achieved by the
following steps:
(1) Check the policy and policy function cor-

responding to the TREATMENTS table
to know who has update privilege on the
particular columns. This cannot be ac-
complished directly, however, since the
policy function itself depends on the pol-
icy for the PATIENTS table.

(2) Check the corresponding policy and pol-
icy function of the PATIENTS table. Af-
ter doing this, we know how users are as-
signed to the privilege, but more effort is
required in order to derive the doctor ids.

(3) Make a query against the TREAT-
MENTS table to retrieve patient ids,
treatment dts and treatments that cor-
respond to rows having a refresh value in

their treatment column.
(4) Make a query on PATIENTS table to re-

trieve the corresponding doctor ids of the
retrieved patient ids.

Example 7.2b. Same policy analysis, using
the ADL framework. This is achieved easily
with a single step, as follows:

?- permitted(Dr, treatments(Pid, Td,
refresh), update).

Policy update. To update a policy in VPD
it is neceseeary to delete the policy and its pol-
icy functions and re-create them. As we showed
in the previous subsection, such a policy update
is straightforward using our framework.

4.3 Built-in Systems
In this subsection we consider the Non-

Truman model 22) as an examplar of built-in
systems. This is an improvement of view-
based and query-modification systems. Fine-
grained authorization objects are defined in
terms of (authorization) views in this system.
The authors introduced the concept authoriza-
tion view. Such views can be parameterized,
and therefore, there is no need to define a view
for each individual user. This helps to reduce
policy administration complexity in this sys-
tem.

Granularity and language for access
control: A row-level access control can be en-
forced in this system. The system does not sup-
port a formal language for specifying and ana-
lyzing access control policies.

Authorization evaluation: The authoriza-
tion evaluation of this system is completely dif-
ferent from the previous systems. Queries can
be written in terms of views or base relations.
The authors proposed a set of inference rules
to check query validity. If the query is valid,
the system returns the answer by processing the
original query. Obviously, the query is rejected
when it is not valid. As mentioned in the be-
ginning of this section, the evaluation process
is done during query processing in query opti-
mizer.

4.4 Discussion on Updating Costs for
Authorization Rules

There is a tradeoff between the costs associ-
ated with the unified and separated approaches
to updating authorization rules. When simul-
taneous updates are required to two or more
components of an authorization rule, the uni-
fied approach is less expensive; however, the
second approach is better when components of
an authorization rule are updated individually.

Vol. 46 No. SIG 18(TOD 28) A Unified Framework for Evaluating Access Control Systems 37

Table 1 Comparison on access control systems.

This issue will be examined in our future work.

5. Comparison on Access Control Sys-
tems

Based on our investigation, we report the dif-
ferent features of access control systems in Ta-
ble 1. Asterisks indicate systems that have
no concrete examples of the corresponding fea-
tures.

Context-based access control can be enforced
by defining views in view-based systems. A
view definition that depends on context is
demonstrated in example 3a in Subsection 4.1.
The corresponding specification in ADL is given
in example 3b in the same subsection. In addi-
tion, our type-based and semantic-based access
control scenario, presented in example 2, can
be assumed as context-based access control as
well. The dynamic generation of authorization
objects depending on user IDs can be observed
in examples 6 and 7.1 in Subsection 4.2. The
first component of the predicate permitted in
these specifications, denoted by variable sym-
bols, can appear in (relation) predicates as well.
This means that the corresponding object and
subject components will be changed simultane-
ously, depending on the attribute values found
in some other table. An scenario of recursive
access control - access control defined on mul-
tiple authorization objects from a single table -
was given in example 5a, for query-modification
systems, and 5b, for the ADL framework, in
Subsection 4.2. All these specifications can be
written in a straightforward way in our ADL
framework.

The complexity of administrating policies
with different granularity levels in the systems
was reported in our previous work 20). The
complexities of analyzing and updating policies
in the systems are compared in examples 4.2a,
4.2b, 4.3.a, 4.3b, 7.2a and 7.2b.

6. Conclusion

We proposed a rule-based fine-grained ac-
cess control framework based on a logical lan-
guage. The language formally specifies policies
in terms of the underlying data elements of re-
lational databases. The framework allowed us
to simulate the existing systems and to evaluate
the complexities of policy administration, anal-
ysis and update within the systems. We found
that existing systems have no flexible facilities
for policy analysis and updating.

Our framework provides a simple way to spec-
ify, analyze and update policies. The only
things we could not simulate were the inference
rules given in Ref. 22). We will explore this is-
sue in the future. We intend to implement a
prototype system to prove the feasibility of our
framework. The comparisons of policy anal-
ysis and update given in subsections 4.1 and
4.2 and the update costs of authorization rules
will be examined by conducting experiments on
the prototype system as well. Comparing our
framework to an industrial XML standard, i.e.,
the XACML 17) is another interesting avenue we
intend to explore.

Acknowledgments This research was par-
tially supported by Japan Society for the Pro-
motion of Science, Grant-in-Aid for Scientific
Research (B) 15300029, and Special Project for
Earthquake Disaster Mitigation in Urban Areas
(MEXT).

References

1) ACM SIGSAC: ACM Symposium on Access
Control Models and Technologies (SACMAT).
http://www.sacmat.org/.

2) Adabi, M.: Logic in Access Control, Proc.
18th IEEE Symp. on Logic in Computer Sci-
ence (LICS 2003), Ottawa, Canada, pp.228–
233, IEEE Computer Society (2003).

3) Bertino, E. and Ferrari, E.: Secure and selec-
tive dissemination of XML documents, ACM
Trans. Inf. Syst. Secur., Vol.5, No.3, pp.290–
331 (2002).

4) Bertino, E., Jajodia, S. and Samarati, P.:
Supporting Multiple Access Control Policies
in Database Systems, Proc. 1996 IEEE Sym-
posium on Security and Privacy, pp.94–108,
IEEE Computer Society (1996).

5) Bonatti, P.A. and Samarati, P.: Logics for
Authorization and Security, Logics for Emerg-
ing Applications of Databases [outcome of a
Dagstuhl seminar], Chomicki, J., van der Mey-
den, R. and Saake, G.(Eds.), Springer, pp.277–

38 IPSJ Transactions on Databases Dec. 2005

323 (2003).
6) Castano, S., Fugini, M.G., Martella, G. and

Samarati, P.: Database Security, Addison-
Wesley & ACM Press (1995).

7) Damiani, E., di Vimercati, S.D.C., Para-
boschi, S. and Samarati, P.: A fine-grained ac-
cess control system for XML documents, ACM
Trans. Inf.Syst.Secur., Vol.5, No.2, pp.169–202
(2002).

8) Date, C.J.: An Introduction to Database Sys-
tems, 8th edition, Addison-Wesley (2003).

9) Fundulaki, I. and Marx, M.: Specifying ac-
cess control policies for XML documents with
XPath, Proc. 9th ACM Symposium on Ac-
cess Control Models and Technologies (SAC-
MAT 2004), Yorktown Heights, New York,
Jaeger, T. and Ferrari, E.(Eds.), pp.61–69,
ACM (2004).

10) Griffiths, P.P. and Wade, B.W.: An Autho-
rization Mechanism for a Relational Database
System, ACM Trans. Database Syst., Vol.1,
No.3, pp.242–255 (1976).

11) Jajodia, S., Samarati, P., Subrahmanian, V.S.
and Bertino, E.: A Unified Framework for En-
forcing Multiple Access Control Policies, Proc.
ACM SIGMOD International Conference on
Management of Data, Tucson, Arizona, Peck-
ham, J.(Ed.), pp.474–485, ACM Press (1997).

12) Lin, A.: Integrating Policy-Driven Role Based
Access Control with the Common Data Secu-
rity Architecture, Technical ReportHPL–1999–
59, HP Labs (1999).

13) Lin, A. and Brown, R.: The Application of
Security Policy to Role-Based Access Con-
trol and the Common Data Security Archi-
tecture, Computer Communications, Vol.23,
No.17, pp.1584–1593 (2000).

14) Luo, B., Lee, D., Lee, W.-C. and Liu, P.: A
Flexible Framework for Architecting XML Ac-
cess Control Enforcement Mechanisms, Proc.
International Workshop on Secure Data Man-
agement in a Connected World (SDM’04)
Toronto, Canada, Jonker, W. and Petkovic,
M.(Eds.), pp.141–155, Springer (2004).

15) Motro, A.: An Access Authorization Model
for Relational Databases Based on Algebraic
Manipulation of View Definitions, Proc. Fifth
International Conference on Data Engineer-
ing, Los Angeles, California, pp.339–347, IEEE
Computer Society (1989).

16) Nanda, A.: Fine Grained Access Control
(2003).
http://www.proligence.com/nyoug fgac.pdf.

17) OASIS Technical Committees: OASIS eX-
tensible Access Control Markup Language
(XACML).
http://www.oasis-open.org/committees/

xacml/.
18) Oracle Corporation: The Virtual Private

Database in Oracle9ir2: An Oracle Technical
White Paper (2002).
http://www.oracle.com/technology/deploy/
security/oracle9ir2/pdf/VPD9ir2twp.pdf.

19) Purevjii, B., Amagasa, T., Imai, S. and
Kanamori, Y.: An Access Control Model for
Geographic Data in an XML-based Frame-
work, Proc.2nd International Workshop on Se-
curity In Information Systems (WOSIS 2004),
Porto, Portugal, Fernández-Medina, E., Cas-
tro, J. C.H. and Garćıa-Villalba, L.J.(Eds.),
pp.251–260, INSTICC Press (2004).

20) Purevjii, B., Aritsugi, M., Imai, S., Kanamori,
Y. and Pancake, C.M.: Protecting Personal
Data with Various Granularities: A Logic-
Based Access Control Approach, To be pub-
lished in the Proc. International Conference on
Computational Intelligence and Security (CIS
2005), Xi’an, China, Hao, Y., et al.(Ed.),
Springer (2005).

21) Ramakrishnan, R.: Database Management
Systems, WCB/McGraw-Hill (1998).

22) Rizvi, S., Mendelzon, A.O., Sudarshan, S.
and Roy, P.: Extending Query Rewriting Tech-
niques for Fine-Grained Access Control, Proc.
ACM SIGMOD International Conference on
Management of Data, Paris, France, Weikum,
G., König, A.C. and Deßloch, S.(Eds.), pp.551–
562, ACM (2004).

23) Rosenthal, A. and Winslett, M.: Security of
Shared Data in Large Systems: State of the
Art and Research Directions, Proc. ACM SIG-
MOD International Conference on Manage-
ment of Data, Paris, France, Weikum, G.,
König, A.C. and Deßloch, S.(Eds.), pp.962–
964, ACM (2004).

24) Samarati, P. and di Vimercati, S.D.C.: Access
Control: Policies, Models, and Mechanisms,
Foundations of Security Analysis and Design
(FOSAD) Focardi, R. and Gorrieri, R.(Eds.),
pp.137–196, Springer (2000).

25) Stonebraker, M. and Wong, E.: Access control
in a relational data base management system
by query modification, Proc. 1974 ACM/CSC-
ER Annual Conference, pp.180–186, ACM
Press (1974).

26) Ullman, J.D.: Principles of database and
knowledge-base systems, Vol.I and II, Com-
puter Science Press (1988).

(Received June 21, 2005)
(Accepted October 11, 2005)

(Editor in Charge: Kaname Harumoto)

Vol. 46 No. SIG 18(TOD 28) A Unified Framework for Evaluating Access Control Systems 39

Bat-Odon Purevjii received
his B.E. and M.E. degrees from
Mongolian University of Science
and Technology, Mongolia, in
1997 and 1999, respectively. He
is currently a Ph.D. student at
the Department of Computer

Science, Gunma University, Japan. His re-
search interests include database and XML se-
curity.

Masayoshi Aritsugi recei-
ved his B.E. and D.E. degrees in
computer science and communi-
cation engineering from Kyushu
University, Japan, in 1991 and
1996, respectively. Since 1996,
he has been working at the Fac-

ulty of Engineering, Gunma University, Japan,
where he is now an Associate Professor. His re-
search interests include database systems and
parallel and distributed data processing. He is
a member of IPSJ, IEICE, IEEE-CS, ACM, and
DBSJ.

Yoshinari Kanamori re-
ceived his D.E. degree from To-
hoku University in 1975. Since
1991, he has been a Profes-
sor at the Department of Com-
puter Science, Gunma Univer-
sity. His research interests in-

clude database systems and image processing.
He is a member of IPSJ, IEICE, ACM, and
IEEE-CS.

Cherri M. Pancake received
the Ph.D. from Auburn Univer-
sity in 1986. She is Professor
and Intel Faculty Fellow in the
School of Electrical Engineering
and Computer Science at Ore-
gon State University, where she

also serves as Director of the Northwest Al-
liance for Computational Science & Engineer-
ing (NACSE). Her research focus is usability
engineering, specifically applying user-centered
design to improve software and data systems
used by practicing scientists and engineers. She
is a Fellow of both the ACM and the IEEE.

