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Abstract: We present a method for selecting good locations, each of which is close to desirable facilities such as sta-
tions, warehouses, promising customers’ house, etc. and is far from undesirable facilities such as competitors’ shops,
noise sources, etc. Skyline query, which selects non-dominated objects, is a well known method for selecting small
number of desirable objects. We use the idea of skyline queries to select good locations. However, locations are two
dimensional data, while objects in the problem of conventional skyline queries are zero dimensional data. Comparison
of two dimensional data is much more complicated than that of zero dimensional data. In this paper, we solve the
problem of skyline query for two dimensional data, i.e., areas in a map. Experimental evaluations of the proposed
method shows that our approach is able to find reasonable number of desirable skyline areas and can help users to find
good locations.
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1. Introduction

It is important to select good locations from a map in many
location-based applications. In general, a better location is close
to desirable facilities such as bus/train stations, warehouses, po-
tential customers’ house, etc. and is far from undesirable facilities
such as competitors, noise sources, etc.

Skyline query [4] is a well known method for selecting small
number of data objects. Let D be a d-dimensional database. A
point p is said to dominate another point q if p is not worse than
q in any of the d dimensions and p is better than q in at least one
of the d dimensions. A skyline query retrieves a set of points,
each of which is not dominated by another point.

Figure 1 shows a typical example of skyline. The table in this
figure shows a list of hotels with two numerical attributes: price
and rating, in a typical on-line booking system. A user can choose
a hotel from the list according to her/his preference. In the ex-
ample, we assume that smaller value is better in each attribute.
In this situation, {h1, h3, h4} (see Fig. 1 (b)) are skyline objects.
Object h2 and object h5, are dominated by h3, while others (the
skyline objects) are not dominated by another.

A number of efficient algorithms for computing skyline objects
have been reported in Refs. [4], [5], [9], [14], [17]. In this pa-
per, we use the idea of skyline queries to select good locations.
However, locations are two dimensional data, while objects in
the problem of conventional skyline queries are zero dimensional
data. Comparison of two dimensional data is much more compli-
cated than that of zero dimensional data.
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Example 1
Consider a situation that a businessman wants to open a new

supermarket. She/He would like to open the supermarket in a
building for rent. She/He prefers a building that is close to desir-
able facilities such as a bus/train station, a university, and so forth,
but it should be far enough from some undesirable facilities, such
as a similar supermarket (a potential competitor).

Let P be a set of spatial points, which are buildings for rent, to
be chosen. Let F be a set of facilities, which can be categorized
into m types, F1, F2, . . . , Fm. Each type is classifies into desir-
able or undesirable. We annotate “+” mark on the facility symbol
of desirable facilities like F+, while we annotate “−” mark on
undesirable ones like F−. Figure 2 (a) shows an example of con-
ventional skyline queries for spatial points. Points p1, p2, and p3

(∈ P) in this figure are buildings for rent. Points illustrated with
star symbol, F1+ = { f 1+1 , f 1+2 , . . . , f 1+m1

} ∈ F, represent locations
of universities, which are desirable facilities. Another desirable
facilities are stations, which are illustrated with triangle symbol,
F2+ = { f 2+1 , f 2+2 , . . . , f 2+m2

} ∈ F. Points with square symbol,
F3− = { f 3−1 , f 3−2 , . . . , f 3−m3

} ∈ F, represent competitors’ super-
markets, which are undesirable facilities.

Based on the map of Fig. 2, we calculate a table as in Fig. 2 (b).
In the table, we record distance from a building to the closest fa-

Fig. 1 Conventional skyline.
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Fig. 2 Spatial points in a map and data table.

cility of each of F1+, F2+, and F3− type. For example, the closest
university (F1+ facility (star)) from p1 is f 1+2 and the distance is
4. Similarly, the closest station (F2+ facility (triangle)) from p1

is f 2+2 and the distance is 3. The closest competitor (F3− facility
(square)) from p1 is f 3−3 and the distance is 10. We multiply −1 to
each distance value of undesirable facilities F− so that we can say
that smaller value is better in each of the attribute. In the example,
p1 dominates p2 and p3 since p1 is located closer to desirable fa-
cility and farther to undesirable facility. Therefore, skyline query
for the spatial points returns p1. Note that the selection problem
can be solved by a conventional skyline query after we calculate
the data table like in Fig. 2 (b).

However, in some real world examples, we cannot assume
there are candidate points like p1, . . . , p3, for the selection prob-
lem on a map. For example, the businessman wants to build a
new supermarket if there is a good vacant area. The businessman
may also want to take over a building that locates in a good area
at any cost. In this situation, the candidate points are not given
and the businessman has to find a good location in an area on the
map. In other words, she/he has to find two dimensional area on
the map.
Example 2

Assume that the businessman wants to find a place whose lo-
cation is close to desirable facilities and is far from undesirable
facilities. For example, the businessman has to find an area on the
map in Fig. 2 without the candidate points like “p”. Since com-
parison of areas is much more complicated than that of points,
skyline query for areas is challenging.

We have published a feasibility report of this problem in
Ref. [1]. Through the feasibility study, we have improved effi-
ciency of the query processing and have solved technical prob-
lems found in Ref. [1] and have made the idea practical in this
paper.

The contributions of this paper are summarized below:
( 1 ) We have introduced a new skyline query, i.e., area skyline

query in the literature.
( 2 ) We have proposed an efficient and practical solution of the

area skyline query.
( 3 ) We have conducted intensive experiments to prove the effi-

ciency of our algorithm.

The rest of this paper is organized as follows. Literature review
about some related works on skyline queries and spatial skyline
queries are presented in Section 2. Section 3 presents the no-
tions and properties about the area selection problem and skyline
area. This section also gives brief explanation of our proposed
approach and our previous work in Ref. [1]. In Section 4, we
present the result of our experiments. Finally, we conclude the
paper and show directions of our future works in Section 5.

2. Related Works

2.1 Skyline Query
Borzsonyi et al. first introduced the skyline operator over

large databases and proposed three algorithms: Block-Nested-
Loops (BNL), Divide-and-Conquer (D&C), and B-tree-based
schemes [4]. Sort-Filter-Skyline (SFS), which improves BNL
by presorting, was proposed by Chomicki et al. as a variant of
BNL [5]. Two progressive methods Bitmap and Index for com-
puting skyline have been proposed by Tan et al., which improve
previous algorithm [16]. Currently, the most efficient method
in computing skyline is Branch-and-Bound Skyline (BBS), pro-
posed by Papadias et al., which is a progressive algorithm based
on the Best First-Nearest Neighbor (BF-NN) algorithm [13].

2.2 Spatial Skyline Query
Spatial skyline query was first introduced by Sharifzadeh et

al. [15]. Let the set P contain points in the d-dimensional space
Rd, and D(., .) be a distance metric defined in Rd where D(., .)
obeys the triangle inequality. Given a set of d-dimensional query
points Q = {q1, · · · , qn} and the two points p and p′ in Rd. In
their definition, p spatially dominates p′ with respect to Q iff
D(p, qi) ≤ D(p′, qi) for all qi ∈ Q and D(p, q j) < D(p′, q j) for
some q j ∈ Q [15]. Spatial skyline is a set of points that are not
dominated by another point.

There exists other research works of spatial skyline problem
such as in Refs. [3], [7], [8], [10]. In spatial skyline, distance is
the first parameter that needs to be considered. In addition to
that, sometimes users also consider their preferences. In Ref. [8],
Kodama et al. not only consider the nearest distance but also con-
sider the type of restaurant, which is a non-spatial preferences.

Conventional skyline queries compare non-spatial attributes
of the candidate skyline points. However, surrounding facili-
ties, which are not taken into account in the conventional skyline
queries, are also important especially in spatial databases. Arefin
et al. utilized surrounding facilities for calculating the importance
of locations and demonstrated that surrounding environment is as
important as other attributes for selecting spatial objects [3].

Guo et al. presented direction based spatial skyline [7]. A can-
didate object, in their query, not only has its distance but also
has its direction from a moving user. The nearest object in the
same direction to the user heads toward would be considered as
preferable spatial object.

In Ref. [10], Lin et al. introduced the problem of spatial sky-
line query with different types of facilities, called general spatial
skyline query. General spatial skyline query tries to find skyline
objects that has smaller distance from every type of facilities.

Different from Sharifzadeh work, the problem of the farthest
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spatial skyline queries is proposed in Ref. [18]. Given data points
P and query points Q in two dimensional space, the farthest spa-
tial skyline query retrieves the data points which are farther from
at least one query point than from all the other data points. This
method is helpful to identify spatial locations which are far from
undesirable locations. Therefore, this problem is important in
perspective of business location. In their paper, You et al. pro-
posed baseline algorithm called Threshold Farthest Spatial Sky-

line (TTFS) and improved the baseline algorithm in Branch-and-
Bound Farthest Spatial Skyline (BBFS). BBFS uses top-down
branch-and-bound search on R-tree to access nodes in decreasing
order of the sum of distances from query points.

Lin et al. combined the farthest and nearest problem and pro-
posed EFFN algorithm to find targets with the nearest desirable
neighbors and farthest undesirable neighbors in Ref. [11]. Con-
sider a set of data points that represent desirable locations f and
another set of data points which represents undesirable locations
d f . Given another set of data points P in the space as candidate
locations, the EFFN algorithm is able to find the skyline location
according to the nearest distance from desirable locations and the
farthest distance from undesirable locations. They used quad-tree
based data structure to find the nearest neighbor object from de-
sirable facilities, and built quadrant area to find the farthest neigh-
bor.

Arefin et al. proposed a spatial skyline query for group of users
located at different positions [2]. Their method can select a con-
venient place for all users of a group if the group want to hold a
meeting in a restaurant for example. They used Voronoi diagram
to retrieve non-dominated objects in spatial sub-space, because
Voronoi diagram is able to find the nearest spatial object from a
given query point efficiently.

All of the above studies are based on the assumption that there
are candidate points to choose skyline location and focused only
on spatial data points. In this paper, different from previous re-
searches, we focused on the problem of area selection in which
the location of candidate query points q are not given.

3. Area Skyline Query

In this section, we propose a selection method of areas in a
map, which we call “Area Skyline Query”.

3.1 Problem Definition
Let A be a rectangular target area, where the businessman

wants to build his supermarket, on a map. Let F = {F1, . . . , Fm}
be a set of facility types, which can be categorized into m types.
Each type is classified into desirable (annotated by +mark) or un-
desirable (annotated by −mark). Each facility has several facility
objects, for example, a desirable facility F1+ has three objects
F1+ = { f 1+1 , f 1+2 , f 1+3 }.
3.1.1 Grids and Vertexes

For simplicity, we assume the rectangular target area A is a
square region. We, first, divide A into s × s grids. Figure 3 is
an example of such grids. To identify a grid, we assign unique
ID number to each of the grid from top-left g(0,0) to bottom-right
g(s−1,s−1).

Each grid is surrounded by four vertexes, which we denoted

Fig. 3 Targeted area divided into square grids.

Fig. 4 Min. and Max. distance between grid and point.

as v(i, j), v(i, j+1), v(i+1, j), and v(i+1, j+1), for the top-left (tL), top-right
(tR), bottom-left (bL), and bottom-right (bR) of g(i, j) (0 ≤ i ≤ s,
0 ≤ j ≤ s), respectively.
3.1.2 Distance between Grid to Point

Given two points p and q in A, let dist(p, q) be the Euclidean
distance between p and q. We have to calculate the distance from
a given query point q and a grid g in A. Since g is a two dimen-
sional region, we define two distance functions between g and
q, distmin(g, q) and distmax(g, q), which we call “minimum dis-
tance” and “maximum distance”, respectively. The definition of
distmin(g, q) and distmax(g, q) are as follows:

distmin(g, q) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if q lies inside g.
min{dist(p, q) | ∀p inside g}

if q lies outside g.

distmax(g, q) = max{dist(p, q) | ∀p inside g}
Figure 4 shows examples of “minimum distance” and “maxi-

mum distance”. Figure 4 (a) shows an example if the query point
(black dot) is inside the grid. The “minimum distance” of the
grid from the query point is 0, and the “maximum distance” is
the distance from the query point to the farthest vertex, which is
(tR), of the grid. In Fig. 4 (b), the min distance from the query
point (black dot) to the grid is the distance between the point to
p∗, which is the closest point from the query point inside the grid.
The max distance is the distance between the query point to tR.
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3.1.3 Voronoi Diagram
Given a query point q in A. To find the closest object of a fa-

cility type F from the query point, we used Voronoi Diagram.
Given a set of n objects of F, the Voronoi diagram of the facil-
ity is the subdivision of A into n disjoint Voronoi regions. Each
Voronoi region contains an object, say fi where 1 ≤ i ≤ n, which
is called the Voronoi point of the region V( fi). In the Voronoi di-
agram of F, a query point q lies in the region V( fi) if and only if
dist(q, fi) ≤ dist(q, f j) for each f j ∈ F with j � i, where dist(q, f )
denotes the distance between q and f . For example, if the query
point lies in the region that contains f 1+1 in Fig. 5 (a), the closest
university (star) from the query point is f 1+1 .
3.1.4 Grid Dominance and Area Skyline

Let f kmin∗ be the object whose distmin(g, f kmin∗) is smaller than
or equal to those of any other object in Fk. Similarly, let f kmax∗ be
the object whose distmax(g, f kmax∗) is larger than or equal to those
of any other object in Fk. Let distmin(g, Fk) and distmax(g, Fk) be
the minimum distance and the maximum distance, respectively,
from grid g to f kmin∗ and f kmax∗. For two grids, gi and g j, we
say gi dominates g j iff distmax(gi, Fk) ≤ distmin(g j, Fk) for all k

(1 ≤ k ≤ m). Area skyline of A is the set of all non-dominated
grids in A.

Figure 6 illustrates the grid dominance. Let f , the black
dot, be the nearest Fk facility for g(1, 1), g(1, 2), g(2, 1) and
g(2, 2). For grid g(1, 1), dist( f , u) is the minimum distance of
Fk. Similarly, dist( f , t), dist( f , r), and dist( f , s) are the mini-
mum distance for g(1, 2), g(2, 1), and g(2, 2), respectively. For
grid g(1, 1), dist( f , x) is the maximum distance of Fk. Similarly,
dist( f , w), dist( f , t), and dist( f , v) are the maximum distance to
g(1, 2), g(2, 1), and g(2, 2), respectively. The (blue) circle is the
circle whose radius is the maximum distance from f to g(2, 1).
As we can see in the figure, g(1, 1) and g(2, 2) intersect with this

Fig. 5 Voronoi diagram for F1+ (a), F2+ (b), and F3− (c).

Fig. 6 Grid dominance situation.

circle, which means that those two grids have smaller minimum
distance from f . In this situation, we say that g(2, 1) and g(1, 1)
are uncomparable with respect to f . Similarly, g(2, 1) and g(2, 2)
are uncomparable. On the other hand, g(1, 2) does not intersect
with the circle. In this situation, we say that g(2, 1) dominates
g(1, 2) with respect to f .

3.2 Area Skylines Algorithm
To handle the area skyline query, we first divide the target area

into square-grids. Next, for each grid, we calculate the minimum
and maximum distances of each type of facilities. Using the min
and max distances, we retrieve non-dominated grids, which are
skyline areas.
3.2.1 Generate Square-grid Sub Areas

Suppose an area A in Fig. 2 (a) has been divided into 8 × 8
grids (s = 8). Figure 3 shows the grids. Each of the grids and its
surrounding vertexes have identification number. For example,
grid g(3, 1) is surrounded by vertexes v(3, 1), v(3, 2), v(4, 1), and
v(4, 2).
3.2.2 Min-Max Distance Calculation

In this step, we build Voronoi diagram for each type of facili-
ties. Consider Example 2 and Fig. 3 again. In the example, there
are three types of facilities. Therefore, we need to build three
Voronoi diagrams. Then, we find the closest facility for each type
from each grid as follows.

At first, we find the closest facility from each of the surround-
ing vertexes. Figure 7 (a) shows an example of Voronoi diagram
for facilities of type F1+ (star symbol). Figure 7 (b) shows the
closest F1+ from each of the surrounding vertexes, v(0, 0), . . . ,
v(8, 8).

We calculate the minimum distance for Fk type for each grid
as follows. First of all, for each Fk object, find the grid that con-
tains the Fk object and set the minimum distance for Fk of the
grid to zero. Next, for each non-zero grid g, we calculate the
minimum distance by using the distances of the vertexes to their
closest facility object. These distances are recorded in a table like
Fig. 7 (b), that shows the distance from vertexes to their closest
facility type F1+. Since a grid has four vertexes and each vertex
can be located in different Voronoi cell, the closest object of each

Fig. 7 (a) Voronoi diagram for facility F1+ (star), (b) Closest F1+ for each
vertex.
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facility type for each vertex on one grid may be different. For
example, Grid (4, 5) in Fig. 7 (a), the closest F1+ facility of sur-
rounding vertex v(4, 5) and v(4, 6) is f 1+3 . The closest F1+ facility
of v(5, 5) is f 1+1 . The closest F1+ facility of v(5, 6) is f 1+2 .

Figure 8 shows how to calculate minimum and maximum dis-
tance for non-zero grid. Let (x, y), (x′, y), (x, y′), and (x′, y′) be
the coordinate of four vertexes of grid g. Since we have calculated
minimum distance of all vertexes like in Fig. 7 (b), let’s assume
that (x, y), depicted by the white dot, has the smallest distance
value among the 4 surrounding vertexes of g. Let (a, b), depicted
by the black dot, be the coordinate values of the closest Fk object
from (x, y). The distance between (a, b) and (x, y) is not always
be the minimum distance of (a, b) to g.

There are three cases to calculate minimum distance of a grid,
which will be explained as follows. Let (x′, y) and (x, y′) be coor-
dinate values of the two adjacent vertexes of (x, y). First case, if
a is between x and x′ and b is not between y and y′, then the min-
imum distance value is the difference between y and b. Second
case, if a is not between x and x′ and b is between y and y′, then
the minimum distance value is the difference between x and a.
Otherwise, for the third case, the minimum distance value of g to
Fk is the Euclidean distance between (x, y) and (a, b). In Fig. 8,
minimum distance of g for Fk (the closest Fk is (a, b)) is |b − y|,
shown as straight line. Figure 9 (a), (b), (c) shows the three cases
to calculate minimum distance of a grid. The maximum distance
of g for Fk (the closest Fk is (a, b)) is the distance from (a, b)
to the farthest surrounding vertexes of g, which is (x′, y′). The
dashed line in Fig. 8 shows the maximum distance.

After calculating minimum and maximum distance for each fa-
cility type for each grid, we record them into minmax table T .
3.2.3 Calculate Non-dominated Grid

To simplify the skyline query calculation, we multiply the min
and max distance values for undesirable facilities by −1. After
this simplification, smaller value is better in each of the distance
values. We record distmin and distmax for each grid in the minmax

Fig. 8 Min-max calculation for non-zero grid.

Fig. 9 Minimum distance calculation.

table T , then calculate area skyline from T using grid dominance
condition in Section 3.1.4. Figure 10 shows Grid-based Area
Skyline (GASky) Algorithm. After calculating min and max dis-
tance for each grid, we can retrieve the skyline records from the
minmax table T as area skylines.

3.3 Unfixed-shape Area Skylines Query
In our previous feasibility study for “area skyline query” [1],

we have considered area skyline query for unfixed-shape areas.
Consider Example 2 in Section 1. In the example, there are

three types of facilities. For each facility, we first divide the
targeted area A into several disjoint sub areas by using Voronoi
diagram. Figure 5 shows three Voronoi diagram of the three fa-
cilities. Using the three Voronoi diagrams, we divide the targeted
area into 13 disjoint areas, say a1, a2, . . . , a13, as shown in Fig. 11.

For each disjoint area, we calculate the two distances, which
are min distance and max distance to the closest facility for each
F+ and F−. The calculation of the min and max distance is simi-
lar to that of Section 3.1.2.

After the calculation of the min and max distances for all dis-
joint areas, we can calculate area skyline query. Skyline query

Fig. 10 Grid-based area skylines algorithm.

Fig. 11 Disjoint areas divided by 3 Voronoi diagrams.
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Fig. 12 Unfixed-shape area skylines algorithm.

for unfixed shape areas selects all non-dominated areas from the
set of the disjoint areas. Figure 12 shows Unfixed-shape Area
Skyline (UASky) Algorithm.

Through intensive experiments in unfixed-shape area method
in our feasibility study [1], we found that a large area is likely to
be selected as skyline. This is because a large area have larger
max distance which makes it difficult to be dominated. More-
over, in UASky we cannot change the shape, size and number
of disjoint areas because they are produced by intersection of all
Voronoi diagrams. Thus, user can not control the number of sky-
line areas in UASky. In contrast, in GASky user can control the
number of grid, which can prevent the problem in UASky.

We will discuss this issue later in Section 4.

3.4 Computational Cost Analysis
Note that step to remove dominated areas in both algorithm

is using the same conventional skyline algorithm, therefore the
computational cost for this step is the same for UASky and
GASky and is not included in this calculation. Both UASky and
GASky have same procedures which are generating Voronoi di-
agram for each type, finding the closest facility for each type to
each vertex, and calculating minimum and maximum distance for
each area. The difference between UASky and GASky is that in
GASky we need to generate s× s grids, while in UASky we need
to divide the whole area by all Voronoi diagrams to get disjoint
areas (step 3 in UASky).

In the computational geometry literature, following Voronoi
diagram’s properties have been studied. The worst time com-
plexity to build a Voronoi diagram of n points is O(n log n) and
the expected time complexity to find the nearest Voronoi point
is O(log n) [6]. If we utilize a quaternary tree together with a
Voronoi diagram, the expected time complexity to construct a
Voronoi diagram can be reduced to O(n) and the time complexity
to find the nearest Voronoi point can be reduced to O(1) [12].

Let m be the total number of facility types, n be the number of
objects in each type. The expected time complexity to construct
m Voronoi diagrams for GASky and UASky is O(mn). The time
to find the nearest facility for each point is O(m).

Since there are s× s grids in GASky, there are O(s2) surround-

ing points. Therefore, GASky takes O(s2m) in addition to the
Voronoi diagrams’ construction time. As for UASky, there are
O(mn) Voronoi edges in total. The number of intersections of
O(mn) edges is O((mn)2), which are the number of surround-
ing vertices. Therefore, UASky takes O((mn)2) in addition to the
Voronoi diagrams’ construction time.

4. Experimental Evaluation

In this section, we conduct four experiments to examine selec-
tivity and performance. We performed our experiments in a PC
with Intel Core i5 3.2 GHz processor with 4 GB of RAM. We
evaluated our algorithm using synthetic datasets. Each experi-
ment is repeated ten times and we reported the average.

Since the step to remove dominated areas is the same for both
UASky (Fig. 10 step 8–10) and GASky (Fig. 12 step 12–14), and
the performance of this step is not different from other conven-
tional skyline algorithm, we exclude it from the processing time
calculation.

4.1 Comparison between GASky and UASky
In these experiments, we compared the performance of the pro-

posed algorithm (GASky) and our previous algorithm (UASky) in
the feasibility study [1].

First, we compared processing time of GASky with that of
UASky, and second, we compared ratio of skyline areas of both
algorithm. We also examined the effect of number of facility type
and number of objects in both algorithm.

We used two different synthetic data, say DB1a and DB1b for
these experiments.

For DB1a, the default number of objects is 128. We varied the
number of types to 2, 4, 8, 16, and 32 respectively. In these ex-
periments, the number of desirable types is set to be the same as
the number of undesirable types. For DB1b, we fixed the number
of facility type is 2. Then, we varied the number of objects to 8,
12, 24, 48, 96, and 128.

In DB1a, the number of disjoint areas resulted by UASky was
around 1,800 and in DB1b it was around 260 disjoint areas. In the
first experiment, we set the number of grids in GASky so that the
number of grids in GASky becomes almost same to the number
of disjoint areas produced by UASky.

The results of first experiments are shown in Figs. 13 and 14.
From these figures, we can see that GASky is faster than UASky
especially when the number of types become large. We can also
observe that the number of facility type affect the processing time
more than the number of object. One of the main reason is that
the number of facility type affects the time to build Voronoi dia-
grams. The ratios of skyline areas of this experiment are reported
in Figs. 15 and 16. From these figures, we can see that using
the similar number of grids, GASky has better skyline ratio than
UASky. In these figures, skyline ratio decreases up to 40%.

In order to have better skyline ratio, in the second experiments,
using DB1a and DB1b, we set the number of grids in GASky
to be 10,000 and 2,500. The ratios of skyline areas are reported
in Figs. 17 and 18. Figures 17 and 18 shows that increasing the
number of grids can reduce the skyline ratio until 5%.

Figures 17 and 18 also shows that GASky is sensitive to the
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Fig. 13 Processing time of DB1a.

Fig. 14 Processing time of DB1b.

Fig. 15 Skyline ratio of DB1a.

increase of facility types rather than the increase of objects. One
of the main reasons is as follows. The increase of the facility
types with fixed number of objects causes decrease of density of
each facility. It is equivalent to enlarge each grid, which tends to
increase the ratio of skyline areas.

4.2 Effect on Grid Number
In these experiments, we used four different synthetic data, say

DB2a, DB2b, DB2c, DB2d. DB2a is random data consists of 128
objects with two types of facilities, one is desirable and the other
is undesirable facility. DB2b has the same types of facilities but
consists of 256 objects. DB2c and DB2d consist of 128 and 256
objects respectively, with four types of facilities, two types are

Fig. 16 Skyline ratio of DB1b.

Fig. 17 Skyline ratio of DB1a with 10,000 grids for GASky.

Fig. 18 Skyline ratio of DB1b with 2,500 grids for GASky.

desirable and the others are undesirable facilities.
For each data, we varied the number of grids to 16, 64, 144,

256, and 400. Figures 19 and 20 shows the results. From the re-
sults in Fig. 19, we can observe that the processing time increases
with the increase of the number of grid, and data that has more
facility types and more number of objects also has larger process-
ing time. The results in Fig. 20 illustrate that the ratio of skyline
decreases with the increase of the number of grids, and data that
has smaller number of facility types and number of objects de-
creased the ratio of skylines. In other words, we can decrease
the ratio of skyline area by increasing the number of grids. Thus,
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Fig. 19 Processing time varied with number of grids.

Fig. 20 Ratio of skyline varied with number of grids.

higher number of grid means smaller size of each disjoint area,
which in turn will decrease the ratio of skyline. By applying grid
data structure, the GASky can control the number of area skyline
by changing the number of grids.

In actual usage scenario, if a user prefers selective areas, she/he
had better increase the s, which tends to reduce the ratio of sky-
line areas. Since GASky is sensitive to the increase of facility
types, user should use larger s to reduce skyline ratio if she/he
increases the number of facility type.

In our motivating example, UASky generated 13 disjoint ar-
eas with the ratio of skyline was 100%. Using the same method
above, we applied GASky with 225 grids and the skyline ratio
was decreased to 30%. Figures 21 and 22 illustrates skyline area
after applying UASky and GASky.

4.3 Effect of Ratio of Desirable and Undesirable Types
In this experiment, we investigated the effect of ratio of desir-

able (or undesirable) facility among all facilities in UASky and
GASky. In this experiment, we set the total objects to 100, the
number of facility type to 10, and varied the number of desir-
able and undesirable facility type to (10+, 0−), (8+, 2−), (6+, 4−),
(4+, 6−), (2+, 8−), and (0+, 10−). Figure 23 shows the results.
We can see that the difference of the ratio has no significant effect
to the processing time.

Moreover, this result also shows that GASky has better perfor-
mance than UASky for different ratio of desirable and undesirable
facilities.

4.4 Scalability
In this experiment, we examined the scalability of the proposed

Fig. 21 All targeted area retrieved as skyline area using UASky.

Fig. 22 Decreased skyline area by using GASky.

Fig. 23 Effect of desirable and undesirable types’ ratio.

algorithm. For this purpose, we set the default number of facil-
ity’s types to 4, among which two types are desirable facilities
and other two types are undesirable facilities. We set the number
of grids to 100. We varied the number of total objects to 100K,
200K, 300K, 400K, and 500K, respectively. Figure 24 shows the
results.
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Fig. 24 Scalability of GASky algorithm.

In summary, all of the above experiments give the indication
that the processing time depends on the number of objects, the
number of facility types, and the number of grids. The processing
time increases with the increase of the number of facility types,
the number of objects, and the number of grids.

5. Conclusions and Future Works

Areas which are close to desirable facilities and far from un-
desirable facilities are important for various applications. The
proposed area skyline queries help to find such areas, which are
not dominated by another area. In addition to our motivating ex-
ample, some concrete examples which could utilize this method
are:
• In the business field: suppose a property company would like

to build a new housing complex in a new region. To attract
customers, the housing complex should be in an area that
is close to train stations, shopping centers, and schools, and
far from open landfill. The proposed method can help the
company finding potential area for it’s new project and gain
knowledge about the region and it’s facilities, thus reducing
cost of surveying the whole region.

• In the travel planning: when planning trip to a new area or
country, sometimes a traveler would like to stay in an area
that will be convenient in location and cost. The proposed
method can help a tourist to know which area is close to
attraction sites, train stations, and convenience stores and is
far from crime areas and polluted areas. After that the tourist
can search for place of stay in the skyline areas.

This paper addresses a method to compute area skyline queries
using grid data structure. Comprehensive experiments are con-
ducted to demonstrate the effectiveness and efficiency of the al-
gorithms.

In future, we will consider the challenging related open prob-
lems such as considering more than one object for each facility
type, selecting k-dominant areas and how to utilize non-spatial
property such as population density, price, etc., in the selection of
areas.
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