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Abstract: In this paper, we propose a new mathematical model for evaluating a given anonymized dataset that risks
being re-identified. Many anonymization algorithms have been proposed in the area called privacy-preserving data
publishing (PPDP), but, no anonymization algorithms are suitable for all scenarios because many factors, e.g., a re-
quirement of accuracy, a domain of attributes, a size of dataset, and sensitivities of attributes, are involved. In order
to address the issues of anonymization, we propose a new mathematical model based on the Zipf distribution. Our
model is simple, but it fits well with the real distribution of trajectory data. We demonstrate the primary property of
our model and we extend it to a more complex environment. Using our model, we define the theoretical bound for
reidentification, which yields the appropriate optimal level for anonymization.

Keywords: anonymity, k-anonymity, re-identified risk, Zipf distribution

1. Introduction

At present, the volume of digital data is growing exponentially
every year. Many business organizations try to collect our per-
sonal data so that they can share this data with partners and use
data-mining algorithms to extract useful knowledge related to the
behavior of customers and their preference for goods. However,
many people are concerned about the leakage of personal data
without their consent and violations of their privacy due to the
publication of personal data.

Many anonymization algorithms have been proposed to pre-
serve privacy in the area called PPDP. PPDP aims to retain the
utility of data that have been anonymized, i.e., by making data
less specific so that a particular individual cannot be identified.
Anonymization algorithms employ various operations, including
the suppression of attributes or records, generalization of val-
ues, replacing values with pseudonyms, perturbation with ran-
dom noise, sampling, rounding, swapping, top/bottom coding,
and microaggregation [1], [2].

It is not simple to anonymize data fully without the risk of rei-
dentification. In particular, anonymization is affected by the fol-
lowing concerns.
( 1 ) Motivated intruder.

It is difficult to predict the actions of an adversary. In [1],
a motivated intruder is defined as an entity who may take
a record from anonymized datasets and search for a match
in publicly available information. In addition, it is not clear
what information might be available to a motivated intruder.
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( 2 ) Lack of common metrics for quantifying privacy and utility.
It is well known that a publisher should be responsible for
the risk of de-identification from their data. For example,
as stated in Ref. [3], “First, the company must take reason-

able measures to ensure that the data is de-identified.” How-
ever, the risk is uncertain. The requirements and the utility
vary according to the hypothesis employed by different algo-
rithms. Thus, a multi-stakeholder process may help to obtain
a consensus regarding measurement, but this requires a long
time.
Although several measures for evaluating the risk of re-
identification have been extensively proposed, e.g., Skinner
and Elliot [4], Benitez et al. [5], there is no common measure
that has been agreed for all.

( 3 ) Lack of real datasets.
It is difficult to select the most appropriate algorithm given
the data and an application because the results will vary with
different datasets and parameters. Moreover, the original
dataset is often not available in practice. Thus, instead of the
original data, experimental open data are used to measure
risk. For example, Ayala-Rivera et al. used the Adult cen-
sus dataset from the UCI Machine Learning Repository [6]
and the synthetically generated Irish dataset in Ref. [7]. Al-
though the sdcMicro package [8] has been used by several
researcher, it refers to a standard database and not to a loca-
tion privacy.

Our Approach. Mathematical Model of Anonymized Data
In order to address the issues of anonymization, we propose

a new mathematical model based on the Zipf distribution. Our
model is simple but it fits well with the real distribution of trajec-
tory data. We demonstrate the primary property of our model and
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we extend it to a more complex environment. Using our model,
we define the theoretical bound for reidentification, which yields
the appropriate optimal level of anonymization.
Our Contributions.

Our first contribution is a proposal of a general mathematical
model of data. Our model is based on the power law probabil-
ity distribution, known as Zipf’s law. Using the least-squared
method, we can efficiently fit arbitrary quantities to our model
with required accuracy. Especially, it fits well to general trajec-
tory data, which is one of our targets to examine. Moreover, our
model allows us to approximate a combination of multiple mod-
els because of its simplicity. Our mathematical model is simple
enough to evaluate the risk to be re-identified without assuming
any background knowledge of the intruder. Hence, the issue (1)
of a motivated intruder is not necessary to be considered in our
model.

Our second contribution is that we clarified the fundamental
properties of our model. Based on the these properties, we prove
the lower bound of the threshold for identifying an individual
from anonymized records. The threshold plays an important role
in the anonymization because it determines the fraction of records
we need to suppress to satisfy k-anonymity. It is known that there
is a tradeoff between the privacy degree and the utility of the data.
Hence, we want to minimize the number of records being altered.
Our model allows to clarify the least number of records being
linked so that the preferable degree of anonymity is preserved
without performing any experiment. The proposed quantities,
such as the least number of records (will be defined in a later
section), give the solutions to the problem (2) the common met-
rics for quantifying privacy and utility. The mathematical model
may be acceptable for stakeholders because there is no subjective
information.

Our third contribution is to demonstrate our proposed model
based on the statistics provided from the Japan Railway Co. and
clarified the risk of the anonymized data to be linked uniquely.
We examine the least and the mean ranks in the set of stations
that are unable to be identified uniquely. Our analysis reveals that
most of the records can be identified with a very low degree of
anonymity. Our demonstration shows that our methodology can
be applied to an arbitrary use case without access to any confi-
dential dataset. Therefore, the problem of a real dataset (3) is
addressed in our scheme.

The problem that a few trips can identify a user is closely re-
lated to the problem of privacy in search log. Given multiple
queries in search log, we could identify an individual with a statis-
tic property of the database in the similar way. A similar problem
may occur in many applications, e.g., the history of purchase in
online shops, the list of books in a library, and so on. Hence, our
model can be extended to a more general framework.

The rest of our paper is organized as follows. In Section 2,
we define three threads in anonymized data, reidentification, dis-
tinguished, and identified, as the example of trajectory data. In
Section 3, we propose a mathematical model of an anonymized
dataset and study some fundamental properties. We also discuss
the utility of anonymity as called the anonymity ratio. In Sec-
tion 4.1, we examined the risk in the Japan Railway trajectory

data. Finally, we conclude our study in Section 5.

2. Preliminary

2.1 Anonymization and Risk of Identification
Many models have been proposed to formally guarantee

the privacy of big data, such as k-anonymity [9], [10], �-
diversity [11], t-closeness [12], and differential privacy [13].

To illustrate anonymization operations, let us consider the tra-
jectory data example shown in Fig. 1, which is assumed to be
owned by a railway company, where the attributes comprise the
names of passengers, the day of use, the stations at which pas-
sengers board and alight, and the balance on prepaid RFID cards
after being charged. The simplest way to anonymize data is sup-

pression, which drops attributes such as the name, day, and bal-
ance because they can be exploited to identify particular indi-
viduals. If a record contains a significant distinguishing value,
e.g., a rare station labeled “Nakano,” then the whole record can
be suppressed. The original table is anonymized by replacing
names with random numbers called pseudonym, Occasionally, the
pseudonyms may be refreshed again on a monthly or weekly ba-
sis.

The anonymized data may appear to be secure against an at-
tacker who might try to identify individuals from the data. How-
ever, it is well known that the set of various attributes called
quasi-identifier (QIDs) can be exploited to link the records in a
table.

Figure 2 illustrates the threads present in anonymized data,
where the sequence of stations is stored as pseudonyms. In this
case, some threads are classified as follows:
(1) reidentification; particular individual names can be obtained

from anonymized data for various reasons, such as matching
with an auxiliary dataset to help identify a passenger.

(2) distinguished; some records are linked by QIDs. For exam-
ple, pseudonym 3 distinguishes the first and the third records
from others, thereby allowing all of the stations to be traced
back to the pseudonym assigned to a specific individual. It
should be noted that the records linked with pseudonyms

Fig. 1 Example of anonymized data.

Fig. 2 Threads related to reidentification.
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3 and 4 have exactly the same values (stations), and thus
the distinguished records don’t always mean uniquely deter-
mined.

(3) uniquely identified; only one record is associated with the
value and the individual can be identified uniquely. In the
example, the record with pseudonym 6 can be uniquely iden-
tified based on the value “Nakano,” which is associated with
only one passenger. The stations “Tokyo” and “Shinjuku,”
are associated with at least two passengers so they cannot be
identified uniquely.

Even if multiple records are linked by a pseudonym, some can-
didates will share the same values, such as the individuals as-
signed pseudonyms 3 and 4. Thus, we can say that they are not yet
uniquely identified at that time. However, if their pseudonyms do
not change over time, more stations will be linked with them and
they can be uniquely identified. The likelihood of being uniquely
identified increases with the duration of pseudonyms.

Even if an individual with pseudonyms either 3 or 4 is not
uniquely identified, due to �-diversity [11] there is a risk of an
attribute value being inferred, i.e., an attacker, who knows the
target went from Shinjuku to Tokyo, can infer that he went also
from Tokyo to Yokohama. It is true that we should notice this
threat, we leave the problem as one of the future study.

Algorithms such as k-anonymity ensure that every combination
of published attributes and records is indistinguishable for no less
than k instances. For example, by suppressing the unique records
of pseudonym 6, the data satisfy 2-anonymity because two linked
records have the QID, “Shinjuku”-“Tokyo”-“Yokohama.”

Thus, we must address the following questions.
• How long can existing pseudonyms be used to maintain k-

anonymity?
• How many records do we need to suppress to satisfy

anonymity?
• How can we evaluate the degree of anonymity for an arbi-

trary dataset using different statistics?

2.2 Related Work
Some studies have been made for anonymization of trajecto-

ries. Monreale et al. proposed a framework for anonymization of
semantic trajectories data, called c-safety in Ref. [21]. C-safety
expresses the upper bound to the probability to infer that a given
person has visited a sensitive place. Based on the framework,
Basu et al. presented an empirical risk model for privacy based
on k-anonymous data release in Ref. [20]. Their experiment using
car trajectory data gathered in Italian cities of Pisa and Florence
allows the empirical evaluation of the protection of anonymiza-
tion of real-world data.

The gap between theoretical assumption and real-world data is
also studied in Ref. [19]. Choi et al. compared the risk to be iden-
tified from a theoretical model and the real-world trajectories in
Tokyo area in 2008. They claimed that the assumption of a uni-
form choice of next hop is too strong and proposed the revised
theoretical model for trajectories data.

Garfinkel classifies various attacker models for computing the
re-identification risk. According to Ref. [22], there are some sce-
narios including (1) a risk that a specific person in the dataset can

be re-identified (“prosecutor scenario”), (2) a risk there exists at
least one person in the dataset who can be re-identified (“jour-
nalist scenario”), (3) the percentage of identities in the dataset
that can be correctly re-identified (“marketer scenario”), and (4)
the distinguishability between an analysis performed on a dataset
containing an individual and the same analysis performed on a
dataset that does not contain the individual (“differential identi-
fiability” scenario). In this classification, our study assumes (2)
journalist scenario and (3) marketer scenario because we try to
clarify the threshold for which no one can be re-identified in the
sense of (2) and also compute the anonymity ratio that is a frac-
tion of individuals to be re-identified, which corresponds to (3).

Classification of identifiers is one of the issues in anonymiza-
tion. El Emam and Malin [23] have developed an 11-step process
for performing the anonymization of a dataset on the classifica-
tion of QIDs that includes step to determine direct identifiers eval-
uated by an expert. After masking direct identifiers, they suggest
that the organization determines plausible adversaries and deter-
mines what minimal acceptable data utility. In our study, a se-
quence of stations is classified as a dynamic attribute and became
available to an adversary. As Emam suggested, the classification
of identifiers might be determined with the help of the organizer.
We just note there are several attacker models and we should not
determine just one of them.

3. Mathematical Model of an Anonymized
Dataset

3.1 Fundamental Definition
We begin by defining a personal dataset characterized by pa-

rameters n and m.
Definition 3.1 Let n be a number of users. A record is a tu-

ple of multiple attribute values for a user. A dataset is a set of m

records for some users. Let D be a domain of (sensitive) attribute
values and d = |D| is the number of values in D.

A record belongs to a single user who performed an action at
time t. A user may have multiple records in a dataset, so m ≥ n

holds in general. Attributes are classified into two classes: static

attributes, such as name, sex, marital status, and postal code;
and dynamic attributes, such as location, money balance, blood
pressure, heart rate, and name of disease. A set of previous at-
tributes is known as QID if it links the records generated by a
single user. Various properties have been studied to reduce the
risk of reidentification based on an anonymized dataset, e.g., k-
anonymity [9], [10] and �-diversity [11]. Dynamic attributes are
often referred as sensitive attributes (SAs) because they comprise
critical information that the user may wish to hide. However, even
if we suppress the QIDs from the dataset, the following theorem
shows that collecting a very small number of records (SAs) can
allow an individual to be identified.

Theorem 3.1 Given a dataset of n individuals where a SA is
uniformly distributed with probability, 1/d, all individuals can be
uniquely identified from s = logd n records.
Proof: The number of s-combinations of d-set is ds, which
equals n when all of the individuals are uniquely identified.
Hence, we obtain the theorem by taking logarithms for both sides.

�
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For example, the population of Tokyo and its surroundings area
in Japan comprises n = 42,598,300 individuals (Kanto area in
2012*1) and there are d = 2,497 stations*2, and thus we find that
s = 2.25 records are sufficient to uniquely identify all of the indi-
viduals in the Tokyo area. It should be noted that each individual
has the same risk of being uniquely identified because we assume
that there is a uniform distribution of station choices, and thus all
cases with two records can be distinguished.

This number is surprisingly small. If we want to publish a tra-
jectory dataset generated from smartcards logs as open data, the
theorem implies that pseudonym IDs must be reassigned every
three hops when traversing among stations. However, excessively
frequent assignments of pseudonym IDs could degrade the corre-
lations among the trajectories and the utility of the data would be
lost.

Is the assumption of a uniform distribution of stations too
strong?

The answer is no. In the following section, we show that the
reidentification risk remains high even if the assumption of a uni-
form distribution is relaxed.

3.2 Mathematical Model of a Single-Station Record
To model the trajectory data, we use the following power law

probability distribution, which is known as Zipf’s law.
Definition 3.2 (Zipf’s Model) Let f (x) be the frequency of

the item with the x-th rank. Then,

f (x) =
a
xc
, (1)

where a and c are constants.
The original Zipf’s law states that the frequency of any word

in a natural language is inversely proportional to its rank. This
relationship applies to natural languages, but also in the physical
and social sciences, such as the population ranks of cities, income
rankings, and Web page rankings.

Fortunately, we found that the stations in the trajectory data
were distributed according to an empirical power law and we
present the data fitting results in a later section. According
to statistics released by the railway company [14], the first sta-
tion is Shinjuku with an average daily number of passengers
f (1) = 751,018, followed by second station, Ikebukuro, with
f (2) = 550,350, the third station, Tokyo, with f (3) = 415,908
etc. In the extended model, we still assume that passengers
choose their destination independently, where they are distributed
in f (x), i.e., a destination is likely to be Shinjuku with a rate of
f (1) and Ikebukuro at a rate of f (2). We ignore trivial cases where
both the source and destination are the same station, but our hy-
pothesis is sufficiently general to be applied to other examples.
Before we describe the practical model, we consider the proba-
bility distribution of the Zipf model.

Suppose that the total number of passengers is denoted by N,
which is obtained by evaluating the integral of f (x) from 1 to the
number of stations in a specific region, d, as follows;

N =
∫ d

1
a/xc dx =

[ a
1 − c

x1−c
]d

1
=

a
1 − c

(d1−c − 1),

*1 http://en.wikipedia.org/wiki/Kanto region
*2 http://info.jmc.or.jp/ekiensen.html

Table 1 Example Occurrence Probability (m = 10).

rank value i prob. pi

1 Tokyo 4/10
2 Shinjuku 3/10
3 Yokohama 2/10 (= p∗)
4 Nakano 1/10

Fig. 3 Least unidentifiable rank and probability in a long-tailed distribution.

which allows us to define the probability function of our Zipf
model.

Definition 3.3 In the dataset where the x-th item occurs f (x)
times, the probability of the x-th station being selected as the des-
tination is p(x) = f (x)/N.

By fitting the open data [14] using the least-squares method,
we obtain the constants a = 8× 105, and c = 0.580, and the prob-
ability p(x) = 0.092/x0.632. The coefficient determination of the
fitting is R2 = 0.9884, which means the Zipf distribution fits with
read datasets very well in high accuracy.

3.3 Risk of Records Being Linked
Some records are linkable with pseudonym IDs. If more

attribute values are linked, it is more likely that the records
will be unique. However, excessively frequent reassignment of
pseudonym IDs could degrade the utility of the data. Thus, the
length of linked records should be determined carefully based on
a tradeoff between security and utility. To determine the least
bound of the linked length, we define a threshold probability to
ensure that an anonymized dataset is secure against reidentifica-
tion.

Definition 3.4 A dataset comprises m records. Let p∗ be the
least unidentifiable occurrence probability defined as k/m. A
record with a value that occurs with a probability less than p∗

is uniquely identified in the dataset. The rank of the value is de-
noted by x∗, which is referred to as the least unidentifiable rank.

In this definition, the symbol k is the same one used in k-
anonymity. Namely, in a dataset that satisfies k-anonymity, any
record cannot be identified from its QID with at most probabil-
ity k/m(= p∗). Moreover, the least value of k is 2 because any
dataset satisfies k = 1 without modifying. Hence, we define the
default value of the least unidentified occurrence probability as
p∗ = 2/m.

For example, we consider a dataset with 10 records where the
attribute values (station) occur with the probabilities given in Ta-
ble 1. Station Nakano has a low frequency because only one pas-
senger stops at the station. Thus, the records containing Nakano
must be uniquely identified and they should be suppressed. The
least unidentifiable occurrence probability p∗ is 2/10 and the rank
of x∗ is the third.

Figure 3 illustrates the least unidentifiable occurrence prob-
ability p∗ in a distribution of frequencies in terms of the rank x.

c© 2016 Information Processing Society of Japan
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The stations are sorted in order from the most frequent to the least
based on the number of passengers boarding and alighting. The
graph shows the fraction of passengers who board and alight at
the station ranked at x, i.e., it shows the probability distribution
P(x) of x. The number of passengers boarding and alighting at
stations is distributed with a “long tail,” where a high-frequency
population is followed by a low-frequency population that grad-
ually tails off. Long-tail distributions are known to be common
in many areas such as the occurrence of certain words in a natu-
ral language, the income distribution of a business, or the access
counts of Web sites.

The most frequent stations are secure in terms of identification
because many passengers have records for these stations, which
prevents the identification of specific individuals. However, the
records with rare stations located in the right-hand shaded area
of the figure are likely to be identified and the names of the sta-
tions could be used as QIDs to trace their owners. Thus, these
records need to be suppressed or generated using k-anonymity al-
gorithms. The least unidentifiable rank x∗ (and probability p∗)
determines the threshold for stations that need to be suppressed.
It should be noted that a dataset where no records occur with less
than the least unidentifiable occurrence probability p∗ satisfies
2-anonymity. In other words, the least unidentifiable occurrence
probability p∗ specifies a degree of anonymity such that p∗ = k/n.

3.4 Zipf Model of Trajectory Data
We extend our single-station Zipf model to a model with mul-

tiple stations. First, we show that the probability function of our
model satisfies a type of homomorphism in terms of a join.

Suppose that two records share a common pseudonym ID, but
they have distinct stations ranked as x and y. The owner of a
pseudonym boards a train at the x-th station and alights at the
y-th station.

We assume that the sequence of stations can be regarded as
a Markov chain, i.e., given the current station y, the probabil-
ity distribution of next hop x depends only on the current station.
The reason why we make assumption of Markov chains is that the
choice of destination in a trip can be regarded as a random process
and the statistical model is known to fit well to many real-world
processes such as queuing theory in network, webpage rank, eco-
nomics and finance.

In formal definition, a Markov chain of order N is a process
satisfying

P(Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2 = · · · =, X1 = x1)

= P(Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2 = · · · =, XN = xN)

where N is a finite number of memory and Xi is a random variable
taking value of station. For example, with order N = 1, a prob-
ability that a passenger at Shinjuku station chooses a destination
Tokyo is given by P(Xn = Tokyo|Xn−1 = Shinjuku). It does not
depends on the previous station before time n − 1.

For the baseline analysis, we simply assume N = 0, that is,
the conditional probability of selecting the x-th station given the
current station P(Xn = x|Xn−1 = y) is equal to P(Xn = x). Using
the probability function p() in the Zipf model, the probability of
a path from the y-th station to the x-th station is given as the joint

probability of P(Xn = x) and P(Xn = y), i.e.,

P(Xn = x, Xn−1 = y) = P(Xn = x|Xn−1 = y)P(Xn−1 = y)

= p(y)p(x) =
a
xc

a
yc
=

a2

(xy)c
,

which belongs to a Zipf model of the form p′(x′) = a′/x′c after re-
placing parameter a and x with a′ = a2 and x′ = xy. Recursively,
the join of multiple records follows the Zipf model. Therefore,
this property allows us to identify the least unidentifiable occur-
rence probability in a trajectory containing several stations as fol-
lows.

Theorem 3.2 A trajectory that comprises s records x1, . . . ,

xs, which are selected according to the Zipf model characterized
by f (xi) = a/xi

c, has the least unidentifiable occurrence probabil-
ity

x∗ = x1 · · · xs = (asn/2)1/c. (2)

Proof: From Definition 3.4, the least unidentifiable occurrence
probability is more than k/n = 2/n. Hence, the joint probability
of the trajectory of x1 . . . , xs needs to satisfy as(x1a2 · · · ax)−c ≥
2/n, which gives the theorem. �
Equation (2) implies that the corresponding least unidentifiable
rank x∗ increases exponentially relative to the length of the path,
s. In order to ensure that the dataset remains unidentifiable, we
need to reassign pseudonyms so the records cannot be linked
within the limit. Alternatively, the records with minor stations
that exceed the least rank can be dropped from the dataset.

An increase in the unidentifiable rank of the trajectory does
not mean that a single rank increases as s increases. The rank of
a trajectory is obtained by multiplying the ranks x1x2 · · · xs in the
trajectory, so the average rank in the trajectory is the s-th root of
the integrated rank x∗. For example, when n = 42,598,300 (pop-
ulation of Kanto area), the trajectory of s = 3 stations has a least
unidentifiable rank of x∗ = 5,164 = 173. Thus, the mean rank
of x1, x2 and x3 is the 17-th rank, Tamachi station, which is very
common and more than 144,000 passengers stop there each day.
By taking the s-th root of Eq. (2), we obtain the mean rank of the
trajectory of s-stations as

s
√

x∗ = a(n/2)1/cs.

The mean unidentifiable rank of the trajectory decreases expo-
nentially to s, as shown in Fig. 4. As s becomes longer, the mean

Fig. 4 Mean unidentifiable rank with regards to the length of linked records
s.
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Fig. 5 Probability distribution for the trajectory P(x, y) of s = 2 stations.

rank becomes shorter, and thus the number of records with mi-
nor stations that exceed the threshold increases, i.e., a longer s

requires that most of the records are dropped from the dataset.

3.5 Quantifying the Utility of Anonymity
The main feature of data anonymization algorithms is that they

usually modify the dataset by inserting fake records or suppress-
ing critical records. However, it is well known that we lose more
of the useful information if we suppress more records. Therefore,
we should design an algorithm carefully based on a tradeoff be-
tween the security against risk of identification and the utility of
the data. The utility function depends on the analysis applied and
it is not easy to define a general formula. Hence, we use the fol-
lowing simple definition to quantify the loss of utility attributable
to anonymization.

Definition 3.5 The anonymity ratio is the fraction of records
suppressed to satisfy k-anonymity over all of the records in a
dataset.

In the example shown in Table 1, the fourth record is sup-
pressed out of m records and the anonymity ratio is 1/10. In gen-
eral, the anonymity ratio is obtained by evaluating the integral of
the probability distribution function from the least unidentifiable
rank x∗ to the maximum rank d. Using the Zipf probability model
for a single item, the anonymity ratio is
∫ d

x∗
a/xc dx =

a
1 − c

(x∗1−c − d1−c). (3)

It is not trivial to extend the result obtained for a single item
to the case of a trajectory with s records because there are many
possible combinations of x and y such that xy = z for a given
threshold. For instance, there are two pairs 3 × 2 = 2 × 3 = 12
for the trajectory of z = 12-th and three pairs for z = 4 because
z = 4 = 1 × 4 = 4 × 1 = 2 × 2. Hence, the probability dis-
tribution function for the trajectory does not have a closed form
even if each element occurs in the Zipf model. Figure 5 shows
the probability distribution for the trajectory of s = 2 stations and
d = 4, where the squared Zipf probability p(x) is plotted for com-
parison. Note that these functions are shared at both ends because
there is only one combination at z = 1 and z = d2. The probability
function of a trajectory is not continuous.

Instead of the closed form probability distribution of the trajec-
tory, we prove the lower bound of the anonymity ratio using our
Zipf model.

Theorem 3.3 The lower bound of the anonymity ratio for the

trajectory of s linked records that occur in the Zipf model is

as

1 − c
ds(1−c) − as

1 − c
x∗,

where x∗ is the least unidentifiable rank and d is the size of the
domain of SA.

Proof: (i) For any x, y, z such that xy = z ≤ d, p(x)p(y) =
a2/(xy)c ≤ p2(z) = a2/zc holds.
(ii) Suppose that the inequality holds for s as p(x1) · · · p(xs) ≤
ps(z) = as/zc. Then, for any xs+1, the joint probability
p(x1) · · · p(xs)p(xs+1) ≤ ps+1(z) = as+1/zc also holds. From (i)
and (ii), the inequality holds for any s. Hence, the integral of
the probability of ps from the least unidentifiable rank x∗ to the
maximum rank ds

∫ ds

x∗
as/xc dx =

as

1 − c
(x∗1−c − d1−c)

gives the lower bound of the anonymity ratio for the dataset of at
most s linked records. �

The exact solution can be obtain within a small s. In addition,
we present the closed form of the anonymity ratio for particular
s = 2 as follows.∫ d

x∗d

∫ d

x∗/x
p(x)p(y) dx dy

=

∫ d

x∗d

∫ d

x∗x

a2

xcyc
dx dy

=

∫ d

x∗d

a2d1−c

(1 − c)xc
− a2x∗1−c

(1 − c)xcx1−c
dx

=

[
a2d1−cx1−c

(1 − c)2
− a2x∗1−c

(1 − c)
log x

]d
x∗d

=
a2

(1 − c)2
(d2(1−c) − x∗1−c) − a2x∗1−c

(1 − c)
log

x∗

d2

3.6 Extension of the Zipf Model to Data with Multiple At-
tributes

In Section 3.3, we studied the unidentifiable rank of a single at-
tribute value, e.g., stations; however, we claim that our proposed
scheme can also model data with multiple attribute, such as item
purchases, amounts of payments, numbers of items, or the time
available to use.

We consider attribute 1 and 2 with domains of size d1 and d2,
and the probabilities of their values are approximated by the fol-
lowing Zipf models, p1(x1) = a1/x

c1
1 , p2(x2) = a2/x

c2
2 , respec-

tively. Assuming that values occur independently, the joint prob-
ability of a record having x1 and x2 is given as a new Zipf model.
Unfortunately, the closed formula for the exact joint probability
is not trivial, but we give the lower bound as follows.

Theorem 3.4 The attributes have probabilities of p1(x1) =
a1/x

c1
1 for x1 ∈ D1 and p2(x2) = a2/x

c2
2 for x2 ∈ D2, respectively.

A record has both x1 and x2 with a probability P(x1, x2) such that

P(x1, x2) = p1(x1)p2(x2) = a12/x
c12
12 ,

where a12 = a1a2, d1 = |D1|, d2 = |D2|, and

c12 =
c1 log d1 + c2 log d2

log d1 + log d2
.

Proof: Given the boundary conditions, i.e., p12(1) =

c© 2016 Information Processing Society of Japan
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Table 2 Least Unidentifiable Rank and Anonymity Ratio based on JR East Open Data [14].

length least unidentifiable mean rank domain size anonymity
s rank x∗ s

√
x∗ ds ratio

1 915,199,427 915,199,427 2,497 0
2 2,173,909 1,474 6,235,009 0.06556
3 5,164 17 1.557 × 1010 0.9796
4 12 2 3.888 × 1013 1.0
5 0 0 9.707 × 1016 1.0

Fig. 6 Number of passengers at stations in JR East and the Zipf model f (x).

p1(1)p2(1), and p12(d1d2) = p1(d1)p2(d1), we have the constants
a12 = a1a2 and dc1

1 dc2
2 = (d1d2)c12 . Similar to Theorem 3.3, we

prove p1(x1)p2(x2) ≤ p12(x1x2) for arbitrary 1 ≤ x1 ≤ d1, and
1 ≤ x2 ≤ d2. �

Note that this corresponds to Theorem 3.3 when m1 = m2,
and c1 = c2. In the same manner, we can obtain the Zipf model
for the combinations of multiple attributes and identify the least
unidentifiable rank to quantity the risk of combined attributes be-
ing exploited to identify an individual uniquely.

4. Case Studies

4.1 Anonymity of Trajectory Data of the Japan Railway Co.
(JR) Stations

JR East tried to sell trajectory data stored on its popular RFID-
based fare card, Suica, without the consent of passengers in 2013,
but they gave up because of excessive criticism. Thus, we studied
the risk and utility of the anonymized data that JR East failed to
sell.

First, using the least-squared method to fit the number of pas-
sengers at stations [14], we approximated a Zipf model f (x) of
the trajectory data as a = 794,132 = 8× 105, c = 0.580, as shown
in Fig. 6. According to available open data, we observed sim-
ilar behavior in the datasets of other railway companies, which
demonstrated that ur Zipf model is a good generalization.

Next, using the Zipf model, we examined the least and the
mean unidentifiable rank x∗ for trajectories with s = 1 to 5 in
Table 2. With a single station (s = 1), no records need to be sup-
pressed. However, with s = 2, records with stations that exceeded
the 1474-th rank could be uniquely identified and 6.5% records
must be suppressed to satisfy 2-anonymity. The anonymity ratio
reached 97.8% when s = 3, which means that most of the records
need to be dropped and the utility of the anonymized data is lost.

Finally, we conclude that trajectory data need to be treated
so the records cannot be linked to prevent combination be-
coming uniquely identifiable. The naive application of known

Fig. 7 The age distribution in two surgeries.

anonymization algorithms could degrade the utility of open data
because the complexity of the linked records becomes very high
as the length of the trajectory increases, and thus many records
might be suppressed.

4.2 Medical DPC Dataset
The DPC dataset, Disease, Procedure and Combination, cov-

ers medical records for more than 7 million patients in more than
1,000 hospitals [15].

With the international standard of disease, DPC data contains
the followings; the hospital codes, the disease code, sex, age,
ZIP code, the duration in hospital, the operation, the height, the
weight, the degree of cancers, etc. The DPC dataset is used to
study for hospital management and to provide a useful statistics
in hospitals. Some of the statistical data is available online and
used as open data for many purposes.

Figure 7 shows sample age distributions in the DPC dataset.
The lapascope surgery (PCI) has odds ratio of 0.3774, which
means that a lapascope surgery makes the probability of death
to decrease by 0.3774 times of that who has an off-pump surgery
(CABG). We can not find a significant difference between the two
types of surgeries from the figure. We can approximate the age
distribution in our model, where the most frequent age is about
70 years-old and the least is less than 40 years-old, which need to
be suppressed to prevent the records from being identified.

5. Conclusions

In this study, to address the issues of anonymization, we pro-
posed a new mathematical model based on the Zipf distribution.
We demonstrated that our model is simple, but obtained a good
fit with the actual distribution of the JR East trajectory data. We
presented the primary property of our model and extended it to
a more complex environment. Using our model, we defined the
theoretical bound for reidentification, which yields the appropri-
ate optimal level for anonymization.

c© 2016 Information Processing Society of Japan
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