
Electronic Preprint for Journal of Information Processing Vol.24 No.5

Regular Paper

Defense Method of HTTP GET Flood Attack by
Adaptively Controlling Server Resources Depending on

Different Attack Intensity

Ryotaro Kobayashi1,a) Genki Otani1 Takuro Yoshida1 Masahiko Kato2

Received: December 3, 2015, Accepted: June 2, 2016

Abstract: The Internet currently provides a multitude of services, which have become essential for everyday life such
as disclosure of company information, online services, and e-commerce. Therefore, interruptions to these services
greatly inconvenience the public. A denial of service (DoS) attack affects regular users’ access to a network resource.
DoS tools usually include a function for monitoring the status of the targeted server that allows the attacker to confirm
the effectiveness of the current attack and the defense activities of the server, and thus plan further attacks. By ob-
serving the effectiveness of the current attack, the attacker can adjust the attack intensity to match the server’s status.
Depending on the defense response, the perpetrator can judge whether their attack is being mitigated using certain
techniques. If the attacker observes a defensive response to the attack, the attacker can respond by changing the attack
method, abandoning the attack, or targeting a more vulnerable server. We propose a method that allows the server to
maintain its service to users relatively unaffected by the attacks, responds optimally to each attacker, and impedes the
attacker’s ability to detect defensive responses. In this paper, we implement our proposed method and evaluate the
effectiveness of the system.

Keywords: HTTP GET Flood, DoS, Adaptive Control, virtual machine

1. Introduction

The Internet currently provides a multitude of services that
have become essential for everyday life, such as disclosure
of company information, provision of online services, and e-
commerce. Any interruptions to these services cause major in-
convenience to the public.

Denial of service (DoS) is a type of attack designed to block
ordinary users’ access to a network resource. The attack side and
the defense side engage in a kind of arms race, in which the de-
fense side raises countermeasures to block the attacks, and the
attackers develop methods of evading them. DoS attacks and
countermeasures are continuing to increase in both number and
complexity.

In this paper, we focus on HTTP GET Flood attacks, controlled
manually in real time using a DoS tool designed to degrade a
service. An HTTP GET Flood attack is a serious application-
level DoS attack that exhausts server resources by flooding the
targeted system with a deluge of HTTP GET requests [1]. DoS
tools, which are available to the public via the Internet, are one
type of weapon used in HTTP GET Flood attacks [2].

Service-degrading attacks result in slower average service to
regular users but do not lead to total service disruption [3]. To de-

1 Faculty of Engineering, Toyohashi University of Technology, Toyohashi,
Aich 441–8580, Japan

2 Internet Initiative Japan Inc., Iidabashi Grand Bloom, Chiyoda, Tokyo
102–0071, Japan

a) kobayashi@ppl.cs.tut.ac.jp

grade a service, the perpetrator controls the attack directly from
their computer step by step: launching the attack, monitoring the
targeted server status, adjusting the attack parameters, and apply-
ing other strategies.

DoS tools usually include a function for monitoring the sta-
tus of the targeted server [4] that allows the attacker to confirm
the effectiveness of the current attack and the defense activities
of the server, and thus plan further attacks. By observing the
effectiveness of the current attack, the attacker can adjust the
attack intensity to match the server’s status. Depending on the
defense response, the perpetrator can judge whether their attack
is being mitigated using certain techniques such as filtering or
rate-limiting [5]. If the attacker observes a defensive response
to the attack, the attacker can respond by changing the attack
method [6], [7], [8], [9], abandoning the attack [3], or targeting
a more vulnerable server [3].

In this paper, we propose a defense method that 1) allows the
server to maintain its service to users relatively unaffected by the
attacks, 2) responds optimally to each attacker, and 3) impedes
the attacker’s ability to detect a defensive response. In this paper,
we implement our proposed method and evaluate the effective-
ness of the system.

The remainder of this paper is organized as follows. In Sec-
tion 2, we explain how we define and classify DoS attacks. In
Section 3, we show the problem of the previous studies. In Sec-
tion 4, we state an attack scenario and our idea. Section 5 de-
scribes the implementation of our proposal. In Section 6, we per-
form an evaluation of our method. In Section 7 we show and

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.5

discuss the results. In Section 8, we discuss the feasibility and
the limitations of our proposal. Section 9 concludes our paper.

2. DoS Attack and Defense

In this section, we survey DoS attacks and defense mecha-
nisms. We begin our survey by setting our definitions and there-
after focus on instances that fall within the scope of our study.

2.1 Classification of DoS Attacks
Figure 1 shows our classification of DoS attacks. The cate-

gories are not always exclusive, since an attack can correspond to
one or more of the classified items. As seen in Fig. 1, we explain
each of the classes and specify the scope of this study.

Fig. 1 Attack classification.

A: Impact on Quality of Service
DoS attacks negatively affect users’ access to services by dis-

rupting or degrading the quality of service [10], [11], [12]. “Dis-
ruptive attacks” completely block users from accessing the ser-
vice. “Degrading attacks” substantially degrade the service with-
out completely blocking it, causing dissatisfaction on the part
of its users. Degrading attacks are more difficult to detect than
disruptive attacks [3], [12], [13] since, unlike a totally disrupted
service, a degraded service remains partially available. We pro-
pose the term “non-degrading attacks,” indicating that the attacks
do not entirely degrade the service, to be able to classify “en-
ergy DoS attacks” [13], [14], [15] from the viewpoint of their im-
pact on quality of service. “Energy DoS attacks” aim to drain
the energy of the server while keeping the attacks as stealthy as
possible. Since energy DoS attacks do not always degrade the
service [15], they can be classified as either degrading or non-
degrading attacks. In this paper, for reasons of simplicity, we do
not describe non-degrading attacks.
B: Control Method

There are three kinds of DoS attack control methods: Man-
ual, Semi-Automatic, and Automatic [10]. In manual control,
a person directly controls the attack step by step, for example,
by determining the targeted server and the attack method, start-
ing/finishing the attack, monitoring the server’s status, adjusting
the attack’s intensity, and fending off any defense mechanisms.
With automatic control, on the other hand, a program controls
the attack. A program control-based attack involves the use of
compromised clients running malicious software (malware) that
surreptitiously penetrates the targeted server. In a semi-automatic
attack, a person and a program manage the attack together.

As noted in Section 1, our study focuses on proposing a system
that prevents human control-based DoS attacks.
C: Attack Method

DoS attack methods are generally divided into vulnerability at-
tacks and flooding attacks [1], [3], [4]. Vulnerability attacks ex-
ploit any weaknesses in the target server that have resulted from
design errors or ambiguities. Flooding attacks, which are the
most common, send a deluge of attack packets that exhaust the
server’s resources to the point where they negatively impact ser-
vice utilization.
D: Targeted Protocol Level

Flooding attacks can be classified into two categories based
on the targeted protocol level [1]. An attack can belong to one
or both categories. “Network/transport-level attacks” attempt
to exert a negative effect on the quality of service by exhaust-
ing bandwidth, router processing capacity, or network resources.
“Application-level attacks” attempt to negatively affect the qual-
ity of service by exhausting a server’s resources such as its CPU,
memory, sockets, disk/database bandwidth, I/O bandwidth, and
disk space. Unlike network/transport-level attacks, this type of
attack is preventable on the server side.

In this paper, we focus on HTTP GET Flood attacks, which
are one type of application-level flooding attack. In this type of
attack, a large number of GET requests are sent to the server,
placing a heavy load on it by forcing it to process them.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.5

E: HTTP GET Flood Attack Method
The methods used for HTTP GET Flood attack are shown in

[2]. It should be noted that most of these methods can also be
used for launching other types of attacks.

Viruses: a computer virus running on a compromised client
manages the attacks by selecting a victim, setting the parame-
ters, launching the attacks, and so on. The attack behavior is
pre-programmed into the computer virus. This type of attack is
thus automatically controlled.

Bots: Command-and-control (C&C) servers are used by at-
tackers to maintain communications with compromised systems
within the target network and to send simple commands to bots
infected with malware. The bots then launch attacks based on
these commands. The parameters of the attacks can be config-
ured using the commands. To hide communication between a
C&C server and bots, the number of communications is mini-
mized as needed. In this type of attack, a semi-automatic control
method is used.

F5 attack: F5 attacks are performed manually by someone
holding down the Web browser reload key (F5) on a keyboard.
The reload function sends HTTP GET request packets to the URL
currently being viewed in the browser. The F5 attacker confirms
whether the attack is successful by browsing the relevant Web
pages. An F5 attack can issue up to 30 GET requests per sec-
ond [16].

DoS tools: A DoS tool attack, described above in Section 1, is
carried out manually by someone who wants to attack the target
server. The attacker runs a DoS tool and utilizes the functions
included in the tool to mount the attack step by step. Unlike an
F5 attack, the DoS tool attack can adjust the issue rate of GET
requests without being limited by I/O devices, and can more pre-
cisely monitor the server status based on the responses received
by the tool.

In this paper, we focus on DoS tool attacks that are performed
manually by someone who is monitoring the server status.
F: Attack Scenario

There are different types of attack scenarios that are used for
evaluating defense mechanisms or are used by DoS tools. The
name of each scenario indicates the control method of the attack
rate. In an HTTP GET Flooding attack, the attack rate is the num-
ber of GET requests per unit time.

Examples of these scenarios are shown in Fig. 1. In the “Con-
stant scenario” [2], [7], [10], [17], [18], the attack rate is con-
stant. This scenario is often used with DoS tools (e.g., My-
Doom, BlueCode, Netsky, and BlackEnergy). The “Increasing
scenario” [7], [10], [17] applies a rising attack rate. The small
rate of increase of the attack rate delays detection of the attack.
On the other hand, the “Decreasing scenario” [17] applies a de-
clining attack rate. The “Fluctuating scenario” [10] controls the
attack rate according to a schedule written into the malicious code
or in response to the targeted server’s behavior. The “Pulsed
scenario” [12], [17] regularly switches the attack rate between a
constant value and zero; and the “Stochastic pulsed scenario” [7]
continuously and randomly changes the parameters forming each
pulse. The “Triple scenario” [17] alternates two phases: increas-
ing and decreasing of the attack rate; and the “Spike-shaped” sce-

nario [18] maintains a spike-shaped attack rate.

2.2 Classification of Defenses
As shown in the following itemization, defense methods can

be classified into preventive methods and reactive methods. The
reactive methods can be further classified into attack detection
methods and attack mitigation *1 methods [3].
• Preventive methods
• Reactive methods
– Detection methods
– Mitigation methods
The preventive method pre-emptively eliminates the risk of

DoS attacks. Examples include the installation of new software
with improved security levels; or to alleviate vulnerability at-
tacks, remedial action can be taken to eradicate existing errors.

On the other hand, the reactive method alleviates the influence
of attacks that have already occurred by detecting and mitigat-
ing them. Detection is the first step and mitigation is the second
step. The detection method identifies the attackers or the attack
packets, and the mitigation method works directly on the attack
packets to prevent them from affecting the service. The attack-
ers cannot detect the level of activity of the detection method, but
they do notice that mitigation is being applied.

Some studies focus on proposing an advanced analysis method
to detect attacks (e.g., pattern detection and anomaly detection).
Below are examples of detection methods for HTTP Flooding at-
tacks. Yatagai et al. [2] propose a detection method which focuses
on the order of accessed pages and the correlation between the in-
formation content of individual pages and the average time taken
by genuine human users to browse them. Xie et al. [7] propose a
detection method that utilizes a learning model based on princi-
pal component analysis (PCA), independent component analysis
(ICA), and a hidden semi-Markov model (HsMM). Stevanovic
et al. [19] propose a detection method which classifies clients
into malicious or non-malicious by means of unsupervised neural
network learning algorithms: a self-organizing map (SOM) and
modified adaptive resonance theory 2 (Modified ART2). Das et
al. [20] studied the detection of different types of attacks and pro-
pose a method based on a computation employing rate of arrival
of HTTP requests (HAr), computation and comparison with the
legitimate pattern disagreement (PD) value, and the clustering of
the packet header datasets of HTTP requests.

Filtering and rate-limiting in the firewall or the router are ex-
amples of attack mitigation methods [5], [21], [22]. The filtering
method simply drops the packets that have been identified by the
detection method. Rate-limiting involves two strategies: “Traffic
shaping” and “Traffic policing.” Both limit the maximum band-
width of the attacks. The difference between these strategies is
that traffic shaping uses a dedicated buffer to delay the transport of
extra packets that exceed the maximum bandwidth, whereas traf-
fic policing just drops the extra packets. Traffic shaping holds the

*1 Mirkovic et al. use the term “response” instead of the term “mitigation”
for expressing a certain method. However, in this paper, the term “re-
sponse” is used to describe communication from the server to the client.
Therefore, we use the term “mitigation” instead of the term “response”
to avoid unnecessary confusion.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.5

extra packets in a buffer, and thus requires memory space. When
the buffer space is full, due to excess attacks, the extra packets
are just dropped, in the same way as for traffic policing. This
means that traffic shaping will not work effectively if the traf-
fic constantly exceeds the maximum bandwidth. Garg et al. [23]
propose a mitigation method that performs both “Rate Control”
and “Window Control.” Rate control limits the flow rates of the
attacks in rate-limiting fashion, and window control limits the
number of requests that consume a resource simultaneously. The
extra requests are simply dropped.

In the light of the above, in this paper we focus on a reactive
method for performing both detection and mitigation. Although
detection is also important, we place more emphasis on mitiga-
tion, since we focus on the attackers’ behavior of monitoring the
targeted server during the attacks. Improvement of the detection
step awaits future work.

2.3 Targeted Server Monitoring
DoS tools provide a function for monitoring the status of the

targeted server. Xin et al. [4] analyzed 80 DoS tools including
60 DoS programs and 20 DoS scripts, and categorized the DoS
attack functions provided as part of these DoS tools. They clas-
sified 29 DoS attack functions into six categories. One of these
categories is the server monitoring function, which receives the
response data from the targeted server to confirm the targeted
server status and enable further attacks. The above classification
of DoS attack functions does not mean that every DoS tool has a
monitoring function, or that every attacker monitors the targeted
server status. Targeted server monitoring is simply one option in
the DoS attackers’ toolkit.

If the attackers monitor a targeted server, they can confirm the
impact of the current attack on the quality of service and detect
any activation of defense mechanisms [13]. During degrading at-
tacks, it is likely that the attackers will confirm the service im-
pact, since it is necessary to adjust the attack intensity to a level
at which the service is not disrupted but causes dissatisfaction on
the part of its users. Even in disruptive attacks, if the attackers
aim to perform cost-effective attacks [12], it is a good strategy to
gradually increase the attack strength while confirming the im-
pact on service up to the point where service disruption occurs.
It is also important for the attackers to detect any defense activi-
ties, since it is pointless to continue attacks that have already been
mitigated by the defense mechanism.

Kuzmanovic et al. [24] investigated the response time under
overload without any defense activities. Their results showed
that when the server is overloaded, the response delay time is
randomly determined, and as the load increases, the throughput
decreases. It therefore appears that the attackers monitoring the
server status expect the above response during degrading attacks.

However, once the defense mechanism mitigates the attacks,
the pattern of responses changes. For example, if a filtering
method is activated to mitigate the degrading attacks, all the at-
tack packets timeout. In another example, if rate-limiting is ac-
tivated, a proportion of the attack packets are responded to nor-
mally and the others are dropped.

There is a clear contrast between the situations before and af-

ter mitigation. This means that if the attacker tries to degrade
the service and monitors the server status, defense in the form of
filtering will be noticed.

Considering the above, we focus on targeted server monitoring.

2.4 Our Previous Work
In our previous work [25], [26] we proposed mitigation meth-

ods for F5 attacks, which is a type of HTTP GET Flooding attack.
An F5 attacker can confirm whether the attack is successful by
browsing the requisite web pages. If a defense method such as
filtering or rate-limiting drops all or part of the attack packets, the
attackers may notice that their attacks are being defended against
and will therefore attempt to respond accordingly [6], [7], [8], [9].

In our first paper [25], we focused on the above point and pro-
posed a defense method that would allow the server to continue
providing a service to its users while hiding its defensive response
from the F5 attacker. With this method, the Web Server is parti-
tioned into a decoy machine and a normal machine. The decoy
machine is used by the attackers, while the normal machine is
used by the legitimate users. In an F5 attack, the attack rate is
constant and determined by the limitations of I/O devices, and
the targeted server is meanwhile monitored using a Web browser.
Therefore, this method detects the F5 attacker simply by checking
whether the attack rate exceeds a certain threshold, and assumes
each attacker aims for almost the same target error rate of HTTP
GET requests, with the error rate being used as an index of the im-
pact of the attacks on the service. The attackers’ requests are then
forwarded to the decoy machine, while normal users’ requests
are forwarded to the normal machine. This approach minimizes
the inconvenience to legitimate users. To deceive the attackers
into believing their attack is successful, the resources of the de-
coy machine are controlled during runtime so that the error rate
of requests reaches a target value that is set by an administrator.

Our first paper focused on the use of the correlation between
CPU resources and request errors to maintain CPU resources at
the targeted error rate. However, which resource the request error
rate is related to depends on the Web Server. If the sole corre-
lation is between memory resources and request errors, however,
the request error rate cannot be controlled using our first proposal.
In our second paper [26], we therefore focused on both the CPU
and memory resources and proposed a method that dynamically
selects and controls one of the two resources.

3. Problem

In this paper, we focus on tool attacks that neither of the pro-
posals in our previous studies shown in Section 2.4 can be as-
sumed to mitigate. Both the previous methods supply multiple
attackers with the same provision because the F5 attacker’s be-
haviors are limited by the I/O devices, leading to the same and
constant attack rate. However, unlike F5 attackers, attackers who
launch DoS tool attacks apply different attack rates [17], [27] and,
in addition, can adjust the attack rate to match different targeted
error rates while monitoring the current server status [4], [13].
This makes it difficult for the methods proposed in our previous
studies to deceive DoS tool attackers into believing their attacks
are successful.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.5

Similarly conventional studies other than our previous studies
can not deal with the attacker monitoring. One example is as fol-
lows.

A. Sardana and R.C. Joshi [28] propose a defense method,
which is called Autonomous Dynamic Honeypot Routing
(ADHR). They focus on the DDoS attacks on FTP servers, where
the attack rate is constant that is one of the attack scenarios shown
in Section 2.1. ADHR includes detectors, honeypots, and servers.
The detectors perform entropy-based attack detection. The de-
tected attacks are redirected to the honeypots and the legitimate
clients are redirected to the FTP servers. This isolation of the
attacks protects the legitimate clients from the bad influence of
the attacks. Moreover, this method dynamically provides the ad-
equate number of honeypots, depending on the attack load. For
example, if the load of attack changes from low to high, the num-
ber of honeypots changes from low to moderate. This dynamic
operation aims to get information for trace back by allowing the
attacks to interact with honeypots.

We show the important differences between the ADHR and
our method as follows. In the study of ADHR, ADHR adap-
tively controls the number of honeypots in accordance with the
attack strength to maintain connection between the attackers and
the honeypots, and each attacker launches the constant attack in-
dependently of the FTP server status. In our study, the Control
Machine controls the CPU resources of each Decoy Machine to
achieve the target error rate, and each attacker gradually increases
the attack strength until the error rate reaches the target while
monitoring the server status.

The advantage against the above ADHR is that our proposal
can suppress the attack strength of the degrading attacker which
uses the monitoring function, resulting in less CPU resource be-
ing wasted by the attack. The attacker gradually increases the
attack rate while monitoring the server status until the attack rate
reaches the target. On the other hand, our method controls the re-
source of the Decoy to show the target error rate to the attacker in
an early time. Therefore, the attacker stops to increase the attack
rate while the attack strength is weak. The weak attack does not
substantially flood the server resource, allowing us to reduce the
server resources needed for defense from attack.

4. Proposal

4.1 Attack Scenario
This paper focuses on the HTTP GET Flood attacks controlled

by a human operator using a DoS tool for degrading the service.
The attack rate depends on each tool attacker [17], [27], and the
attackers can control the attack rate for the different targeted error
rates while monitoring the targeted server status [4], [13]. There-
fore, in this section, we assume an attack scenario suitable for the
above attack. In this paper, the attack scenario is as method of
how to control the attack rate.

At first, we focus on the constant and increasing scenarios
among the ones shown in Section 2.1. The constant scenario is
used in the realistic DoS tools and for the evaluation of the de-
fense methods. On the other hand, the increasing scenario can
delay the detection by gradually increasing the attack rate, going
well with the goal of the degrading attack. However, both scenar-

ios lack the ability to monitor server status and the attack rate is
configured independently of the server status.

To address the above problem, we introduce a new scenario
which repeats the following steps:
1) First, launches the attack with the constant attack rate and

monitors the server status for a while
2) Then, it increases or decreases the attack rate if the moni-

tored server status has not reach the targeted error rate.
This combines the features of the constant and increasing sce-

narios and also incorporates an adaptive attack rate based on the
server monitoring results. The attacker can monitor the response
of the targeted server via the functions of the DoS tool. How-
ever, since the response is generally not stable, especially for an
overload status, it takes time to accurately judge the server status.
Therefore, this scenario defines a time period for the determina-
tion of the current server status.

In this scenario, the attack rate is constant in the short term, and
if the attack rate at the start is low enough to avoid the defense ac-
tivity, the attack rate is increasing in the long term. Hence, an at-
tacker who monitors the server status will expect that the variance
in the response delay time is random and that the error rate of the
server will tend to increase as the attack rate increases. If the cur-
rent server status is different than expected, then the attacker will
notice some defensive activities, such as packet dropping.

We confirm here the definition of a DoS attack. DoS attacks
are requests with an intention to disturb services. A request with-
out such an intention cannot be called a DoS attack, even if the
request puts a load on the server great enough to affect the web
service. However, it is difficult for service providers to detect
whether a request intends to disturb the Web Service. Therefore,
in this paper, we regard an unfavorable request to the server side
as an attack, and the client who launches the attack is judged to
be an attacker, even though it is unclear whether the attack has an
intention to disturb services.

4.2 Main Idea
We propose a defense method for HTTP GET Flood attacks

that 1) allows the server to maintain quality of service for normal
users with little or no influence from attacks, 2) provides each at-
tacker with a different expected server status, and 3) hinders the
attacker’s operation in order to determine a defense mechanism
that will effectively mitigate their attack.

Figure 2 illustrates the set-up and operation of the proposed

Fig. 2 Main idea.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.5

method. As per the figure, the Web Server contains a Control
Machine, Normal Machines, and Decoy Machines. The Con-
trol Machine is set between the connection to the Internet and
the other machines, and it performs operations for attack detec-
tion and mitigation. The Normal Machines supply normal users
with the service, while the Decoy Machines fool the attackers.
This arrangement ensures that normal users are barely affected
by attacks because resources for normal users and resources for
attackers are separate. The Decoy Machines generate different er-
ror rates through CPU resource control, presenting different tar-
geted error rates to the attackers. In the figure, the percentage
in brackets of each client or machine is their targeted error rate.
The CPU resource control essentially places each Decoy Machine
into an overload status so the server response is random and tends
to decline as the load increases, making it appear to attackers as
if the attack is successfully degrading the service without being
detected.

The defense operation is outlined as follows. In the first step,
the Control Machine classifies the clients as either normal users
or attackers. Moreover, it determines for each attacker whether it
is in a transition period, in which it increases the attack rate for
the long-term targeted server state. In the second step, the Con-
trol Machine forwards normal users to the Normal Machines, and
attackers to the Decoy Machines: an attacker with a targeted error
rate of x% is forwarded to a Decoy Machine with the same tar-
geted error rate, x%. Simultaneously, the Control Machine con-
trols the server resources for each Decoy Machine, so that they
will each arrive at the targeted error rates.

It is difficult to directly identify the targeted error rate, x%, of
each attacker since each attack rate is gradually increasing until it
reaches a target value. Therefore, like the attackers, the Control
Machine gradually adjusts how it forwards attackers to Decoy
Machines. If the attack rate remains constant, then the attacker
continues to be forwarded to the current Decoy Machine. Oth-
erwise, the Control Machine adjusts the forwarding destination
from the current Decoy Machine to another Decoy Machine with
a higher targeted error rate.

The error rate on the Decoy Machine side is determined by
the relationship between the attack rate and the server resources.
During the attack, the attacker gradually increases the attack rate.
During the initial phase of this increase, the Control Machine be-
gins to control the server resources of the Decoy Machine. When
the error rate of the Decoy Machine reaches the targeted error
rate, the attacker maintains the attack rate. As a result, the pro-
posed method can limit the attack to a low attack rate.

The advantage points of the proposed method are as follows.
Firstly, the proposed method pretends as if the DoS attack is
completed to prevent the attackers from becoming aware of the
defense activity and conducting more severe or sophisticated at-
tacks. Secondly, the proposed method suppresses the attack
strength of the attackers by starting to control the error rate im-
mediately after the attackers start to gradually increase the attack
strength.

5. Implementation

5.1 Entire Structure
In the proposed method, we prepare three different types of

machines, namely the Control Machine, Normal Machines, and
Decoy Machines. However, it is not practical to equip costly
physical machines for brief attacks. Thus, instead of physi-
cal machines, we render these machines as kernel-based virtual
machines (KVM), which are a form of virtualization software,
and implement multiple units of virtual machines on a host ma-
chine [29].

We present a schematic of the entire structure of the proposed
method in Fig. 3. Here, we generate four virtual machines on
a host machine, and operate the host machine as a Control Ma-
chine and the virtual machines as either Normal Machines and
Decoy Machines. The Control Machine is set up between the
external connection to the Internet and the virtual machines, in-
cluding the Normal Machines and Decoy Machines. Every client
transmits requests to the Control Machine, which then forwards
the requests to one of the Normal Machines or Decoy Machines.
Note that the Normal Machines and the Decoy Machines can both
actually provide the service.

The Control Machine has two roles: load balancing of normal
requests and management of defense against attack. This latter
role can be further divided into attack detection and attack mitiga-
tion, based on the classification shown in Section 2.2. The above
mentioned roles are performed by the following components of
the Control Machine:
• Load balancing mechanism,
• Forwarding mechanism,
• Resource control mechanism, and
• Main Controller.
The load balancing, forwarding, and resource control mecha-

nisms are implemented using existing techniques. The load bal-
ancing mechanism is used for load balancing of normal requests,
while the forwarding mechanism and the resource control mecha-
nism are used for attack mitigation. The Main Controller is dedi-
cated software written in Python that is used for both attack detec-
tion and mitigation. The remainder of this section explains these

Fig. 3 Example of system implementation.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.5

components in detail.

5.2 Load Balancing Mechanism for Normal Users
Load balancing is a well-known countermeasure for handling

heavy website traffic. In this technique, the Control Machine op-
erates as a load balancer for normal users, distributing them to
a Normal Machine. If this distribution is performed properly, it
is possible to avoid situations in which some of the Normal Ma-
chines become overloaded. Consequently, server resources can
be more efficiently utilized, while multiplexing server equipment.
In addition, if any Normal Machine fails, the service can be sus-
tained using the remaining Normal Machines.

A load balancer can be constructed using dedicated hardware
or software. However, since the former is expensive, it is not
practical to introduce a hardware-based load balancer to a small-
scale web server. Therefore, in this research, we use Apache and
some Apache modules, called mod proxy, mod proxy balancer,
and mod headers, on the Control Machine to implement a load
balancer. In addition, we use a pending request counting algo-
rithm that distributes a new client to the Normal Machine with the
least number of pending requests, as well as a cookie stickiness
function that maintains the established session by using a cookie.

The load balancer distributes clients only to servers that are
registered in the load-balancing group, which is managed by
a BalancerMember directive in mod proxy. In the proposed
method, the load-balancing group holds only the Normal Ma-
chines and so the Control Machine distributes normal users to
one of the Normal Machines.

Load balancing is not applied to attackers, which are handled
by the forwarding mechanism described in Section 5.3.

5.3 Forwarding Mechanism for Attackers
We use the NAT function of iptables to implement a forward-

ing mechanism for attackers. If a new attacker is detected and a
Decoy Machine is selected as a forwarding destination, then the
Main Controller executes iptables on the Control Machine to reg-
ister a NAT mapping between the attacker and the Decoy Machine
in the NAT table. The Control Machine forwards the attackers to
the Decoy Machines according to the NAT table.

As shown in Section 4.2, the Control Machine gradually ad-
justs the forwarding destination of each attacker while confirm-
ing the attack rate. Therefore, if the forwarding destination of a
registered NAT mapping is changed from the current Decoy Ma-
chine to another Decoy Machine with a higher targeted error rate,
the Main Controller executes iptables to delete the NAT mapping
and add a new NAT mapping between the attacker and the next
Decoy Machine.

It should be noted that the NAT function is executed prior to
load balancing. Thus, if the NAT table includes a NAT mapping
between an attacker and a Decoy Machine, then the attacker is
forwarded to the Decoy Machine based on the mapping, regard-
less of the action of load balancing by the Control Machine.

5.4 Resource Control Mechanism for Attackers
There are a number of server resources, as shown in Section 2.

In this paper, in order to focus on the implementation of the pro-

posed technique, we select CPU as a resource to be controlled.
We use the cgroups (control groups) function of a Linux

kernel to control the resources of each Decoy Machine. The
cgroups function groups processes and controls resources in
a group unit. Each Decoy Machine is dealt with as a pro-
cess group. The CPU utilization threshold of each process
group is determined by two parameters: cpu.cfs period us and
cpu.cfs quota us. They indicate time and are specified in mi-
croseconds. The cpu.cfs period us is the period in which CPU
time is allocated to processes in a group. The cpu.cfs quota us
is the maximum CPU time that all processes in a group can uti-
lize during cpu.cfs period us. The cpu.cfs quota us can be set
from 1,000 to 1,000,000, but a cpu.cfs quota us value of -1 has a
different meaning, indicating that there is no constraint on CPU
utilization. For example, if cpu.cfs period us is set to 100,000
and cpu.cfs quota us is 50,000, then the CPU utilization rate is
restricted to a maximum of 50%.

5.5 Main Controller for Normal Users and Attackers
The Main Controller consists of an attack detection class and

an attack mitigation class. We explain these two classes in detail
in this subsection.
5.5.1 Attack Detection Class

Tcpdump is a software tool that can capture the contents of
packets, which are needed for network traffic analysis. The at-
tack detection class runs the tcpdump command on the Control
Machine to capture the packets of clients, thus generating a re-
quest log.

In our assumed scenario, the attacker maintains a constant at-
tack rate over a period, but regularly increases it to attain a tar-
geted error rate. Therefore, the attack detection class regards as
attackers those clients who, according to the request log, increase
their request issue rate in the long term. It sends information
about them to the attack mitigation class. If a client is an attacker,
then the request issue rate is considered to be the attack rate.

However, the time from transmission of the request to its re-
ceipt is not always constant, especially in an overload state. This
is similar to the distribution of the response delay time noted in
Section 2.3. Although requests may be issued at a fixed interval
on the client side, the request will not necessarily arrive at the
same interval on the server side. Thus, if the requests follow the
attack scenario assumed in our method on the client side, then
the request issue rate may be increasing or decreasing in the short
term, but will be increasing in the long term.

Considering the above issues, the attack detection class repeats
the following steps for each client for every fixed global time pe-
riod (Period global):
1) Partition the Period global into the multiple fixed local time

period (Period local);
2) Calculate the request issue rate for every Period local

by dividing the number of requests by the duration of a
Period local; *2.

*2 Although the second step performs the division, this can be simplified by
eliminating the division and having the remaining steps treat the number
of requests as the request issue rate. This modification does not affect
the outputs of the attack detection class.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.5

3) Find the maximum request issue rate among the above cal-
culated the request issue rates in the Period global; and

4) Regard the client as an attacker increasing the attack rate if
the maximum request issue rate is larger than the previous
maximum request issue rate by the predetermined threshold
(Th).

5.5.2 Attack Mitigation Class
In the attack mitigation class, the attackers are classified as one

of three types of attacker: a new attacker, a stable attacker, or
a transitional attacker. A new attacker is a client that has been
detected as an attacker because of an increase in their request is-
sue rate (i.e., their attack rate), but has yet to be registered as
an attacker by the attack mitigation class. A stable attacker is a
registered attacker, meaning an attacker already registered in the
attack mitigation class, which has, in a stable period, maintained
a constant attack rate in the long term. Finally, a transitional at-
tacker is a registered attacker in a transition period, who is in the
process of increasing their attack rate in the long term.

The attack mitigation class contains two functions: a forward-
ing function and a resource control function. The forwarding
function operates according to the type of attacker, as defined
above. If information about an attacker increasing the attack rate
is sent from the attack detection class, then the forwarding func-
tion checks whether the attacker is registered inside itself. If not,
then it is a new attacker; otherwise, it is a transitional attacker. In
the case of a new attacker, the forwarding function registers the
attacker in itself and uses the forwarding mechanism (explained
in Section 5.3) to begin forwarding the attacker to the Decoy Ma-
chine with the lowest targeted error rate among all the Decoy
Machines. On the other hand, in the case of a transitional at-
tacker, the forwarding function uses the forwarding mechanism to
change the forwarding target from the current Decoy Machine to
another Decoy Machine with a higher targeted error rate, if there
is one. Finally, in the case of a stable attacker, the forwarding
function does not perform any operation. However, the forward-
ing mechanism can forward stable attackers to Decoy Machines,
as the forwarding targets of each stable attacker have already been
registered in the NAT table.

The resource control function repeats the following operations
at regular intervals:
1) Transmit a GET request to each Decoy Machine and receive

the response;
2) Calculate the request error rate and compare it with the tar-

geted error rate of each Decoy Machine; and
3) Use the resource control mechanism (explained in Sec-

tion 5.4) to modify the CPU resources of each Decoy Ma-
chine to cause the request error rate to approach the targeted
error rate.

5.6 System Operation
The Main Controller carries out attack detection constantly, but

only performs attack mitigation if attackers are detected. In this
subsection, we explain the two modes of system operation: the
normal mode and the mitigation mode.
5.6.1 Normal Mode Operation

If there are no attackers, the system operates in the normal

Fig. 4 Normal mode operation.

mode, serving only normal users. Figure 4 shows the system dur-
ing the normal operation mode. In this figure, the configuration
of the system is the same as that shown in Fig. 3. In the normal
mode, the Control Machine distributes normal users to the Nor-
mal Machines, based on the pending request counting algorithm
and the cookie stickiness for load balancing.
5.6.2 Mitigation Mode Operation

If there are attackers, the system operates in the mitigation
mode for both normal users and attackers. Figure 5 shows the
system during the mitigation operation mode. Unlike in Fig. 4,
there are attackers that follow the attack scenario outlined in Sec-
tion 4.1.

Figure 5 (a) shows the operation for the new attackers. There
are two normal users and two attackers. The normal users are
distributed to the Normal Machines by the load balancing mech-
anism. The attackers launch their attacks and begin to increase
the attack rate. They are detected for the first time and the in-
formation about them is sent to the mitigation class by the attack
detection class. Since the detected attackers are yet to be regis-
tered, the mitigation class judges they are new attackers in order
to register them and forward them to a Decoy Machine 1 with
a targeted error rate of 50%. In addition, the mitigation class
controls the CPU resource of the Decoy Machine 1 to make the
request error rate close to the targeted error rate 50%.

Figure 5 (b) shows the operations for the stable attacker and the
transitional attacker. After the operation shown in Fig. 5 (a), the
Attacker 1 with an attack rate of 50% judges that the error rate
has reached the targeted error rate, and thus maintains the attack
rate. The Attacker 2 with a 70% attack rate judges the attack rate
is insufficient, and increases their attack rate. Therefore, only the
Attacker 2 is detected for the second time and the information
of it is sent to the mitigation class by the attack detection class.
Since the Attacker 2 is registered, the mitigation class judges the
Attacker 2 is a transitional attacker, and changes the forwarding
target to the Decoy Machine 2 with a targeted error rate of 70%.
In addition, the mitigation class controls the CPU resources of the
Decoy Machines to achieve each targeted error rate. It should be
noted that the Attacker 1 is a stable attacker and kept to be for-
warded to the Decoy Machine 1 based on the already registered
NAT mapping.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.5

Fig. 5 Mitigation mode operation.

6. Evaluation

In this section, we describe the evaluation environment and
method. Figure 6 illustrates the evaluation environment, which
includes multiple physical machines—the Web Server, Client
Machine 1, and Client Machine 2, as well as virtual machines.
Table 1 presents the physical machine configuration while Ta-
ble 2 presents the virtual machine configuration.

The Web Server equips the virtual machines. The host machine
operates as the Control Machine. The virtual machines provide
the same Web Services and operate as either a Normal Machine
or as a Decoy Machine. For our evaluation, we have the machines
set up as Normal Machine 1, Normal Machine 2, Decoy Machine
1 (50%), and Decoy Machine 2 (70%), where the bracketed per-
centages refer to the targeted error rate of the respective Decoy
Machine. Note that the details of the implementation of the Web
Server are described in Section 5.1.

Client Machine 1 and 2 run the client simulator, which is dedi-
cated software written in Python that simulates the operations of
multiple clients with different IP addresses simultaneously. We
used the client simulator to prepare the normal users and the at-
tackers. Each attacker uses multiple processes to send GET re-
quests similar to MyDoom. The normal users and the attackers

Fig. 6 Evaluation environment.

Table 1 Physical machine specification.

OS Fedora Linux version 20 (Heisenbug)
CPU Intel Core i7-4790K (4.00 GHz)

Memory 16 GBytes

Table 2 Virtual machine specification.

OS Fedora Linux version 20 (Heisenbug)
Memory 1,024 MBytes

are denoted as Normal User, Attacker (50%), and Attacker (70%),
where the bracketed percentage refers to the targeted error rate of
the respective Attacker.

It should be noted that the client simulator was built solely for
the purpose of evaluation of a new defense mechanism and not
to attack existing services. Moreover, the safety of the evaluation
is guaranteed since there is no unknown code in the client sim-
ulator and the evaluation environment was always disconnected
from the network.

The client simulator on the Client Machine can generate up to
twenty clients on each Client Machine: ten normal users and ten
attackers. The maximum number of clients depends on the per-
formance of the physical machine. In order to confirm the effect
of number of clients on the error rate, we evaluated two types of
cases. In the first case, there are one Normal User and one At-
tacker (50%) on the Client Machine 1, and one Normal User and
one Attacker (70%) on the Client Machine 2. On the other hand,
the second case has the following: ten Normal Users and ten At-
tackers (50%) on the Client Machine 1, and ten Normal Users and
ten Attackers (70%) on the Client Machine 2.

There are many other parameters in the evaluation. Therefore,
we evaluated our proposed method by varying the parameters and
determining an appropriate combination of them, as follows.

A normal user issues one request per second, which is
the minimum issue rate for a client generated by the simula-
tor. An attacker follows the attack scenario described in Sec-
tion 4.1. There are two parameters for an attack scenario:
Increment and decrement. Increment and decrement are the
increment and decrement of the attack rate, respectively, and
are the same value: the product of Diff error rate attack and α.
Diff error rate attack is the difference between the current and
targeted error rate. α is a chosen constant value: 1 if the number
of the attacker on a physical machine is one, 0.1 if it is ten. The
latter value is smaller since it is limited by the performance of the

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.5

physical machine.
The Main Controller on the Control Machine carries out the

attack detection. The parameters for the attack detection are
Period local, Period global, and Th. Period local is the period
in which the issue rate is calculated, and is set to 3 seconds for the
simulation. Period global is the period in which the maximum is-
sue rate is determined, and is set to 60 seconds for the simulation.
Th is a threshold. If the current maximum issue rate is larger than
the previous maximum request issue rate by Th, then the client is
regarded as an attacker increasing the attack rate. The details of
the above parameters are described in Section 5.5.1. We prepare
two types of Th: Th 50 and Th 70, which are the thresholds for
detecting the Attackers with a targeted error rate 50% and 70%,
respectively. Th 50 and Th 70 are set to 100 and 150, respec-
tively, if there is one attacker on a physical machine, and 10 and
15 if there are ten attackers.

Parameters for the resource control mechanism are
cpu.cfs period us, which is the period in which CPU time
is allocated to processes in a group, and cpu.cfs quota us, which
is the maximum CPU time that all processes in a group can
utilize during cpu.cfs period us. The cpu.cfs period us was
set to 100,000. The resource control mechanism dynamically
incremented or decremented cpu.cfs quota us by the product of
30 and Diff error rate defense, where 30 was a set value and
Diff error rate defense is the difference between the current and
targeted error rate.

The next section describes the evaluation results of our pro-
posed method for the above parameters.

7. Results and Discussion

Our experimental results changed with each evaluation, as a
result of the instability of the Web Server in overload status.
Thus, we performed the same evaluation five times to confirm the
change in results, and chose two representative cases from them
that had relatively smaller and larger error rate variations.

Figures 7 and 8 show the request error rates of the Web Server.
For each figure, (a) and (b) are for the cases with smaller and
larger error rate variations, respectively. The request error rate
was acquired from the log file of each client. There is a great
deal of similarity between the two figures. The key difference
between them is the number of clients: four clients in Fig. 7 and
forty clients in Fig. 8. In the figures, the vertical axis indicates
the error rate in the requests while the horizontal axis displays
the time scale. The three types of plotted lines indicate the Nor-
mal User, the Attacker with a targeted error rate of 50%, and the
Attacker with a targeted error rate of 70%, respectively.

Figure 7 confirms that the error rate of each attacker ap-
proaches their targeted error rates, though the transition of the
error rate differs between (a) and (b). Moreover, it is apparent that
the error rate of the normal users is not affected by the attackers.
The attackers are initially forwarded to Normal Machine 1 or 2
and the attack rate is increased. Then, the attackers are detected
by the attack detection class and forwarded to Decoy Machine 1
(50%). The resource of Decoy Machine 1 (50%) is controlled by
the attack mitigation class. Thus, the error rate of the attackers
increases to approach the targeted error rate of 50%. Next, the

Fig. 7 Request error rate (4 clients).

Attackers (70%) are detected and forwarded to Decoy Machine 2
(70%), the resource of which is controlled by the attack mitiga-
tion class. As a result, the error rates of the Attackers (50%) and
the Attackers (70%) remain around 50% and 70%, respectively.
This confirms that the Web Server can provide each attacker with
a different expected server status.

The overall trend shown in Fig. 8 is similar to that shown in
Fig. 7. The differences between the figures are as follows. As
in Fig. 8 (b), two Attackers (50%) are incorrectly forwarded to
the Decoy Machine 2 (70%). This is because the issue rate ob-
served on the Web Server side is larger than the issue rate on
the attacker side due to the instability of the Web Server. Al-
though these Attackers (50%) reduce the attack rate but the error
rate does not decrease due to the resource control of the Decoy
Machine 2 (70%). There is a period during which the error rate is
larger than the targeted error rate of 50% by about 20 points. This
is because the arrival timing of the requests sometimes changes
significantly, hindering the precise measurement of the error rate.
The error rate of the normal users is slightly affected during the
short time in which the attackers are not detected although it is
not usually affected by the attackers. The attackers with the same
targeted error rate are usually forwarded to the same Decoy Ma-
chine, however, the detailed transition of the error rate depends
on each attacker. This is because the error rate of each attacker is
calculated using their log file, which includes only part of all re-
sponses from the Web Server. However, our mechanism can gen-

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.5

Fig. 8 Request error rate (40 clients).

erally maintain functions when the number of clients increases.
Moreover, this instability of the defense mechanism may reflect
the unstable operation of the server in overload status.

Figures 7 and 8 show only the request error rate, in which re-
sponse time exceeds a timeout time. The request error rate alone
cannot explain the effect on response time. Therefore, we exam-
ined the log file of the attackers in the case of Fig. 7 (a) to con-
firm the distribution of the response time. Each response time
is measured by using time module in the Python library, which
is inserted into the points where the client sends a request and
receives the response of it.

It should be noted that the above measurement method is suf-
ficiently effective in this study even if the measurement accuracy
is not very high due to the usage of the time module inserted into
the client simulator. This is because, in this study, the purpose
of the evaluation is not to examine the precise response time in
general circumstances, but to confirm the response of the Web
Server with the proposed method is random and tends to decline
as the load increases. The results of the measurement sufficiently
performed the precision sufficient for the above purpose as shown
below.

The results of the above measurement are illustrated in Fig. 9,
where (a) and (b) respectively show the distributions of the re-
sponse time of Attacker (50%) and Attacker (70%) during the pe-
riod from about 2,200 seconds to 2,300 seconds. The horizontal
axis shows the response time as a percentage of the timeout time.

Fig. 9 Distribution of response time.

The vertical axis indicates the number of responses, normalized
to the total number of responses and number of no responses,
where “no response” means there was no response corresponding
to a request sent by a client. Each bar indicates the case in which
the response time is between x% and x+10% of the timeout time,
where x is a multiple of 10 between 0 and 90 *3.

Figure 9 confirms that the response times are widely distributed
between 0% and 100%. This is because the Web Server in over-
load delays the response time and this delay is randomly de-
termined. Figure 9 (a) and (b) confirm that, as the error rate
increases, the number of responses between 0% and 100% de-
creases, although the delay time remains irregularly distributed
in each case.

In order to confirm the advantage of our mechanism against the
existing simple mechanism, we performed the evaluation of the
filtering method. In the evaluation, once an attacker is identified
by the same detection method as our mechanism, all the packets
of the detected attacker are filtered out.

Figures 10 and 11 show the request error rates of the Web
Server with the filtering method. The figures correspond to Fig. 7
and Fig. 8, respectively. However, since the filtering method does
not have the Decoy Machines in overload status, the figures do
not have smaller and larger error rate variations.

*3 There are cases where the measured response time exceeds a timeout
time even if the client receives the response. This is because the time
module is used for the measurement as already mentioned.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.5

Fig. 10 Request error rate (Filtering, 4 clients).

Fig. 11 Request error rate (Filtering, 40 clients).

Figures 10 and 11 confirm that the error rate of the normal users
is not affected all the time or slightly affected until all the attack-
ers are forwarded to the Decoy Machines. In addition, the figures
confirm that the error rate of each attacker is rapidly changed
from zero or a slight amount to 100% and then maintains the
value. This indicates that there is no time period during which
the response times are widely distributed, although each attacker
gradually controls the attack rate while monitoring the server sta-
tus. Therefore, the attacker can judge that their attack is being
mitigated by certain defense method such as filtering.

8. Feasibility and Limitation

8.1 Decoy Machine
We discuss the load of the Decoy Machine. In our method, the

host machine includes the Control Machine, Normal Machines,
and Decoy Machines. However, the load of the Decoy Machines
does not make the Normal Machines slower although the Decoy
Machines receive the DoS packets. We show the reasons and the
proof below.

Firstly, the load of each Decoy Machine is high while the DoS
packets are received. However, as noted in Section 4.2, our pro-
posal can suppress the attack strength, coming to the less resource
needed for the Decoy Machine. In addition, we can set the max-
imum CPU time in the cgroups function to limit the maximum
amount of resources that can be utilized by the Decoy Machines.
Therefore, we can provide sufficient resources for the Normal
Machines.

Secondly, our method achieves the target error rate on each De-

coy Machine and suppresses the attack strength of DoS packets
received by the Decoy Machine. Although the attack strength is
harmful to the Decoy Machine, it is harmless for the host ma-
chine including the Control Machine, the Decoy Machine, and
the Normal Machines. Therefore, the DoS packets do not nega-
tively affect the Control Machine nor the Normal Machine on the
host machine.

Lastly, the evaluation results confirm the following. When the
Normal Machines receive the DoS packets, they are negatively
affected. However, after the DoS packets are detected and for-
warded to the Decoy Machines, the Normal Machines are not
negatively affected. The above evaluation results show that it
does not make the Normal Machines slower to implement both
the Decoy Machines and the Normal Machines on the same host.

8.2 Control Machine
We explain the relationship between the Control Machine and

a single point of failure. Generally, there are multiple SPOFs on
a system: OS, application, disk, card, I/O device, power supply
device, load balancer, and so on. The ways of eliminating SPOFs
differ from each other. In addition, they require additional costs
and may incur other new SPOFs. Therefore, all of SPOFs are
not always eliminated. The approach to them depends on each
system.

For example, a HDD becomes a SPOF. We can use a RAID
technology to multiplex a HDD. However, the level and the cost
of redundancy are different from RAID level to RAID level. The
selection of level depends on each system. In addition, a RAID
device is an additional cost and becomes a new SPOF.

Another example is a load balancer, which can multiplex a
whole host with SPOFs. There are a single and multiplexed load
balancers. The differences between them are cost and availabil-
ity. Therefore, the service providers provide the single and multi-
plexed load balancers with lower and higher charges, respectively.
If the priority of the cost is relatively higher than the availability
for the system, a single load balancer is selected. Otherwise, a
multiplexed one is selected.

In this paper, since the Control Machine is a single component
through which all packets go in the system, it becomes a SPOF.
However, it is not an only SPOF. The host machine has the well-
known SPOFs. The reason why we chose this implementation
with SPOFs is that it is not practical to introduce a high-cost mul-
tiplexing to a small-scale web server which we assume in this
paper. In addition, since the attack strength is not heavy for the
Control Machine, it is also not practical to multiplex only the
Control Machine.

The implementation shown in Section 5 is one of the possible
ones to realize our idea, some of which can prevent the Control
Machine from being a SPOF. Generally, a system has multiple
SPOFs. If we multiplex the more SPOFs, we can achieve the
higher availability of the system, although the cost needed for the
multiplexing increases. In this paper, we assume the small-scale
web server. However, if the additional costs were acceptable, we
could give redundancy to the system.

One example of multiplexing is as follows:
1) Add one or more new host machines, each of which is the

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.5

same as the host machine shown in Section 5.
2) Add a new multiplexed load balancer between the connec-

tion to the Internet and the all host machines containing the
new ones, distributing the packets to the Control Machines.

The above implementation multiplexes all the SPOFs. Another
example is to prepare and multiplex a new host machine only for
the Control Machine at a lower cost.

8.3 Attack Scenario
In this paper, we assume the HTTP GET Flood attackers that

aim to degrade a service, monitor the targeted server, and conduct
adaptive attack rate control. The assumption is determined based
on the related works shown in Section 2.1 and Section 2.3. The
proposed method makes it appear to the attackers as if the attack
is successful in order to impede progress towards more severe or
more sophisticated attacks. Moreover, the proposed method iso-
lates the attacks and suppresses the attack strength to protect the
legitimate clients from the impact of the attacks. Therefore, the
above assumption of the attackers generates the limitation that
the proposed method does not defend against unexpected attack-
ers. For example, the proposed method does not assume the dis-
ruptive DDoS attacks that launch strong and constant rate attacks.
However, it is not practical for a small-scale web server to prevent
such attacks on the server side.

Another example is as follows. Suppose that the attackers fol-
low the assumption shown in Section 4.1 except that they prepare
two kinds of IP addresses: one for sending the attack packets by
the DoS tool and the other for monitoring the server status by a
method different from the DoS tool. If the above attackers start to
launch the attacks and the monitoring, they notice that the mon-
itored error rate does not increase. Therefore, they can be aware
of the defense activity of the proposed method.

However, there is also another possibility that they are unaware
of it by the following reason. A load balancer is well-known as a
load balancing method and is supplied by the service providers.
If a Web Server introduces only a load balancer without our pro-
posed method, each of the clients including the attackers and the
normal users is forwarded to one of multiple servers behind the
load balancer. The monitoring packets are not always forwarded
to the servers which receive the attack packets. Therefore, when
the monitored error rate does not change, the attackers may mis-
take that it is due to just a load balancing even if the proposed
method mitigates the attacks.

9. Conclusion

In this paper, we propose a method that 1) allows the server
to maintain its service to users relatively unaffected by the at-
tacks, 2) responds optimally to each attacker, and 3) impedes the
attacker’s ability to detect a defensive response. In our proposed
method, the Web Server contains a Control Machine, Normal Ma-
chines, and Decoy Machines. The Control Machine performs op-
erations for defense against attacks. The Normal Machines sup-
ply normal users with the service, while the Decoy Machines fool
the attackers. This arrangement ensures that normal users are
barely affected by attacks. The Decoy Machines generate differ-
ent error rates through CPU resource control, presenting different

targeted error rates to the attackers. The CPU resource control
essentially places each Decoy Machine into an overload status so
the server response is random and tends to decline as the load
increases, making it appear to attackers as if the attack is suc-
cessfully degrading the service without being detected. We im-
plemented and evaluated our proposed method. Since the result
changed on every evaluation, we performed the same evaluation
5 times. The evaluation results confirmed that our method con-
trolled the CPU resource of each Decoy Machine to make the
error rate of each attacker close to their targeted error rate when
there were multiple attackers with different targeted error rates.
In addition, it was confirmed that the response time of an attacker
was widely distributed.

Acknowledgments The authors wish to thank Tsuyoshi
Mikami and Shoma Yoshida for technical assistance and helpful
discussions that they provided when they were master’s-degree
students at Toyohashi University of Technology.

References

[1] Zargar, S.T., Joshi, J. and Tipper, D.: A survey of defense mecha-
nisms against distributed denial of service (DDoS) flooding attacks,
IEEE Communications Surveys & Tutorials, Vol.15, No.4, pp.2046–
2069 (Mar. 2013).

[2] Yatagai, T., Isohara, T. and Sasase, I.: Detection of HTTP-GET flood
Attack Based on Analysis of Page Access Behavior, Proc. IEEE Pa-
cific Rim Conference on Communications, Computers and Signal Pro-
cessing, pp.232–235 (Aug. 2007).

[3] Mirkovic, J., Dietrich, S., Dittrich, D. and Reiher, P.: Internet Denial
of Service attack and defense mechanisms, Prentice Hall (2005).

[4] Xin, S., Chen, X., Tang, H. and Zhu, N.: Research on DoS Atomic
Attack Oriented to Attack Resistance Test, Proc. IEEE Conference on
Networking, Sensing and Control, pp.1747–1752 (Apr. 2008).

[5] @police: DoS/DDoS prevention, available from
〈http://www.npa.go.jp/cyberpolice/server/rd env/pdf/
DDoS Inspection.pdf〉 (accessed 2015-12-03).

[6] Srivatsa, M., Iyengar, A., Yin, J. and Liu, L.: Mitigating Application-
level Denial of Service Attacks on Web Servers: A Client-transparent
Approach, ACM Trans. Web, Vol.2, No.3 (July 2008).

[7] Xie, Y. and Yu, S.: Monitoring the Application-Layer DDoS Attacks
for Popular Websites, IEEE/ACM Trans. Networking, Vol.17, No.1,
pp.15–25 (Feb. 2009).

[8] Gadot, Z., Alon, M., Rozen, L., Atad, M., Shulman, Y. and
Shrivastava, V.: Radware 2013 Global Application & Network Secu-
rity Report, Radware Ltd. (2013).

[9] Information-technology Promotion Agency Japan: The report of in-
vestigation into the DoS attack prevention, available from
〈http://www.ipa.go.jp/security/fy22/reports/isec-dos/index.html〉 (ac-
cessed 2015-12-03).

[10] Mirkovic, J. and Reiher, P.: A Taxonomy of DDoS Attack and DDoS
Defense Mechanisms, ACM SIGCOMM Computer Communication
Review, Vol.34, No.2, pp.39–53 (Apr. 2004).

[11] Saleh, M.A. and Manaf, A.A.: Optimal Specifications for a Protective
Framework Against HTTP-based DoS and DDoS Attacks, Proc. Sym-
posium on Biometrics and Security Technologies, pp.263–267 (Aug.
2014).

[12] Gulati, S. and Dhaliwal, A.: Survey on ROQ attacks, International
Journal of Advanced Research in Computer and Communication En-
gineering, Vol.2, No.6 (June 2013).

[13] Palmieri, F., Ficco, M. and Castiglione, A.: Adaptive Stealth Energy-
related DoS Attacks Against Cloud Data Centers, Proc. 8th Confer-
ence on Innovative Mobile and Internet Services in Ubiquitous Com-
puting, pp.265–272 (July 2014).

[14] Palmieri, F., Ricciardi, S. and Fiore, U.: Evaluating Network-Based
DoS Attacks Under the Energy Consumption Perspective: New Se-
curity Issues in the Coming Green ICT Area, Proc. Conference on
Broadband and Wireless Computing, Communication and Applica-
tions, pp.374–379 (Oct. 2011).

[15] Wu, Z., Xie, M. and Wang, H.: On Energy Security of Server Sys-
tems, IEEE Trans. Dependable and Secure Computing, Vol.9, No.6,
pp.865–876 (Aug. 2012).

[16] Jin, J., Nodir, N., Im, C. and Nam, S.Y.: Mitigating HTTP GET
flooding attacks through modified NetFPGA reference router, 1st Asia

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.5

NetFPGA Developers Workshop (June 2010).
[17] Lu, W. and Yu, S.: A HTTP Flooding Detection Method Based on

Browser Behavior, Proc. Conf. IEEE Computational Intelligence and
Security, Vol.2, pp.1151–1154 (Nov. 2006).

[18] Lee, J., Jeong, H., Park, J., Kim, M. and Noh, B.: The Activity Anal-
ysis of Malicious HTTP-based Botnets using Degree of Periodic Re-
peatability, Proc. Conf. Security Technology, pp.83–86 (Dec. 2008).

[19] Stevanovic, D., Vlajic, N. and An, A.: Detection of Malicious and
Non-malicious Website Visitors Using Unsupervised Neural Network
Learning, Elsevier Applied Soft Computing, Vol.13, No.1, pp.698–708
(Jan. 2013).

[20] Das, D., Sharma, U. and Bhattacharyya, D.: Detection of HTTP
Flooding Attacks in Multiple Scenarios,” Proc. Conf. Communication,
Computing & Security, pp.517–522 (Feb. 2011).

[21] Baik, N., Kang, N., Pak, H. and Sim, W.: Analysis and design of
an intrusion tolerance node for application in traffic shaping, Proc.
Conference on Control, Automation and Systems, pp.857–862 (Oct.
2008).

[22] Chen, Y.W.: Study on the Prevention of SYN Flooding by Using Traf-
fic Policing, Proc. Symposium on Network Operations and Manage-
ment, pp.593–604 (Apr. 2000).

[23] Garg, A. and Reddy, A.: Mitigation of DoS attacks through QoS reg-
ulation, Microprocessors and Microsystems, Vol.28, No.10, pp.521–
530 (Dec. 2004).

[24] Kuzmanovic, A. and Knightly, E.W.: Low-Rate TCP-Targeted De-
nial of Service Attacks (The Shrew vs. the Mice and Elephants), Proc.
Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications, pp.75–86 (Aug. 2003).

[25] Takahashi, T., Taguchi, G., Kobayashi, R. and Kato, M.: HTTP-
GET Flood provision by dynamic resource control to virtual machine,
IEICE Trans. Inf. Syst., Vol.J94-D, No.12, pp.2058–2068 (Dec. 2011)
(in Japanese).

[26] Watanabe, M., Kobayashi, R. and Kato, M.: HTTP-GET Flood Pre-
vention Method by Dynamically Controlling Multiple Types of Virtual
Machine Resources, J. Inf. Process., Vol.23, No.5, pp.655–663 (Sep.
2015).

[27] Lin, C., Liu, J. and Chen, C.: Access Log Generator for Analyzing
Malicious Website Browsing Behaviors, Proc. 5th Conf. Information
Assurance and Security, pp.126–129 (Aug. 2009).

[28] Sardana, A. and Joshi, R.C.: Autonomous Dynamic Honeypot Rout-
ing Mechanism for Mitigating DDoS Attacks in DMZ, Proc. IEEE
International Conference on Networks pp.1–7 (Dec. 2008).

[29] Creasy, R.J.: The origin of the VM/370 time-sharing system, IBM J.
Research and Development, Vol.25, No.5, pp.483–490 (Sep. 1981).

Ryotaro Kobayashi received his B.E.,
M.E., and D.E. degrees from Nagoya Uni-
versity in 1995, 1997, and 2001, respec-
tively. He had been a research assistant in
Nagoya University from 2000 to 2008. He
is currently a lecturer at Toyohashi Uni-
versity of Technology. His research inter-
ests include computer architecture, paral-

lel processing, and network security.

Genki Otani is currently a Bachelor
Course student of Toyohashi University
of Technology. His research interests in-
clude network security.

Takuro Yoshida received his B.E. degree
in Computer Science and Engineering
from Toyohashi University of Technology
in 2015. He is currently a master’s-degree
student at the same university. His re-
search interests include network security.

Masahiko Kato received his B.E. and
M.E. degrees in Engineering from
Toyohashi University of Technology and
D.E. degree in Systems and Information
Engineering from University of Tsukuba
respectively. He is now working for In-
ternet Initiative Japan Inc. He is currently
interested in network security.

c© 2016 Information Processing Society of Japan


