
Electronic Preprint for Journal of Information Processing Vol.24 No.5

Regular Paper

Detection of the DNS Water Torture Attack by Analyzing
Features of the Subdomain Name

Yuya Takeuchi1,a) Takuro Yoshida1 Ryotaro Kobayashi1 Masahiko Kato2

Hiroyuki Kishimoto3

Received: December 3, 2015, Accepted: June 2, 2016

Abstract: The Domain Name System (DNS), whose major function is to manage associations between domain names
and IP addresses, plays a major role in managing the Internet. Thus, a DNS impairment would significantly impact
society. A major cause of DNS impairment is Distributed Denial of Service (DDoS) attack on authoritative DNS
servers. Our study focuses on the recently emerging DDoS attack known as the DNS Water Torture Attack. This attack
causes open resolvers, which are improperly configured cache DNS servers that accept requests from both LAN and
WAN, to send many queries to resolve domains managed by target servers. Domain names for resolving sent in this
attack include varying random subdomains. Cache servers certainly will not have cached data for these queries, and
so a huge volume of queries converges to the target authoritative servers via cache servers. In this paper, we propose a
detection method for this attack using the Naive Bayes Classifier. Experimental results show that our method is capable
of detecting this attack with a 95.59% detection rate. Moreover, the results of performance simulation show that our
method is fast enough to process more than 2.3 Gbps of traffic on the fly.

Keywords: DNS, DDoS, DNS Water Torture, Anomaly Detection, Naive Bayes Classifier

1. Introduction

A vital system underlying the Internet is the Domain Name
System (DNS), whose major function is to manage associations
between domain names and IP addresses. Considering the strong
influence of computers and the Internet on our lives, a DNS im-
pairment or failure would significantly impact society. In particu-
lar, Denial of Service (DoS) and Distributed DoS (DDoS) attacks
on the DNS are recently emerging threats.

When a DNS client tries to resolve a domain name, it sends a
recursive query to a cache server. The cache server instantly re-
turns a response if it has a previously cached result. Otherwise,
it sends iterative queries on behalf of the client to authoritative
servers that manage the original information associating domain
names with IP addresses, thus obtaining the corresponding IP ad-
dress. A domain name is generally presented as a dot-separated
string, where each substring is a label and the position of a label
indicates its level in a hierarchy.

The behavior of a cache server that has received a query is as
follows. First, the cache server sends a query to a root node,
which is an authoritative server maintaining root domains. Then,
the root node replies with the address of a next-level authoritative
server. This is instead of the IP address of the queried domain
because root nodes do not have complete information of every
domain in the Internet. If it has data for the queried domain, the

1 Faculty of Engineering, Toyohashi University of Technology, Toyohashi,
Aichi 441–8580, Japan

2 Internet Initiative Japan Inc., Iidabashi Grand Bloom, Chiyoda, Tokyo
102–0071, Japan

3 ComWorth Co., Ltd., Ota, Tokyo 143–0026, Japan
a) takeuchi2015@ppl.cs.tut.ac.jp

next-level server replies an IP address corresponding to the do-
main. Otherwise, the server introduces a 2nd next-level server as
in the previous step. This routine continues until the cache server
meets a server that knows the sought domain.

The Water Torture Attack [1] is a type of DDoS attack on
the DNS that exploits open resolvers to send a huge volume of
queries to target authoritative servers. The open resolvers are
vulnerable cache servers that accept all queries from all over the
Internet.

In this paper, we propose a detection method for the Water Tor-
ture Attack that uses the Naive Bayes Classifier. We perform ex-
periments that show the method is fast enough to be utilized for
semi-real-time attack detection. Here, “semi” refers to the fact
that there is a delay between when an attack query arrives and
when it is detected since our method needs a certain volume of
packets, called a window, for detection.

The remainder of this paper is organized as follows. Section 2
discusses related studies and details the Water Torture Attack.
Sections 3 and 4 describe our proposed method, and its imple-
mentation, respectively. Sections 5 and 6 clarify evaluation envi-
ronment and results of our study, respectively. Section 7 details
the effectiveness of our method from the points of view of both
the accuracy and the performance. Finally, Section 8 concludes
our study and discusses future work.

2. Related Work

2.1 DNS-Related Malicious Activity Detection
Okayasu and Sasaki [2] proposed a method that discovers

communication from botnets by examining parameters of a
Command-and-Control (C&C) server’s domain, such as whether

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

it can be resolved by reverse lookup, a Time to Live (TTL) value,
and address records (A records). This particular method focuses
on suspicious domain information, but not all attacks have such
characteristics. For example, in the Water Torture Attack, the
domain information appears normal, but the queries cast by at-
tackers are the source of the problem. Thus, our study focuses on
the characteristics of such queries.

Karasaridis et al. [3] introduced a method to detect DNS Cache
Poisoning and DNS Tunneling. Unlike ordinary Intrusion Detec-
tion Systems, their method does not rely on known attack patterns
called signatures. Rather, it utilizes flow data whose records con-
tain parameters related to the transport and lower layers. These
parameters include IP addresses and port numbers of each source
and destination, and the numbers of packets and bytes. However,
these parameters are insufficient to recognize attack queries and
thus cannot be effectively applied to the Water Torture Attack in
isolation. Our method, therefore, inspects the contents of queries
at the DNS level.

The main point differentiating our study from those above is
our focus on the Water Torture Attack. We propose a high-speed
detection method for the Water Torture Attack that can observe a
large number of queries on the fly.

2.2 DNS Water Torture Attack
The DNS Water Torture Attack, also known as the DNS Slow

Drip Attack or the Pseudo Random Subdomain Attack, is a type
of DDoS attack on DNS servers [4]. This attack affects both au-
thoritative and cache servers, but mainly targets the former [1].

The attacker uses many bots to make the target servers re-
peatedly resolve characteristic domain names. These domain
names consist of the parent domain for which the target has au-
thority and a random, non-existent subdomain. Due to the non-
existent subdomain, cache servers receiving such queries never
have cached data and thus must send iterative queries to the au-
thoritative servers.

This attack exploits improperly-configured cache servers
called open resolvers. While normal servers ignore queries from
external networks, open resolvers accept all queries from every
possible client. Some of these open resolvers are home routers
serving as DNS forwarders to upstream cache servers provided by
internet service providers (ISPs). Through them, a large number
of queries ultimately converge on the target authoritative servers.

Moreover, during the attack, the slow response of the authori-
tative servers due to overload causes a drain on the resources of
the cache servers, potentially realizing the secondary damage of
knocking out the cache servers. In fact, it has been reported that
ISP cache servers, which are referred by many home routers, have
crashed as a side effect of such attacks [5].

Before carrying out this attack, the attacker prepares the fol-
lowing two lists:
(1) a list of bots participating in the attack, and
(2) a list of open resolvers.

Figure 1 shows the flow of attack queries. When the attacker
commands the bots in List 1 to start the attack, every bot con-
tinuously sends multiple queries to the open resolvers listed in
List 2. Due to the non-existent subdomain of the query, the open

Fig. 1 Flow of attack queries.

resolvers simultaneously query the authoritative servers, sharply
increasing the load of the target servers. Further, the load on the
cache servers, especially upstream ISP servers referred by bad
home routers, also increases since recursive queries require more
resources than iterative ones.

Major countermeasures against this attack include IP address
blocking and rate limiting of accepting queries; however, these
actions are not complete solutions because they could signifi-
cantly affect innocent users. As described above, attack queries
often go through ISP cache servers and so the queries appear
to the attacked server to be from these ISP cache servers. This
means that simply denying a specific IP address results in refus-
ing clients from the network of the ISP. With regard to rate lim-
iting, if the intensity of the attack exceeds the limit, all queries
are blocked even if they are from innocent clients. To effectively
resist this attack, it is vital to detect and selectively block attack
queries.

To detect attack queries, we focus on the randomness of their
subdomains. There have been proposed a number of studies re-
lated to the randomness of domains.

Kazato et al. [6] focused on responses signifying NXDOMAIN
errors, which occur when a queried domain name does not ex-
ist. The authors classified them into nine patterns, with one pat-
tern being whether they include random words. They predicted
whether a domain name included random words via a score cal-
culated by comparing bigrams of domain names of subjects and
those of correct domain names. While this study treated random
queries merely as one of the causes of NXDOMAIN errors, we
noticed that the randomness estimation could be utilized as Water
Torture detection, and thus we devised a detection method and
evaluate its detection rate and performance.

Yadav et al. [7] proposed a botnet detection method, which
focus on domain names not made by humans. C&C servers’
domains have the feature that they are frequently changed to
new ones generated by an algorithm. Such algorithms are re-
ferred to as Domain Generation Algorithms (DGAs). This study
aimed to detect botnets by distinguishing generated domains us-
ing Kullback-Leibler (K-L) divergence of distributions of letters.
Instead of botnets, our study focuses on Water Torture detection
and on-the-fly processing.

Schiavoni et al. [8] also proposed a detection method for DGA-
generated domains. The study utilizes four feature values: the
uni-, bi-, and tri-gram normality scores and the ratio of meaning-
ful characters. The authors stated that they employed multiple
features to reduce misjudgement. However, the recall rate of the
method fluctuated according to data sets. We think that it is be-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

cause all the feature values have properties similar to each other.
On the other hand, we utilize feature values that have different
properties in our method, and therefore, we obtained stable ex-
periment results regardless of data sets.

3. Proposed Method

3.1 Overview
The aim of our method is to detect random queries. When

DDoS attack occurs, server administrators have few measures to
withstand the attack, and so, it is important for them to cooperate
with managers of upstream networks in general. With our sys-
tem, administrators of authoritative servers can notice that some
servers are under attack, and they can also know IP addresses
of open resolvers that relay attack queries and which queries are
for the attack. If we provide such detailed information about
the attack for a manager of the upstream network, the upstream
manager can investigate relaying machines far from the attacked
server and take more actions to mitigate the attack, such as filter-
ing or bandwidth control based on IP addresses or other informa-
tion. We presume that our system can be utilized in this way as a
countermeasure for the Water Torture Attack.

Our method monitors the traffic from and into the authoritative
servers. Figure 2 shows the structure of an assumed system for
implementing our method and the flow of packets.

The router is configured to send a copy of all the traffic to
the detection machine. The machine extracts packets related to
the DNS from the copy, analyzes these packets, and determines
whether an attack is being carried out.

3.2 Analysis Subjects
Recalling that the attack queries use non-existent random do-

main names, which would result in NXDOMAIN errors, our
method focuses on only queried domain names that receive an
NXDOMAIN response.

In this study, we divide a fully-qualified domain name (FQDN)
of an attack query into two parts: the variable block, which is the
changing part of the domain used for different queries, and the
fixed block, which is the fixed part of the domain for which the
attacked servers have authority (Fig. 3). Our method attributes
an intention to attack to queried domain names if their variable
blocks are random and non-existent. In contrast, all fixed blocks
are ignored.

We analyze the pair containing a variable block and its num-
ber of occurrences in a single window. Note that a window is a
cluster of subjects made from packets captured over T seconds,
where the parameter T is called the window width.

3.3 Detection Algorithm
Figure 4 shows the behavior of the detection algorithm, as-

suming that analysis subjects are taken from packets captured in
real time.

To determine whether a variable block is random, our method
utilizes the Naive Bayes Classifier, which is a supervised-learning
algorithm and is detailed in Section 3.5. Note that we choose the
Naive Bayes Classifier over the Support Vector Machine or De-
cision Tree as it runs in linear time by assuming independence

Fig. 2 Structure of an assumed system.

Fig. 3 Two parts of an FQDN.

Fig. 4 Flowchart of the detection algorithm (on-the-fly detection mode).

between feature values [9]. As we need to process a large number
of packets on the fly, speediness is a vital consideration.

Employing the classifier requires first reading training data.
Each point of training data is a pair of an input and an output; the
input consists of a variable block string and its number of occur-
rences, and the output states whether the input is random. After
this training, we obtain the reference frequency tables for both
non-random and random cases. These tables will be referred to
by the classifier to classify analysis subjects.

The details of the detection process are as follows. The de-
tection algorithm receives all subjects within a window. The sub-
jects come from either packets captured in real time or an already-
prepared file of captured packets. After receiving a window, our
method extracts feature values from each subject in the window,
and then classifies the subject as random or non-random from
these feature values, using the Naive Bayes Classifier. These
steps of receiving and classifying run alternately and continue un-
til a user stops the program or the input file ends.

3.4 Feature Values
Our method uses these values as feature values of the subjects:

(1) The number of occurrences of the same variable block in a
window;

(2) The whole length of a variable block excluding dot delim-
iters;

(3) The number of labels in a variable block; and,

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

(4) The bigrams made from a variable block.
The reason to take the number of occurrences is that the same

domain names should be queried few times since these queries
are random.

The reason to take the length of a variable block is that the
length of attack queries should be long enough to prevent colli-
sion of queried domain names. Accordingly, the number of labels
would also increase, which is the reason to take the number of la-
bels.

Bigrams are sequences of a string split by every two adjacent
letters. For example, the variable block string “foo.bar.” is split
into the bigrams “fo”, “oo”, “o.”, “.b”, “ba”, “ar”, and “r.” Note
that dots terminating variable blocks are not ignored when bigram
scores are calculated.

We use bigrams instead of unigrams since it has been reported
that we can achieve more precise randomness estimation using bi-
grams than with unigrams [7], [10]. We expect to achieve a high
and stable detection rate by utilizing the bigram score together
with feature values unrelated to bigrams.

3.5 Naive Bayes Classifier
Here, we assume that feature values are in a four-dimensional

vector, and the two classes are random or non-random.
Given feature values X = (X1, X2, X3, X4), which correspond to

the values described in the section above, the classifier calculates
the conditional probability P(Y |X) in the case Y = {y0, y1}. It then
classifies X into the more probable case.

The following steps show the detailed calculation.
(1) Obtain these values by referring to the appropriate reference

table:

P(Y), P(X1|Y), P(X2|Y), P(X3|Y), P(X4|Y).

P(X4|Y), a score related to bigrams, is the sum of the proba-
bilities of each bigram.

(2) Assuming that each X is independent from each other, we
obtain:

P(X|Y) = P(X1|Y)P(X2|Y)P(X3|Y)P(X4|Y).

(3) From Bayes’ theorem:

P(Y |X) =
P(Y)P(X|Y)

P(X)
∝ P(Y)P(X|Y).

(4) Calculate P(¬Y |X) in the same way.
(5) Comparing P(Y |X) and P(¬Y |X), attribute X to the more

probable case.

4. Implementation

4.1 Overview
We developed a detection program based on our method in or-

der to evaluate its effectiveness. The program consists of three
steps: pre-training, input of subjects, and classification. The pre-
training step is a one-time process that runs at the start of the
program, while the other steps alternately during detection. The
details of each step are described in the following subsections.

4.2 Pre-Training
The detection program must read training data beforehand.

Table 1 Example of Reference Table 0 (after reading a single line).

Frequency Num. of Labels Length Bigram

1 0 1 1 1 0 “fo” 1
2– 1 2–3 0 2 0 “oo” 1

4–5 0 3 1 “o.” 1
6–7 0 . . . 0 . . .
8– 0 10– 0 Total 3

Total of non-random subjects: 1

Table 2 Example of Reference Table 0 *1 (after the pre-training is com-
pleted).

Frequency Num. of Labels Length Bigram

1 3,000 1 1,750 1 50 “fo” 180
(60%) (35%) (1%) (0.18%)

2– 2,000 2–3 1,600 2 150 “oo” 195
(40%) (32%) (3%) (0.20%)

4–5 1,000 3 250 “o.” 890
(20%) (5%) (0.89%)

6–7 600
(12%)

8– 50 10– 1,600 Total 100,000
(1%) (32%) (100%)

Total of non-random subjects: 5,000 (50%)

The training data file is in CSV format and each line consists
of an input and an output: the input is a pair of a variable block
and its number of occurrences in a single window, and the out-
put is whether the input is random. After training, we obtain two
reference frequency tables for the non-random and random cases,
which we refer to as Reference Tables 0 and 1, respectively.

First, the program reads each line of the training data file and
increases the counters of relevant items in the appropriate table.
For example, when the program reads a line that signifies inputs
(freq.=2, num. of labels=1, length=3, variable block=“foo.”), and
an output “non-random”, the program does the following:
(1) The output being non-random, the program updates Refer-

ence Table 0;
(2) In this Reference Table, the counter of total items is in-

creased by 1;
(3) The counter of items whose frequency is more than or equal

to 2 is increased by 1 in the Frequency column;
(4) Similarly, the columns regarding the number of labels and

length are updated;
(5) The counter of each appropriate item in the Bigram column

is increased by 1 (note that the string is split to the bigrams
“fo”, “oo”, and “o.”); and

(6) Add 3, the number of the bigrams, to the total counter of
bigrams in the Bigram column.

Thus, the Reference Table 0 becomes Table 1 by this process.
This counting process continues until the end of the file. Then,

the program calculates the probabilities of each item. For exam-
ple, if 5,000 non-random items and the same number of random
items are added to the tables, Reference Table 0 is altered to the
form like shown in Table 2.
4.2.1 Parameters

We consider the intervals used in the Reference Tables and the
window width as significant factors that affect a detection rate,
and so we treat them as parameters. Table 3 shows the best pa-
rameters that we obtained by the parameter investigation experi-

*1 The underlined values are referred in Section 4.4.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

ments described in Section 5.3.

4.3 Input of Subjects
In this step, the program receives subjects for analysis. The

source of subjects differs according to the situation. In practi-
cal use and performance evaluation experiments, subjects are ex-
tracted from actual packets captured in real time. Only packets
that meet the following parameters are analyzed, and all others
are ignored:
• The sender is located in the same network,
• UDP, port 53,
• DNS response (qr = 1),
• NXDOMAIN error (rcode = 3), and
• Authoritative answer (aa = 1).
After inspecting a response, the program obtains an FQDN

from the question section, a fixed block string from the authority
section, and a variable block string by excluding the fixed block
from the FQDN. As previously described, we only consider the
variable block.

In evaluation experiments, the program can receive subjects di-
rectly from a file rather than by capturing packets. The format of
such an input file is the same as that of the training data. In this
file-reading mode, the program uses output data from the file,
which was originally to be used in pre-training, to verify detec-
tion results and calculate a detection rate.

After receiving subjects, the program extracts feature values
from the variable block of each subject, and records them on the
Subject List.

4.4 Classification
After the Input step, the program refers to the appropriate ref-

erence table and uses the Naive Bayes Classifier to calculate the
probability of randomness and non-randomness for each item in
the Subject List, and then classifies each item.

For example, we calculate the non-randomness probability
of the subject (freq.=2, num. of labels=1, length=3, variable
block=“foo.”) from the example Reference Table 0 shown in Ta-
ble 2. Note that P(X4|y0) is the sum of the probabilities of the
bigrams “fo”, “oo”, and “o.” in this case.

The calculation is as follows:

P(Y |X) ∝ P(y0)P(X1|y0)P(X2|y0)P(X3|y0)P(X4|y0)

= 50% · 40% · 35% · 5% · (0.18% + 0.2% + 0.89%)

= 0.004445%

The randomness probability can be similarly calculated from
Reference Table 1. If it was less than the non-randomness proba-
bility, the subject would be considered to be non-random.

Note that the sum of the randomness and the non-randomness
probabilities are not 100%, since this calculation is an approxima-

Table 3 Best parameters.

Intervals of
1 Number of Occurrences 1 2–
2 String Length 1 2 3 . . . 9 10–
3 Number of Labels 1 2–3 4–5 6–7 8–

4 Window Width 10 minutes

tion. We, therefore, must perform calculations for both Reference
Tables.

5. Evaluation

We conducted experiments to examine the detection rate and
the performance of our method, using the program detailed in
Section 4.

5.1 Environment
5.1.1 Detection Rate Evaluation

In this evaluation, the program received a file of analysis sub-
jects, which included correct output data that was set to either
random or non-random by humans beforehand. After classify-
ing subjects, the program compared detection results with true
outputs and calculated a detection rate and false positive and neg-
ative rates. Note that in this evaluation, true positives mean that
subjects are random and do not directly mean that they are related
to the Water Torture Attack.
5.1.2 Performance Evaluation

To verify that our method can be applied in practice, we con-
structed an experimental environment that emulated an actual
server system. The assumed situation was that the detection ma-
chine was trying to detect attack packets in the traffic from and
into the authoritative servers located in the same network.

In this evaluation, a detection machine and a traffic generator
were directly connected. The latter generated traffic made of at-
tack queries and responses to them. The number of queries was
the same to that of responses, but the bitrate of queries and that of
responses differed because of the difference of their packet sizes.

Table 4 shows the specifications of the detection machine, onto
which a program that implemented our method installed.

The traffic generator was able to transmit packets at up to
10 Gbps. It could rewrite the contents of sent packets on the file,
but not change the packet size.

5.2 Data Sets
5.2.1 Training Data

Both the detection rate and the performance evaluation used the
same training data (TD). A file of the training data was prepared
from the combination of:
• The captured data, which was extracted from packets cap-

tured at our university *2’s network, where there are many
authoritative servers; and

• Randomly generated data.
The outputs of the captured data were manually examined be-

forehand, and that of the generated data were all considered ran-
dom.

The captured data of the training data was obtained from

Table 4 Hardware and software specifications of the detection machine.

OS 64-bit Ubuntu 14.04.1
CPU 2 x Intel Xeon CPU E5520 (2.26 GHz, 4 cores)
Memory 16.0 GB
Capture Card Fiberblaze fbC2XGhh [11]

(dedicated NIC for capturing up to 10 Gbps)

*2 Toyohashi University of Technology.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

Table 5 Contents of the subjects in the data sets.

Data Set TD AS-1 AS-2 AS-3

Total of Responses 19,836 19,023 14,482 9,245
Total of Subjects 9,423 9,454 7,693 6,271

Captured Subjects (%) 50.12 50.29 50.60 50.57
Generated Subjects (%) 49.88 49.71 49.40 49.43

Non-Random Subjects (%) 44.79 41.55 44.22 47.14
Random Subjects (%) 55.21 58.45 55.78 52.86

Table 6 Forms of the queried domain names.

Form
Num. of Whole Packet Size (bytes)
Labels Length *5 Query Response

1 1 3 105 145
2 1 30 132 172
3 4 234 339 379

September 16, 2015 at 9:39:12 through September 17 at
9:39:12 *3.

We placed restrictions on the generated data according to the
Request for Comments (RFC) 1035 issued by the Internet Engi-
neering Task Force (IETF) [12]. Each generated data point con-
sisted of a 17-letter fixed block, and a random number greater
than 1 of labels as a variable block. The length of each label in
the variable block was greater than or equal to 1 and less than 64.
The total length of the variable blocks was greater than or equal
to 8 and less than 238. Note that the lower limit came from the
fact that random queries tend to be above a certain length, and the
higher limit comes from the RFC requirement that the maximum
length of domain names be 255, including the last dot. Num-
bers, lowercase letters, and uppercase letters appear in a variable
block. The generated data had the same proportion of one-label
and multiple-label variable blocks.

Table 5 shows the contents of the data sets. Note that the pro-
gram treated duplicated domain names in the same window as
one subject, and so the number of subjects became decreased as
the window length increased.
5.2.2 Analysis Subjects for Detection Rate Evaluation

Analysis subjects for the detection rate evaluation were also
provided as a file whose form is the same as the training data.

The captured data of the analysis subjects was obtained during
the following periods *4:
AS-1 September 17, 2015 at 9:39:12 - September 18 at 9:39:12
AS-2 September 18, 2015 at 9:39:12 - September 19 at 9:39:12
AS-3 September 19, 2015 at 9:39:12 - September 20 at 9:39:12
(Data used varied with the type of evaluation)

Table 5 shows the contents of the data sets for the analysis sub-
jects.
5.2.3 Analysis Subjects for Performance Evaluation

The performance evaluation was conducted, varying the
lengths and the number of labels of the queried domain names.
Table 6 shows the forms of the queried domain names. In this
evaluation, analysis subjects were packets transmitted from the
traffic generator, which packets were composed of queries imi-
tating those sent by an attacker and supposed responses for them
in the same proportion. The variable blocks of the queried do-
main names varied by query, but they had fixed lengths due to the

*3 The dates are based on Japan Standard Time (JST), which is
UTC+09:00.

Table 7 Patterns tested in the parameter investigation.

Param. *6 Pattern Intervals Detection Rate (%)

2 A 1–9, 10– 96.24
B 1–5, 6–9, 10– 96.30
C 1–3, 4–6, 7–9, 10– 96.34
D 1, 2, 3, 4, 5, 6, 7, 8, 9, 10– 96.42

3 A 1, 2–7, 8– 96.31
B 1, 2–4, 5–7, 8– 96.24
C 1, 2–3, 4–5, 6–7, 8– 96.42
D 1, 2, 3, 4, 5, 6, 7, 8– 96.34

Param. Pattern Window Width Detection Rate (%)

4 A 10 minutes 94.57
B 1 hour 94.89
C 3 hours 94.89
D 6 hours 94.57

limitations of the generator.
The queries had only one question of an A record that asked

a random domain, and the responses were an authoritative an-
swer of the NXDOMAIN for the queries. Neither queries nor
responses were fragmented, and so one packet was composed of
either one query or one response.

We sent the generator-transmitted traffic to the detection ma-
chine for 10 minutes and confirmed whether all the packets were
analyzed. If the amount of traffic exceeded the capacity of the
program, the internal buffer would store waiting subjects, until
no more space was available.

5.3 Parameter Investigation
Before conducting the evaluation described above, we inves-

tigated the parameters that could achieve the best detection rate.
The parameters that we investigated were Parameters 2, 3, and
4. Parameters other than an investigation target were fixed as
showed in Table 3.

The best settings for Parameters 2 and 3 were investigated us-
ing AS-1, 2, and 3 as input subjects. We found the optimum
intervals by the following two steps:
(1) Determine the size of the remaining, right-most division; and
(2) Determine the sizes of intermediate divisions.
5.3.1 Intervals of the Variable Block Length

Conducting experiments, we found that the remaining division
should denote subjects whose lengths are 10 or greater. Next, we
varied the sizes of the intermediate divisions. Table 7 shows the
patterns tested and the results of detection rates, which indicates
the best detection rate was achieved with Pattern D.
5.3.2 Intervals of the Number of Labels

We found that the remaining division should denote subjects
with 8 or more labels. The results of the experiments that we
varied the sizes of the intermediate divisions are also given in Ta-
ble 7. The best detection rate was achieved with Pattern C.
5.3.3 Window Width

To improve the latency of detection, a window width should
be as short as possible without significantly impairing the detec-
tion rate. Note that latency refers to the time between when a
suspicious subject arrives and when it is detected, and it can be
approximately the same as the window width.

In our experiments, we used only AS-1 for input subjects. The

*5 excluding dot delimiters.
*6 The numbers correspond to Table 3.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

Table 8 Differences of detection rates when varying employed feature val-
ues.

Combination of Detection False False
Feature Values Rate (%) Positives (%) Negatives (%)

1, 2, 3, 4 94.57 1.14 4.28

1, 2, 3 94.20 3.14 2.66
1, 2, 4 92.28 1.49 6.22
1, 3, 4 92.64 4.35 3.01
2, 3, 4 95.21 1.22 3.57

1, 2 89.20 8.02 2.78
1, 3 91.86 5.01 3.12
1, 4 91.71 1.50 6.79
2, 3 95.20 2.71 2.09
2, 4 90.36 1.00 8.64
3, 4 93.70 4.47 1.82

1 84.16 14.44 1.40
2 65.26 33.36 1.38
3 83.86 14.57 1.57
4 90.21 0.94 8.85

window width was adjusted to be 10 minutes, 1 hour, 3 hours,
and 6 hours. Then, the detection rates for each window width
were compared.

Table 7 shows the results. The detection rates did not vary sig-
nificantly with varying window width; the difference between the
best case and the worst case was only 0.32%.

Since a domain name asked by an attack query varies for each
query, it occurs once regardless of window width. Thus, window
width would only affect the number of occurrences of innocent
queries. However, the experiments showed no significant differ-
ence, indicating that the shortest window used (10 minutes) was
wide enough to detect an attack. Prioritizing quick detection over
a possible small improvement in detection rate, we chose to use
the 10-minute window.

5.4 Effectiveness of Each Feature Value
We conducted experiments to verify the effectiveness of each

feature value. In the experiments, we varied a combination of
employed feature values and compared detection rates. We used
AS-1 as a data set and the parameters of each feature value are
set to the best confirmed in Section 5.3. The results are showed
in Table 8. We obtained higher detection rates when employing
these combinations:
(1) Combination of 1, 2, 3, and 4;
(2) Combination of 1, 2, and 3;
(3) Combination of 2, 3, and 4;
(4) Combination of 2 and 3.

In the combinations listed above, the combination of 1, 2, 3,
and 4 achieved the least false positive rates. We think that the
less the false positives are, the better it is as long as detection
rates are almost the same. Therefore, we employ the combination
of 1, 2, 3, and 4.

The reason why we focus on less false positives is that many
legitimate users are misjudged as attackers if a false positive rate
is high. If attack queries are blocked simply based on our method,
this type of misjudgment makes many innocent users denied. The
more the false positives are, the greater this bad effect becomes.

Fig. 5 Detection rates for each data set.

Table 9 Confusion matrix with AS-3.

Predicted
Random Non-Random

A
ct

ua
l Random

3,132 250
(33.88%) (2.70%)

Non-Random
81 5,782

(0.88%) (62.54%)

Accuracy 96.42%
Error Rate 3.58%

Table 10 Results of the performance evaluation.

Pattern
Responses Queries Responses Total Packet Loss

(pps *7) (Gbps) (Gbps) (Gbps) Occurred

1 1,100,000 1.10 1.45 2.55 No
1,150,000 1.15 1.52 2.67 No
1,200,000 1.20 1.58 2.78 Yes

2 900,000 1.09 1.38 2.47 No
950,000 1.16 1.46 2.62 No

1,000,000 1.22 1.54 2.76 Yes

3 400,000 1.15 1.28 2.43 No
450,000 1.29 1.44 2.73 No
450,000 1.44 1.60 3.04 Yes

6. Results

6.1 Detection Rate
Here, we evaluated the difference in the detection rates between

the different data sets. In the experiments, we used AS-1, 2, and
3 as input subjects. Figure 5 compares the detection rates. The
chart indicates that our method has an average detection rate of
95.59% with a worst case of 94.57% for AS-1, and it achieves the
stable detection rates regardless of the data sets.

Table 9 details the accuracy and the error rate of our method
with AS-3. The number of false negatives was approximately
three times that of false positives. We saw a similar tendency in
the other data sets.

Note that true positives mean that queried domain names are
just random in this experiments. In Section 7.1, we discuss how
to determine whether positive subjects are really related to the
Water Torture Attack.

6.2 Performance
Table 10 shows the results of the performance evaluation. Our

method can process at least 450,000 responses per second and
analyze over at least 2.3 Gbps of traffic without missing any of
them.

*7 packets per second.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

7. Discussion

7.1 Use in Real Situations
The ability of our system is to detect whether queried do-

main names are random, and so, our system itself cannot deter-
mine whether they are really related to the Water Torture Attack,
because random queries also emerge in C&C communications.
However, the difference between them can be noticed by observ-
ing the amount of queries since the former is a type of DDoS
attack and the latter is not so. Thus, it is easy to determine which
type of attacks is occurring.

In addition, our system currently has the delay between arrival
of attack queries and detection of them but the existence of the
delay is not a critical issue to defend an attack. Even if the detec-
tion delays 10 minutes, our system is still effective for attacks that
are supposed to continue for 10 or more minutes. Essentially, an
ephemeral attack does not cause substantial damage to authorita-
tive servers, and thus, our system focuses on long-lasting attacks.

7.2 Detection Rate
According to Table 9, the number of the false negatives is

greater than that of the false positives. This tendency is desir-
able for automated systems that block attacks in real time unless
the error rate becomes too high. If denying too many legitimate
users, authoritative servers cannot offer sufficient services.

However, the lower the error rate, the better. Focusing on
causes of the false negatives, we found that subjects that tended to
be judged as non-random had variable blocks with the following
features:
(1) They included bigrams recorded as high-probability items on

Reference Table 0, the reference table for non-randomness
probability;

(2) Their lengths were short; and
(3) The same appeared more than once in the same window.

In other words, variable blocks of innocent subjects had these
features.

We first presumed that multiple attack queries with the same
variable block rarely appear so that we took the number of occur-
rence of the same variable block as a feature value. That made
random subjects that emerge multiple times tend to be judged
as non-random, which caused false negatives. Actually, such at-
tack queries can arrive via different open resolvers, and so we
should consider treatment of subjects whose number of occur-
rence is more than one hereafter.

Currently, P(X4|Y), a score derived from bigrams, is calculated
by simply adding the probability of each bigram. Because of
using addition, a subject tends to be judged as non-random if
its variable block includes even one bigram that frequently ap-
pears in the training data. The reason why we employ addition
instead of multiplication is that both the randomness and the non-
randomness probabilities could be zero percent if a variable block
includes bigrams that did not appear in the training data. How-
ever, considering that simple addition caused false negatives in
that situation, the current calculation of the score would not be
adequate. Thus, we should consider other ways of calculation as
future work.

Finally, we should consider not only the feature values that we
currently employed but also employing others to diminish errors.

7.3 Performance
The results indicate that our method is applicable to high-load

systems, which could cover almost all situation. However, con-
sidering using our method for super-large-scale servers such as
provided by large ISPs, we still do not satisfy the current per-
formance. It has been reported that when an attack occurs, an
authoritative server receives 800,000 queries per second [13]. If
the lengths of queried domain names are short, our method can
analyze all queries and detect an attack. However, if the lengths
are excessively long, our method could miss some queries.

Basically, the throughput decreases as the lengths of queried
domain names become longer because the program scans almost
all of the whole response to seek a variable block due to the struc-
ture of DNS packets. However, we have room for improvement
regarding the performance. We previously confirmed that the
hardware of the detection machine itself had enough capacity to
10 Gbps of traffic. A major cause of the decrease in the through-
put is the extraction of variable blocks from responses. The calcu-
lations of the randomness and the non-randomness probabilities
are simple, floating-point arithmetic operations, and so the ex-
traction of variable blocks occupied a large portion in the whole
process. If authoritative servers that our method monitors manage
only one zone, our method could run faster by arbitrarily deter-
mining a fixed block and omitting to refer to the authority section.

In addition, our program is currently single-threaded. How-
ever, the Reference Tables becomes constant after the pre-training
step, and so we could analyze subjects in parallel to improve the
throughput.

8. Conclusion

We presented a detection method for a type of Distributed De-
nial of Service attack on the Domain Name System, known as the
Water Torture Attack. Attack queries have the distinctive feature
of asking non-existent domain names with random-string subdo-
mains. To detect the attack, our method picks out such queries
using the Naive Bayes Classifier. The evaluation results indicate
that our method is capable of detecting the attack with a 95.59%
detection rate. Moreover, our method is fast enough to use dur-
ing an attack alert system, even for large-scale servers. In fu-
ture work, we plan to reconsider feature values to improve the
detection rate and also consider further improvement of the per-
formance for super-large-scale systems.

References

[1] Secure64: Water Torture: A Slow Drip DNS DDoS Attack, Secure64
Software Corporation (online), available from 〈https://blog.secure64.
com/?p=377〉 (accessed 2015-11-30).

[2] Okayasu, S. and Sasaki, R.: Evaluation of Method for Detecting C&C
Server of Botnet Using the Latest Data (in Japanese), Proc. 2014 Com-
puter Security Symposium, Vol.2014, No.2, pp.175–182 (2014).

[3] Karasaridis, A., Meier, H.K. and Hoeflin, D.: NIS04-2: Detection of
DNS Anomalies using Flow Data Analysis, Global Telecommunica-
tions Conference, GLOBECOM ’06, pp.1–6, IEEE (2006).

[4] Joe, M.: Random dns queries with random sources, The Tri Tech
Group (online), available from 〈http://www.gossamer-threads.com/
lists/nanog/users/169123〉 (accessed 2015-11-30).

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

[5] Nishida, K.: Water Torture: A Slow Drip DNS DDoS Attack on QT-
Net, Kyushu Telecommunication Network Co., Inc. (online), avail-
able from 〈http://www.slideshare.net/apnic/dnswatertortureonqtnet-
1425130417-1425507043〉 (accessed 2015-11-30).

[6] Kazato, Y., Fukuda, K. and Sugawara, T.: Towards Classification of
DNS Erroneous Queries, Proc. 9th Asian Internet Engineering Con-
ference, pp.25–32 (2013).

[7] Yadav, S., Reddy, K.K.A., Reddy, A.L.N. and Ranjan, S.: Detect-
ing Algorithmically Generated Malicious Domain Names, Proc. 10th
ACM SIGCOMM Conference on Internet Measurement, pp.48–61
(2010).

[8] Schiavoni, S., Maggi, F., Cavallaro, L. and Zanero, S.: Phoenix: DGA-
Based Botnet Tracking and Intelligence, Proc. Conference on Detec-
tion of Intrusions and Malware & Vulnerability Assessment (DIMVA
2014), pp.192–211 (2014).

[9] Amor, B.N., Benferhat, S. and Elouedi, Z.: Naive Bayes vs Decision
Trees in Intrusion Detection Systems, Proc. 2004 ACM Symposium on
Applied Computing, pp.420–424 (2004).

[10] Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Nimeh, A.,
Lee, W. and Dagon, D.: From Throw-Away Traffic to Bots: De-
tecting the Rise of DGA-Based Malware, Presented as part of the
21st USENIX Security Symposium (USENIX Security 12), pp.491–506
(2012).

[11] Fiberblaze: fb2XGhh@V7 series, Fiberblaze A/S (online), avail-
able from 〈http://www.fiberblaze.com/product-details/fb2xg-dual-sfp-
port-card-supporting-2x1ge10ge-half-height-pcie-gen-3-x8-lanes/〉
(accessed 2015-11-30).

[12] Mockapetris, P.: DOMAIN NAMES - IMPLEMENTATION AND
SPECIFICATION, The Internet Engineering Task Force (online),
available from 〈http://www.ietf.org/rfc/rfc1035.txt〉 (accessed 2015-
11-30).

[13] Weber, R.: Random Subdomain Attacks Plaguing the Internet,
Nominum, Inc. (online), available from 〈https://indico.uknof.org.uk/
materialDisplay.py?contribId=15&materialId=slides&confId=31〉
(accessed 2015-11-30).

Yuya Takeuchi received his B.E. degree
in Computer Science and Engineering
from Toyohashi University of Technology
in 2014. He is currently a master’s-degree
student at the same university. His re-
search interests include network security.

Takuro Yoshida received his B.E. degree
in Computer Science and Engineering
from Toyohashi University of Technology
in 2015. He is currently a master’s-degree
student at the same university. His re-
search interests include network security.

Ryotaro Kobayashi received his B.E.,
M.E., and D.E. degrees from Nagoya
University in 1995, 1997, and 2001, re-
spectively. He had been a research as-
sistant in Nagoya University from 2000
to 2008. He is currently a lecturer at
Toyohashi University of Technology. His
research interests include computer archi-

tecture, parallel processing, and network security.

Masahiko Kato received his B.E. and
M.E. degrees in Engineering from
Toyohashi University of Technology and
D.E. degrees in Systems and Information
Engineering from University of Tsukuba
respectively. He is now working for
Internet Initiative Japan Inc. He is
currently interested in network security.

Hiroyuki Kishimoto received his B.E.,
M.E. degrees from Hosei University in
1988, 1990, respectively. He is now work-
ing for ComWorth Co.,Ltd since 1991. He
is currently interested in high speed net-
work DPI and lossless packet capturing
method under 40 G/100 G environment.

c© 2016 Information Processing Society of Japan

