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Abstract: In traditional public key encryption schemes, data encrypted by a public key pk can be decrypted only by a
secret key sk corresponding to pk, and the relation between pk and sk is static. Therefore, the schemes are unsuitable
for control of access to a single data by several users. Meanwhile, functional encryption (FE) is an encryption scheme
that provides more sophisticated and flexible relations between pk and sk. Thus, FE enables only one pk to encrypt
the data with any conditions for decryption, so it is considered a very useful tool for the access control of data on the
cloud server. However, implementing the current FE scheme is a non-trivial task because the deep knowledge of the
scheme is required. This is an obstacle factor to deploy the FE scheme in the real-world security systems. In this paper,
we propose an implementation of the FE (Ciphertext-Policy FE and Key-Policy FE, which are useful classes of FE)
library usable even for people who do not have the deep knowledge of these schemes.
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1. Introduction

In recent years, cloud computing has become common for en-
terprise systems. For example, suppose that a company uses a
cloud server and does access control on the server. When we want
only a specific person (e.g., a person who belongs to the person-
nel department or an administrative manager) to access data, we
usually have to let the server control access so that only the per-
son can access the data. However, if we use a cloud server and
store data on it without considering security of the data, it may
be insecure. If the server controls access permissions of the data
on it, an attacker may get all the data on the server by break-
ing into the server. In traditional public key encryption schemes,
the relation between public key pk and secret key sk is static, so
the schemes cannot encrypt data properly in the aforementioned
scenario. Therefore, if more than one user with different access
permissions respectively access the cloud server, we need to use
several public keys to encrypt with different policies for decryp-
tion. Therefore, we may need to have a lot of public keys, and
this situation is sometimes inconvenient.

Meanwhile, functional encryption (FE) [15], [16] is an encryp-
tion scheme that provides more sophisticated and flexible rela-
tions between pk and sk. Using an FE scheme, we can encrypt
the data with an access policy like (“the personnel department”
OR (“the general affairs department” AND “manager”)), and as
a result, even if an attacker succeeds in attacking the server, he
or she cannot get any information of the encrypted data on the
server. An FE scheme enables only one pk to encrypt the data
with any policy for decryption. Therefore, we can easily manage
access permissions on the server by using FE. In addition, be-
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cause the server does not have control on access permissions, it
is possible to store data on the server securely, even if the server
cannot be trusted. Hence, an FE scheme is considered a very use-
ful tool for access control of data, but the implementation of an
FE scheme is a non-trivial task because the special knowledge of
the scheme is required. This is considered an obstacle factor to
deploy the FE scheme in the real-world security systems.

1.1 Our Result
This paper *1 proposes an implementation of the CP-FE and

KP-FE (useful classes of FE scheme based on Refs. [15], [16])
library usable even for people who do not have the deep knowl-
edge of the FE scheme based on pairing-based cryptography *2.
Using our system, we can easily manage data securely on the
cloud server even if the server is untrusted. Furthermore, a user
can encrypt data by specifying an access policy (a logical formula
expressing a condition for decryption, which consists of attributes
and logic gates), and only the user with proper attributes can de-
crypt the data.

1.2 Related Works
Sahai and Waters [17] introduced attribute-based encryption

(ABE) for access control on encrypted data, and some functional
encryption schemes have been introduced after that. Thus, there
is some trend toward the realization of ABE such as Refs. [3], [8],
and also the standardization of pairing-based cryptography [10].
Okamoto and Takashima [15], [16] introduced functional encryp-
tion in 2010, which can support non-monotone access structures

*1 A preliminary conference version of this paper was presented at [9]. This
paper is the extended version of Ref. [9].

*2 The field of pairing-based cryptography is about cryptosystems using
pairing, and has been growing rapidly since Refs. [5], [18] were pro-
posed. The definition of paring is in Appendix A.1.
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and is adaptively secure in the standard model. Therefore, by
virtue of its rich properties, the Okamoto-Takashima functional
encryption can be a building block in other cryptographic proto-
cols. So, it can be used in much more cases in the real life com-
pared with other schemes and the implementation and standard-
ization of the Okamoto-Takashima scheme are expected. How-
ever, the existing functional encryption libraries Refs. [1], [2], [7],
[12], [21] are not based on Refs. [15], [16], and the construction
of Refs. [15], [16] is so complex an algorithm that there is no li-
brary implementing the scheme of Refs. [15], [16] until now as
far as we know. Implementing FE schemes usually requires pair-
ing operations on elliptic curves such as Refs. [7], [14], [20] and
our implementation uses Ref. [20].

2. Functional Encryption

In this section, we explain functional encryption (FE). In tra-
ditional public key encryption schemes, the ciphertext encrypted
by a public key pk is decrypted only by a single secret key sk cor-
responding to the pk, and the relation is unchanged. Meanwhile,
FE provides more sophisticated and flexible relations between the
keys where a secret key, skΨ, is associated with a parameter, Ψ,
and message m is encrypted to a ciphertext ctΥ := Enc(m, pk,
Υ) using system public key pk along with another parameter Υ.
Ciphertext ctΥ can be decrypted by secret skΨ if and only if a re-
lation R(Ψ,Υ) = True holds. Then, Ψ is a parameter relevant to
secret key (decryption key) sk.

In our library, two types of FE schemes based on Refs. [15],
[16] are available *3. One is called Ciphertext-Policy Functional
Encryption (CP-FE) scheme, and the other is Key-Policy Func-
tional Encryption scheme. Although these two schemes seem to
be similar, these schemes are supposed to be used in different sit-
uations respectively.

2.1 Ciphertext-Policy Functional Encryption (CP-FE)
In the CP-FE scheme which is implemented in this library, the

parameter Υ expresses an access structure described by attributes
and threshold gates, and the parameter Ψ expresses a set of at-
tributes of the secret key holder. An attribute that expresses infor-
mation of user is expressed by a category (e.g., “Gender”, “Po-
sition”) and value that is relevant to the category (e.g., “male”,
“manager”) in the scheme. For example, “Gender =male” is used
as one attribute,Υ is a predicate like (“Gender =male” AND “Po-
sition = manager”), and Ψ is a set like (“Gender = male”, “Po-
sition = manager”). We note that AND gates can be constructed
as n-out-of-n threshold gates and OR gates as 1-out-of-n thresh-
old gates, and the predicate of t-out-of-n threshold is expressed
as (p1, p2, ..., pn, t) (p represents an attribute, and n ≥ t) in this
paper. For example, (“Gender = male” AND “Position = man-
ager”) is expressed as (“Gender = male”, “Position = manager”,
2).

In the scheme, the relation R(Ψ,Υ) = True holds and the en-
crypted data can be decrypted if and only if the set of attributes Ψ
satisfies the access structure Υ (Fig. 1).

Thus, only one public parameter pk can specify the access pol-

*3 These schemes are based on Appendix G.1 and G.2 of Refs. [15], [16].

icy and receiver that can decrypt, so it is considered useful for
more complex access control.

The CP-FE scheme is defined as follows.
Setup(1λ, �n := (d; n1, ..., nd)) -

On input 1λ(λ :security parameter), the max number of cate-
gories for attributes d, format �n := (d; n1, ..., nd) of attributes
(ni:dimension of vector of value �xi. For all i, ni = 2 in the
case of our library.), output public parameter pk and master
secret key sk.

KeyGen(pk, sk,Ψ := {(t, �xt := (xt,1, ..., xt,nt )∈Fnt
q \{�0})

⏐⏐⏐⏐1≤ t≤d}) -
On input pk, sk and a set of attributes Ψ := {(t, �xt :=
(xt,1, ..., xt,nt ) ∈ Fnt

q \{�0})
⏐⏐⏐⏐1 ≤ t ≤ d}, output decryption key

skΨ, which corresponds to Ψ.
Enc(pk,Υ := (M, ρ),m) -

On input pk, an access structure Υ which is used for de-
cryption step, and plaintext m, output a ciphertext ctΥ. The
formal definition about an access structure is given in Ap-
pendix A.2, and how to convert an access policy (which is
given as a logical formula by the user of our FE library) to
an access structure is given in Appendix A.2.1.

Dec(pk, skΨ, ctΥ) -
On input pk, skΨ and ctΥ, output m if relation R(Ψ,Υ) =
True holds.

2.2 Key-Policy Functional Encryption (KP-FE)
In KP-FE scheme, on the other hand, the parameter Υ ex-

presses a set of attributes, and the parameter Ψ expresses an ac-
cess structure for a secret key holder. Namely, Υ used in KP-FE
scheme is equal to Ψ used in CP-FE scheme, and Ψ used in KP-
FE scheme also is equal to Υ used in CP-FE scheme. For exam-
ple, Υ is a set like (“Gender = male”, “Position =manager”), and
Ψ is a predicate like (“Gender = male” AND “Position = man-
ager”).

In the scheme, the encrypted data can be decrypted if and only
if the set of attributes Υ satisfies the access structure Ψ.

The situation in which the KP-FE scheme is used is different
from that of the CP-FE scheme. For example, KP-FE scheme
is supposed to be used for a management of streaming service
(Fig. 2).

The KP-FE scheme is defined as follows.

Fig. 1 Example of CP-FE.

Fig. 2 Example of KP-FE.
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Setup(1λ, �n := (d; n1, ..., nd)) -
On input 1λ(λ :security parameter), the max number of cate-
gories for attributes d, format �n := (d; n1, ..., nd) of attributes
(ni:dimension of vector of value �xi. For all i, ni = 2 in the
case of our library.), output public parameter pk and master
secret key sk.

KeyGen(pk, sk,Ψ := (M, ρ)) -
On input pk, sk and an access structure Ψ := (M, ρ), output
decryption key skΨ, which corresponds to Ψ.

Enc(pk,Υ := {(t, �xt := (xt,1, ..., xt,nt ) ∈ Fnt
q \{�0})

⏐⏐⏐⏐1 ≤ t ≤ d},m) -
On input pk, a set of attribute Υ which is used for decryption
step, and plaintext m, output a ciphertext ctΥ.

Dec(pk, skΨ, ctΥ) -
On input pk, skΨ and ctΥ, output m if relation R(Ψ,Υ) =
True holds.

3. Implementation

3.1 Application
In this section, we explain how to use our library. Our im-

plementation uses the TEPLA library [20] for pairing operations,
and is an asymmetric version of dual pairing vector spaces con-
structed using asymmetric bilinear pairing groups. We consider
the application like the example below.
3.1.1 Preparation (Setup)

This library needs to distribute an attribute list describing a set
of attributes, public parameter (pk) used in Encryption step, and
decryption key (skΨ) in which information of attributes of a user
Ψ is embedded. An administrator that manages access to files
on the system executes Setup and then generates pk and sk. In
Setup step, the administrator inputs the max number of categories
for attributes d as argument (Fig. 3). The administrator has only
to execute Setup once, even when using both FE schemes. The
generated pk and sk mainly include the information for encrypt-
ing a file and generating a decryption key respectively. The file
containing pk currently needs to be placed in a directory where
the operation Enc is executed, and the file including sk needs to
be placed in a directory where the operation KeyGen is executed.

Before generating a decryption key (skΨ, which is used to de-
crypt an encrypted file), the administrator needs to create a file
describing an attribute list corresponding to Ψ. The attributes in
the list are defined as tuples of category and value. The current
supported file format is csv. In the example below (Fig. 4), At-
tributeList.csv defines three categories “Gender”, “Department”,
and “Position”. These categories have several values respectively.
Once a list file is created, any category can be added later at any
time unless the number of categories described in the list exceeds
d. The value of a category can also be added to the list file later
unless the number of values exceeds the limit determined by the
public parameter. When the list file is updated, the administrator
needs to re-distribute the file to users (but the administrator does

Fig. 3 setup command.

not need to re-issue pk).
3.1.2 Key Generation

To generate skΨ, the administrator inputs pk, sk, attribute list,
and the information of attributes of a user Ψ. In the CP-FE
scheme the parameter Ψ is a set of attributes, and in the KP-FE
scheme, the parameter Ψ is an access policy (Fig. 5). The ad-
ministrator executes KeyGen (Fig. 6), and the generated skΨ is
distributed to each user securely (Fig. 7). These figures are for
the case of CP-FE scheme.
3.1.3 Encryption

When a user encrypts a file, the user inputs pk, attribute list,
and the information of attributes. In the CP-FE scheme, the in-

Fig. 4 attributelist.csv.

Fig. 5 Example of Ψ.

Fig. 6 keygen command.

Fig. 7 keygen.
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Fig. 8 enc command.

Fig. 9 decrypt.

formation of attributes for a ciphertext is an access policy. The
access policy used in our library is a logical formula using cat-
egories and values described in the attribute list. In the access
policy, we can use not only AND or OR gates but also t-out-of-
n threshold gates and NOT gates to specify a more sophisticated
and flexible access policy (Fig. 8). In the access policy used in
the KP-FE scheme (the parameter Ψ of decryption key skΨ), we
can also use these gates. The user executes Enc and generates a
ciphertext file that has the access policy specified by the user.

In the KP-FE scheme, the information of attributes for a cipher-
text is a set of attributes (equal to the parameter Υ of ciphertext
ctΥ in CP-FE scheme).

The generated ciphertext file is divided into two parts. One is
the encrypted data and the other is the data describing the access
policy (CP-FE scheme) or the set of attributes (KP-FE scheme).
For efficient encryption, the plaintext file is encrypted by AES *4,
and the random temporary key of AES is encrypted by the CP-FE
scheme or the KP-FE scheme. Only if the access policy for the
ciphertext or decryption key is satisfied, the random temporary
key of AES is obtained and the ciphertext can be decrypted.
3.1.4 Decryption

When a user decrypts an encrypted file, the user inputs pk and
skΨ. In the CP-FE scheme, the user executes Dec and can decrypt
the encrypted file only if skΨ including the user’s set of attributes
Ψ satisfies the access policy for the encrypted file (Fig. 9). In the
KP-FE scheme, in a similar way, the user executes Dec and can
decrypt the encrypted file only if the set of attributes Ψ for the
file satisfies the access policy for the decryption key skΨ. Our
library verifies whether the user can decrypt the encrypted file or
not. If and only if Ψ satisfies Υ, the key of AES is obtained and
the ciphertext file encrypted by AES can be decrypted.

*4 Advanced Encryption Standard (AES) [6] is a symmetric key encryp-
tion scheme adopted by National Institute of Standards and Technol-
ogy (NIST), and is used widely as a standard symmetric key encryption
scheme.

Table 1 Environment of Performance Measurement.

CPU Intel Core i7 CPU @2.9 GHz
RAM 8 GB 1600 MHz DDR3
OS Mac OS X 10.9.5

Compiler gcc version 4.8.2
Language C

External library GMP 6.1.0
OpenSSL 1.0.1g

TEPLA 1.0.0

Fig. 10 time for Enc regarding the file size.

Fig. 11 time for Dec regarding the file size.

3.2 Performance Measurements
We now provide the result on the performance of our library.

The measurements were taken on the environment shown in Ta-
ble 1. Our implementation uses OpenSSL for AES and a hash
function (SHA-1 *5), and the random number generation in our
implementation uses the function of GMP (GNU Multiple Pre-
cision Arithmetic Library) *6. TEPLA is used for pairing op-
erations, and the calculation on pairing is using Optimal Ate
Pairing over Barreto-Naehrig (BN) curves at the 128-bit security
level [4]. Although the performance measurements were taken
on the Mac OS environment, our library supports also Windows
OS and Linux OS. The library still has room for improvement of
algorithms, so the measurements here are only a rough estimate.
Figures 10 and 11 display measurements of time for Enc and Dec
regarding the file size respectively, and the access policy used in
Enc consists of one attribute. The plaintext data used in this mea-
surements is a text file, and the access policy consists of 1AND-
gate. Figures 12 and 13 display measurements of time for Enc
and Dec regarding the number of attributes of an access policy
respectively, and the file size of plaintext is 10 MB. As expected,

*5 Secure Hash Algorithm 1 (SHA-1) is a hash function adopted by NIST.
*6 https://gmplib.org/
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Fig. 12 time for Enc regarding the number of attributes of access policy.

Fig. 13 time for Dec regarding the number of attributes of access policy.

the time for Enc and Dec is linear in the number of attributes as-
sociated with the access policy. Furthermore, as the result on the
performance (Fig. 13) shows, the time for Dec is actually linear in
the minimum number of attributes that are required to satisfy the
access policy. For example, in comparison between the runtimes
for Dec of two access policies (“A” AND “B” AND “C”) and (“A”
OR “B” OR “C”), the former access policy needs more time com-
pared with the latter access policy because the number of pairing
operations needed for decryption with the former access policy is
larger than that of the latter access policy. However, the file itself
is encrypted by AES, so the time for Enc or Dec will be mainly
affected by AES as the file size becomes large.

4. Future Work

There are some functions or another FE scheme that we are
going to implement to make the library more convenient to use.

4.1 Numerical Attributes and its Expression
When a category has numerical values like age, an access pol-

icy including the category may need not only “=” or “�” but also
“<” or “>”. Though using only “=” or “�” can also express “<”
or “>”, it can be inconvenient. For example, when a category “A”
has “1” to “30” as numerical values, access policy (“A ≤ 15”)
needs to be expressed as (“A = 1” or “A = 2” or ... or “A = 15”),
and as the range for the values becomes larger, it is more awk-
ward to express the access policy only by using equality (without
inequality).

To avoid this inconvenience, we allow users to use inequali-

*7 The administrator can choose one of these two according to application
scenarios.

Fig. 14 Representation of numerical attribute.

ties “<” and “>” in the descriptions of access policies as syn-
tactic sugar. Here we assume that the numerical attributes are
represented in one of two representations, i.e., non-binary repre-
sentation (the aforementioned example) or binary representation
(Fig. 14) *7. As the aforementioned example, the former repre-
sentation is sometimes inconvenient when the size of description
of access policy is large. The latter representation, on the other
hand, can make the description of the access policy decrease to
about the bit size of the value as mentioned in Ref. [3]. There-
fore, to improve the usability, we are going to implement this
functionality (syntactic sugar) such that our library converts the
inequalities “<” and “>” in the description of an access policy
into the appropriate description automatically (Fig. 14).

4.2 Inner-Product Encryption
The ABE schemes like CP-FE and KP-FE possess the security

property called payload hiding, which guarantees that a ciphertext
associated with attribute I hides all information about the under-
lying message unless one holds a secret key giving the explicit
ability to decrypt. However, these schemes may not be able to
guarantee that a ciphertext hides all information about the associ-
ated attribute I. The inner-product encryption (IPE) scheme, on
the other hand, guarantees that property, which is called attribute
hiding. Attribute hiding security is the stronger notion of security
than that of payload hiding security [11]. Therefore, by using the
IPE scheme, a user can encrypt a data with all information about
the associated attribute of the ciphertext secret.

The IPE scheme takes as an inputΨ := �v ∈ Fn
q and Υ := �x ∈ Fn

q,
and, the encrypted data can be decrypted if and only if the inner
product �x ·�v = 0. We are going to add the IPE functionality based
on our implementation of CP/KE-FE.

5. Conclusion

In this paper, we proposed the implementation of the library
of ciphertext-policy functional encryption and key-policy func-
tional encryption based on the scheme of Refs. [15], [16]. As a
future work, we will release the library as open source software
for building security systems. Furthermore, we are planning to
implement the additional functionality and the IPE scheme which
are mentioned in Section 4.
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Appendix

A.1 Pairing

Pairing is a 2-input 1-output function which is defined over
elliptic curves. Pairing has the following properties and func-
tional encryption schemes can be realized efficiently by using
these properties.

Definition A.1.1 (Pairing) Let G and GT be a cyclic additive

group and multiplicative group of prime order q. Also let g be a

generator of G. Then, a mapping e : G × G → GT is called

pairing when the following properties are satisfied.

( 1 ) Bilinearity: For all a, b ∈ Zq, e(ga, gb) = e(gb, ga) =
e(g, g)ab.

( 2 ) Nondegeneracy: e(g, g) � 1.
( 3 ) Computablity: Computable in polynomial-time.

There exist several pairing software libraries to realize pair-
ing operations efficiently (Refs. [7], [14], [20]), and there also ex-
ist several software libraries (Refs. [1], [2], [7], [12], [21]) using
these pairing libraries.

A.2 Access Policy and Access Structure

In our CP-FE library, an access policy, i.e., a condition for de-
cryption is given by a user as a logical formula. To deal with
the access policy in an encryption scheme and realize access con-
trol, it is usually converted into an access structure, and as a re-
sult, we can combine an encryption scheme with a secret-sharing
scheme *8.

An access structure used in a secret-sharing scheme can be rep-
resented in several ways. In the scheme of Refs. [15], [16], an
access structure is represented via a matrix called span program.
Therefore, by converting an access policy into an access structure
via a span program, we can realize access control such that only
a user that has a proper set of attributes can decrypt a ciphertext.

A span program M̂ := (M, ρ), an access structure represented
by a span program S := (M, ρ) (which is defined by adapting a
span program to the scheme of Refs. [15], [16]), and a secret-
sharing scheme based on a span program are defined as fol-
lows [15], [16].
( 1 ) Span program

A span program M̂ := (M, ρ) is a labeled matrix where
M is an � × r matrix, and ρ is a labeling of the rows of
M by literals from {p1, p2, ..., pn, ¬p1, ..., ¬pn}, i.e., ρ :
{1, ..., �} → {p1, ..., pn,¬p1, ...,¬pn}. For every input se-
quence δ ∈ {0, 1}n, we define the submatrix Mδ of M con-
sisting of those rows labels set to 1 by the input δ, i.e., either
rows labeled by some pi such that δi = 1 or rows labeled
by some ¬pi such that δi = 0 (i.e., γ : {1, ..., �} → {0, 1}
is defined by γ( j) = 1 if [ρ( j) = pi] ∧ [δi = 1] or [ρ( j) =
¬pi] ∧ [δi = 0], and γ( j) = 0 otherwise. Mδ := (Mj)γ( j)=1,
where Mj is the j-th row of M.). The span program M̂ ac-
cepts δ if and only if ε := �1 ∈ span〈(Mj)γ( j)=1〉, i.e., some
linear combination of the rows of Mδ gives ε, where ε is
called target vector.

( 2 ) Access structure (span program used in the scheme of
Refs. [15], [16])
An access structure for the scheme of Refs. [15], [16] is a
span program S := (M, ρ) along with variables p := (t,�v),
where t ∈ {1, ..., d} and �v ∈ Fnt

q , i.e., S := (M, ρ) such that
ρ : {1, ..., �} → {(t1, �v1), (t2, �v2), ...,¬(t1, �v1),¬(t2, �v2)...} (the
variables p mean attributes in this scheme). Let Γ be a set of
attributes, i.e., Γ := {(t, �xt)

⏐⏐⏐⏐�xt ∈ Fnt
q \{�0}, 1 ≤ t ≤ d}. When

Γ is given to access structure S, map γ(i) : {1, ..., �} → {0, 1}
is defined as follows. For i = 1, ..., �, set γ(i) = 1 if
[ρ(i) = (t, �vi)] ∧ [(t, �xt) ∈ Γ] ∧ [�vi · �xt = 0] or [ρ(i) =
¬(t, �vt)] ∧ [(t, �xt) ∈ Γ] ∧ [�vi · �xt � 0], and set γ(i) = 0 other-

*8 A secret-sharing scheme [19] is a method for distributing a secret to n
members of a group. The secret can be reconstructed only when any
shares of t(≤ n) or more members are combined together, and the shares
of fewer than t members cannot reconstruct the secret.
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wise. The access structure S := (M, ρ) accepts Γ if and only
if ε ∈ span〈(Mi)γ(i)=1〉.

( 3 ) Secret-sharing scheme based on span program

Let a column vector �f T := ( f1, ..., fr)T U← F
r
q. Then,

s0 := �1 · �f T =
∑r

k=1 fk is the secret to be shared, and
�sT := (s1, ..., s�)T := M · �f T is the vector of � shares of the
secret s0 and the share si belongs to ρ(i).
If a span program M̂ := (M, ρ) accepts δ, or an access struc-
ture S := (M, ρ) accepts Γ, i.e., ε = �1 ∈ span〈(Mi)(γ(i)=1)〉
with γ : {1, ..., �} → {0, 1}, then there exist constants {αi ∈
Fq} such that I ⊆ {i ∈ {1, ..., �}⏐⏐⏐⏐γ(i) = 1} and

∑
i∈I αi si = s0.

Furthermore, these constants {αi} can be computed in time
polynomial in the size of matrix M.

For example, when an access policy Υ is specified as ((A, B,
2), (C, D, 1), 2), which means ((A and B) and (C or D)), in the
CP-FE scheme, a span program matrix M of the access structure
S corresponding to the access policy is generated as

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 1
1 2 3 1
1 3 1 1
1 3 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, ρ(1) maps the first row of M to attribute “A”, and simi-
larly ρ(i) (2 ≤ i ≤ 4) maps the i-th row of M to each attribute “B”,
“C”, “D” respectively. When a user has a set of attributesΨ = {A,
B, D}, Mi(γ(i)=1) is

Mi(γ(i)=1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 1
1 2 3 1
1 3 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and, the shares that the user possesses (s1, s2, s4) are

s1 = f1 + 2 f2 + 2 f3 + f4

s2 = f1 + 2 f2 + 3 f3 + f4

s4 = f1 + 3 f2 + f3 + f4

then, ε = �1 ∈ span〈(Mi)(γ(i)=1)〉. Therefore, there exist {αi ∈ Fq}
such that I ⊆ {i ∈ {1, ..., �}⏐⏐⏐⏐γ(i) = 1} (α1 = 4, α2 = −2, α4 = −1),
and the secret s0 can be computed because

α1 · s1 + α2 · s2 + α4 · s4

= f1 + f2 + f3 + f4

= s0

and the user can decrypt the encrypted data.

A.2.1 Converting Access Policy to Matrix
The algorithm to convert an access policy to a span program

matrix needs to be designed carefully because the size of the ma-
trix generated from an access policy including t-out-of-n thresh-
old gates may become large if it is done in a naive way. Therefore,
there is a need to perform the conversion efficiently. The conver-
sion algorithm used in the library is composed by combining the
following two basic operations [13].
( 1 ) Constructing Access Structure from General t-out-of-n

Threshold Gate

Fig. A·1 Inserting access structure.

An access structure of t-out-of-n threshold gate can be satis-
fied by only possessing arbitrary more than t shares from n

shares. This access structure M is defined as follows.

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 2 22 · · · 2t−1

...
...
...
. . .

...

1 n n2 · · · nt−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

( 2 ) Inserting Access Structure
When converting an access structure S like Fig. A·1, it is
constructed by inserting S(2) to the row of B1 in S(1). The
matrix S(1), S(2) is constructed by Section A.2.1 ( 1 ).
The case where m2 × d2 matrix M(2) is inserted into m1 × d1

matrix M(1) is considered. M(1), M(2) can be expressed as

M(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M̄(11)

v

M̄(12)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,M(2) =

(
u(2) M̃(2)

)

respectively, such that v is the row into which M(2) is in-
serted, and u(2) = (u1, u2, ..., um2 )T (ui is the first column of
M(2)

i ). The resultant matrix M is expressed as

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M̄(11) 0
v ⊗ u(2) M̃(2)

M̄(12) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where,

v ⊗ u(2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1v

u2v
...

um2v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In Refs. [15], [16], the target vector ε of the matrix is
(1, 1, 1, ..., 1) = �1, though the target vector of the matrix gen-
erated by this conversion algorithm is (1, 0, 0, ..., 0). Therefore,
there is a need to add the first column to the other columns of the
generated matrix in the last step to make the target vector �1. For
example, access policy L = ((A, B, 1), (C,D, E, 2), 2) is converted
to the matrix M as follows by using this algorithm.

M =
(
1
)
, L =

(
(A, B, 1), (C,D, E, 2), 2

)

M =

⎛⎜⎜⎜⎜⎝
1 1
1 2

⎞⎟⎟⎟⎟⎠ , L =

⎛⎜⎜⎜⎜⎝
(A, B, 1)

(C,D, E, 2)

⎞⎟⎟⎟⎟⎠

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 1
1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A

B

(C,D, E, 2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
1 1 0
1 2 1
1 2 2
1 2 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A

B

C

D

E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1
1 2 1
1 3 2
1 3 3
1 3 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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