
Electronic Preprint for Journal of Information Processing Vol.24 No.5

Regular Paper

Let High-level Graph Queries Be Parallel Efficient:
An Approach Over Structural Recursion On Pregel

Chong Li1,2,a) Le-Duc Tung3,4,b) XiaodongMeng5,c) Zhenjiang Hu1,3,d)

Received: January 28, 2016, Accepted: May 16, 2016

Abstract: Graphs play an important role today in managing big data. Supporting declarative graph queries is one
of the most crucial parts for efficiently manipulating graph databases. Structural recursion has been studied for graph
querying and graph transformations. However, most of the previous studies about graph structural recursion do not
exploit in practical the power of parallel computing. The bulk semantics, which is used for parallel evaluation of
structural recursion, still impose many constraints that limit the performance of querying in parallel. In this paper,
we propose a framework that systematically generates structural recursive functions from high-level declarative graph
queries, then the generated functions are evaluated efficiently on our framework on top of the Pregel model. Therefore,
the complexity in developing efficient structural recursive functions is relaxed by our solution.
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1. Introduction

Data become more and more complex today. Social networks
such as Facebook, Twitter, and LinkedIn now have billions of ac-
tive users [12], and new connections among users are increasing
day by day. A world-wide-web network might contain billions of
websites and trillions of links among them, where each of those
websites does not conform to any standard structure. No mat-
ter how complex the data are, they may be naturally represented
as data graphs in which data are stored on edges and nodes are
object identities to glue those edges [1], [3].

Many distributed graph processing models and platforms were
proposed in the recent years. Pregel [11] is one of the models in-
spired by the Bulk-Synchronous Parallel (BSP) model [15] whose
computation consists of a sequence of supersteps. It follows the
vertex-centric approach where a common function is applied to
each vertex. GraphX [16] is built on the Spark cluster comput-
ing system *1 for graphs and graph-parallel computation. It sup-
ports Pregel API. PowerGraph [5] is another distributed platform
that uses another model named GAS. This model describes a
step of computation in three phases: gather, receiving informa-
tion about adjacent vertices; apply, taking computation from the
gather phase and executing on the vertex whose neighbours we
gathered; and scatter, updating data on adjacent edges. However,
none of the existing distributed graph processing platforms pro-
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vides a systematic approach to guide developer design efficient
parallel algorithms. One still needs to study and develop algo-
rithms case by case.

High-level query languages are essential for manipulating
graph databases where the optimization of the processing eval-
uation could be done systematically by the platform. Cypher *2 is
a declarative graph query language for the graph database Neo4j
that enables ad-hoc and programmatic (SQL-like) access to the
graph. However, it does not scale up for very large graph datasets
since its graphs are not distributed.

Recursion is widely used by functional programming language
for traversing dataset, since it provides great flexibility for fur-
ther optimizations. Peter Buneman et al. [4] proposed a solution,
base graph structural recursion, using select-where queries with
regular path patterns to query graphs. Their framework “is ade-
quate for small input graphs with at most 1000 nodes and 10 000
edges”. Structural recursion on data graphs was also studied for
graph transformation [8]. Sequential evaluation of graph struc-
tural recursion has also been improved [7]. Yet, none of the pre-
vious studies practically focused on efficiently supporting large-
scale graphs on a distributed environment.

Recently, we have proposed a solution [14] based on the Pregel
model [11] for evaluating structural recursion on large graphs.
However, structural recursive functions were still written by hand,
and an expert designer of structural recursion for guarantee the
efficiency of hand-written structural recursive functions is though
essential. Supporting a high-level declarative language like SQL,
that efficient structural recursion functions can be systematically
generated from, is highly desired.

In this paper, we extend our solution to a framework that takes

*1 Apache Spark: http://spark.apache.org/
*2 Cypher Query Language: http://neo4j.com/docs/stable/

cypher-query-lang.html
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high-level graph queries as input in order to relax the complex-
ity of designing structural recursive functions. The gap between
large graph processing platform and high-level declarative query-
ing language is thus filled by our solution. Figure 1 shows the
overview of our framework. A high-level graph query written
by an end-user is transformed systematically into our internal al-
gebra with a set of structural recursive functions, then a Pregel
program will be generated by using our parametrized Pregel al-
gorithms to guarantee the efficiency of the querying evaluation.

Contributions in this paper are as follows.
• We identified monadic queries, a useful subclass of UnQL

queries that can be translated into parallel-efficient structural
recursive functions.

• We proposed an approach, using pattern trees to describe the
relationship between graph variables of queries, to translat-
ing all monadic queries into structural recursive functions in
a systematic way.

• We used real big datasets to validate our graph querying
framework. Both correctness and scalability were experi-
mented, and the experimental results show that our solution
may outperform an existing industrial solution for complex
queries.

The rest of this paper is organized as follows. Section 2 re-
views our data model and the graph structural recursion. Sec-
tion 3 shows how structural recursion can be evaluated efficiently
in parallel. Section 4 presents how to derive parallel-efficient
structural recursive functions from high-level declarative graph
queries. Section 5 validates our solution using real data, and Sec-
tion 6 concludes the paper.

Fig. 1 Overview of our framework.

Fig. 2 A rooted, directed and edge-labeled graph of paper citation network.

2. Data Model and Structural Recursion

2.1 Graph Data Model
Following Ref. [4], a graph is modeled as a directed and edge-

labeled graph extended with markers and ε-edges. In this model,
edges contain data, while vertices are unique identity objects
without labels. Markers (with a prefix &) are symbols to des-
ignate certain vertices as input vertices or output vertices, and
ε-edges are edges labeled with a special symbol ε. One could
consider markers as initial/final states and ε-edges as “empty”
transitions in automata.

LetL be a set of labels,Lε beL ∪ ε,M be a set of markers de-
noted by &x, &y, &z, . . . There is a distinguished marker & ∈ M
called a default marker. A graph G is a quadruple (V,E,I,O),
where V is a set of vertices, E ⊆ V × Lε × V is a set of edges,
I ⊆ M×V is an one-to-one mapping from a set of input markers
to V , and O ⊆ V ×M is a many-to-many mapping from V to a set
of output markers.

For &x,&y ∈ M, let v = I(&x) be the unique vertex such that
(&x, v) ∈ I, we call v an input vertex. If there exists a (v,&y) ∈ O,
we call v an output vertex. Note that there are no edges coming
to input vertices or leaving from output vertices. Input vertices
are also called roots of a graph. Graphs with output vertices and
ε-edges are only used for internal data structures for graph con-
structors.

Figure 2 shows an example of a rooted, directed labeled graph
representing a citation network to store papers and their citation
relationships, where the black-box vertex denotes the root of the
graph. For brevity, we ignore showing vertex ids.

2.2 Structural Recursion
Recursion is widely used by functional programming language

for traversing dataset, since it provides great flexibility for fur-
ther optimizations. However, different from list and tree struc-
tures, graph structure is much more general and complex, it can
include cyclic structure. A recursion without restriction might
loop infinitely on such structure. That’s why we use a restricted
form of recursion – structural recursion – to deal with the general
structure. The restrictions of structural recursion are to ensure the
termination of recursion.

A function f on graphs is called a structural recursion if it is
defined by the following equations
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Fig. 3 Syntax of our DSL.

f ({}) = {}
f ({$l : $g}) = e@ f ($g)
f ($g1 ∪ $g2) = f ($g1) ∪ f ($g2),

where {} represents a root-only graph, {$l : $g} represents a graph
with an edge labeled by $l from root to subgraph $g, $g1 ∪ $g2

represents a graph by union of two graphs $g1 and $g2 horizon-
tally, $g1@$g2 represents a graph by composing two graphs $g1

and $g2 vertically by connecting the output nodes of $g1 with
the corresponding input nodes of $g2 *3 and the expression e may
contain references to variables $l and $g (but no recursive calls to
f ).

Since the first and the third equations are common in all
structural recursions, we can describe a structural recursion in a
lambda form simply defining the second equation:

f ($db) = rec(λ($l, $g).e)($db)

where e could be either graph variable (denoted by $g), condi-
tional expression (if l = l then e else e where l is either actual
label or label variable $l), graph constructor or structural recur-
sion expression.

Example. Replacing all Paper-edge of the citation network by
Publication-edge:

rec( λ($l, $g). if $l = Paper
then {Publication : &}
else {$l : &} )

3. Parallel Evaluation over Pregel

3.1 Bulk Semantics
Structural recursion can be evaluated not only recursively in a

sequential way according to its definition, but also in a distributed
way to benefit the computation power of parallel machine for pro-
cessing big graph with a good performance. Reference [4] intro-
duced in theory how a structural recursion could be evaluated in
parallel. In a query, the matching patterns on edge-label defined
in body e of structural recursion rec(λ($l, $g).e) are always de-
terministic and countable. Therefore, we can apply the body e

independently (in parallel) on every pair of ($l, $g) on an input
graph. Once all the edges were evaluated with body e, we can
then reconnect the intermediate results using ∪ (horizontally) and

*3 Intuitively, input nodes are root nodes of the graph, while an output node
can be seen as a “context-hole” of graphs where an input node with the
same marker will be plugged later, and markers are used as an interface
to connect nodes to other graphs. The default marker & is used to indi-
cate the root.

@ (vertically). At the end, we clean the result graph by remov-
ing subgraphs that root cannot reach. This parallel evaluation is
called bulk semantics.

3.2 Internal Algebra: Structural Recursive Functions
We have proposed an internal algebra for describing structural

recursive functions [14]. Figure 3 shows the syntax of our lan-
guage. A program starts with a header that specifies a composi-
tion of functions followed by a sequence of function declarations.
Declarations are defined in the way of pattern matching and its
body is an expression. For a function f , its argument is in the
form of {l : $g} that is one of graph constructors presenting a
graph constructed by appending the edge labeled l to the root of
the graph $g. Note that, l can be a real label a or a label variable
$l. Declarations of f are based on pattern matching for {l : $g}.
Only one f ({$l : $g}) is allowed and must be located after all
other declarations of f ({a : $g}). The declaration f ({$l : $g}) will
apply for graphs that do not match previous patterns.

The body of a declaration is an expression including nine
graph constructors, graph variables, function applications and
if then else conditions. We require a strict form for function ap-
plications in which only one graph variable is allowed as its argu-
ment, which avoids computations that may lead to infinite loop.
Due to the limitation of space, we ignore the details of graph con-
structors. Readers may refer to [4] for more information.

The semantics of our language is as follows. Given a set
of structural recursive functions (defined by declarations), and
a rooted edge-labeled graph, the program returns a new rooted
edge-labeled graph by applying a transformation defined by the
composition of structural recursive functions. Function com-
position is denoted by “ ◦ ”, and, from its definition, we have
( f2 ◦ f1) x = f2 ( f1 x). A declaration f ({l : $g}) means, for each
edge labeled l and its following subgraph $g in the input graph,
we do some computations on l and then apply the structural recur-
sive functions f on $g. Results returned by applying a function f

on adjacent edges are automatically combined by the constructor
∪ as follows: f (G1 ∪G2) = f (G1) ∪ f (G2).

3.3 Parallel Evaluation over Pregel
Pregel is a model to process big graphs in a distributed

way [11]. It is widely used by Google and Facebook to ana-
lyze big graphs. It was inspired by the Bulk-Synchronous Paral-

lel (BSP) model [15] whose computation consists of a sequence
of supersteps. It follows the vertex-centric approach where a
common function is applied to each vertex. A vertex can ac-
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cess its outgoing edges locally. During a superstep, a vertex re-
ceives messages from other vertices, does it computations (updat-
ing its value, mutating outgoing edges, etc.), and sends messages
to other vertices. One vertex can decide not involving to the next
superstep by voting to hold (inactive). A computation terminates
when there is no message in transit or every vertex becomes inac-
tive. Machines used to do vertex computations are called workers.
A master is responsible for coordinating the activities of workers.
A Pregel phase is a sequence of supersteps to do a computation
unit, e.g., reversing a graph.

The key idea to parallelize the internal algebra is to transform
the evaluation of the internal algebra to an efficient algorithm in
Pregel. Here, efficient algorithms refer to the ones satisfying the
constraints for Practical Pregel Algorithms in [18]. A Pregel al-
gorithm might consist of one or many supersteps. Sometimes we
call it a Pregel phase.

An efficient solution for specifications without if then else
conditions are proposed in [14], in which each of such those spec-
ifications is evaluated by three Pregel phases as follows.

eelim ◦ bulk′F (eπ) ◦ mark{&fs}(e→)

where mark is a multi-step Pregel phase whose vertex computa-
tion is defined by e→. bulk is an one-step Pregel phase that applies
the function eπ on each edge. eelim is a multi-step Pregel phase
to eliminate ε-edges producing during the bulk computation. Ba-
sically, eelim computes the transitive closure of ε-edges. fs is the
function between keywords main and where, it denotes the start-
ing point or the main function of the specification. In the case
we have a composition of functions between main and where,
say f1 ◦ f2 · · · ◦ fk, fs is f1 in general. & fs denotes a marker built
from the function fs. F is a set of functions in the sequences of
function calls starting from fs. The function e→ defines a transi-
tion table in which inputs include a function marker and an edge
label, output is a set of function markers that will be called in the

body of the input function. The function eπ accepts a function
marker and an edge label, and call the appropriate pattern match-
ing in the specification, corresponding to the function name and
the edge label.

To evaluate specifications containing if then else statements,
the difficulty in evaluating such specifications is relating to the
computation for each edge. Recall that each declaration f ({l :
$g}) describes a computation for an edge labelled l. Once there
exists a if then else, the function f certainly depends on the
graph $g, which is difficult to be implemented in Pregel where
each vertex only knows its outgoing edges instead of the whole
following graph $g. Our idea is evaluating all branches if, then,
else at the same time by a specification without if then else,
then using an iterative Pregel algorithm to check conditions
in branches if, and finally using another specification without
if then else to extract final results from branches then and else.

4. Derivation of Structural Recursive Func-
tions from High-level Monadic Queries

4.1 Monadic Graph Queries
In this paper, we focus on a subclass of UnQL queries [4]. This

subclass is so-called monadic queries, because we only treat one

graph in a time. This subclass does not contain Cartesian product,
GroupBy or Join, but it can simulate a large fragment of XPath 1.0
and XSLT 1.0 [9], as well as model transformations for software
development [8]. For example, our monadic queries can deal with
acyclic and cyclic graphs; graph transformations with new graph
nodes are also supported. Syntax and notation of our monadic
graph query language are borrowed from UnQL+ *4—an exten-
sion of UnQL to support graph editing primitives.

A query Q($g) on a graph $g is defined as follows.

Q($g) ::= select C($g1) where P($g), P($g1), . . .

where

C($g) ::= $g | {} | {a : Q($g)}
| Q1($g) ∪ Q2($g)
| UDF($g)
| Q($g)

and

P($g) ::= {R : $g1} in $g

| isempty(C($g)) | !P($g)
| P($g) && P($g) | P($g) || P($g)

R ::= a | | R|R | R.R | R∗ | (R)

select clause is used to define how to construct result graph
using a graph variable defined in where clause. There are three
graph constructors used in a query. The constructor {} is to con-
struct an empty graph, { : } a singleton graph, and ∪ a union of
two graphs. Queries can be nested. Besides, one can define a
user-defined function (UDF) to manipulate or transform a graph.
These functions are defined in the form of structural recursive
functions (see Section 3.2).

where clause includes a list of predicates, which is either a
binding condition or a boolean condition. A boolean condition
can be either a isempty function that checks if a graph is empty
or not. A binding condition is used to match a graph with a given
pattern. A pattern is a graph composed of a regular path pat-
tern (RPP) and a subgraph pointed by this RPP. Patterns may be
bound to the same graph variable and it may also be nested. A
RPP is a sequence of labels or wild-cards ( ).

The binding conditions in where clause have two types: re-

trieve and examine (see Section 4.2.2). Retrieve-type conditions
have the same semantics as UnQL; yet examine-type conditions
do not produce as many intermediate results as the number of sat-
isfied points in the input graph, but just one if there is at least one
satisfied point or zero otherwise. This modification guarantees
the efficiency and the scalability of bulk evaluation; and a result
graph under our semantics is bisimilar to the result graph under
UnQL’s semantics.

4.2 Deriving Structural Recursive Functions
Deriving parallel-efficient structural recursive functions from

a declarative graph query consists three consecutive steps: 1)
desugaring the where clause of query, 2) generating dependency
pattern tree from the desugared query, and 3) translating the pat-
tern tree into parallel-efficient structural recursive functions.

*4 http://www.biglab.org/demodoc/unqlplus/
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Taking the following query as our running example in this sec-
tion. This query is used to retrieve Title of Papers in the citation
network with the condition that retrieved Papers must be pub-
lished in 2007, and the subgraph that pointed by the year of pub-
lication shall be an empty graph.

q4 = select {Title:$t}
where {Paper:$p} in $db,

{Title:$t} in $p,
{Year.Int.2007:$g} in $p,
isempty($g)

4.2.1 Desugaring Where Clause
The first step is to desugar the where clause in order to stan-

dardize the patterns in the where clause. It lets the desugared
where clause closer to the form of parallel-efficient structural re-
cursive function. A desugared where clause is a list of binding
conditions having only primitive patterns:

{RPP : $g1} in $g2

In order to format the where clause, a binding condition with
an union of patterns bound to the same graph shall be translated
into a list of binding conditions with a single pattern bound to
the same graph variable; a binding condition with nested patterns
shall be flattened into a list of binding conditions with non-nested
patterns; and a boolean condition shall either be plugged into
binding conditions that refer to the same variable, or be dropped
if its referred variable is not used by any binding condition.

At the end of this step, q4 is transformed to

q′4 = select {Title:$t}
where {Paper:$p} in $db,

{Year:$gv2} in $p,
{Int:$gv1} in $gv2,
{2007:{}} in $gv1,
{Title:$t} in $p

4.2.2 Building Pattern Tree
Let us use a tuple with three elements (rpp, pg, bg) to repre-

sent a binding condition {rpp : pg} in bg. The second step is to
transform the where clause from a list of such binding conditions
to a patterns tree. This step is the key to generate structural re-
cursive functions in our restricted form but not in a linear nested
form.

A pattern tree is organized as a rose tree with the type:

Ptree ::= (N(RPP, G), B(List(Ptree)))

Each node N(rpp, g) hosts a pattern in the form {rpp : g}, i.e., a
rpp and its pointing graph g. The branches B of a node is a list *5

of Ptree generated from the binding conditions that are bound to
the current pattern’s pointing graph. Algorithm 1 is used to trans-
form a list of binding conditions to a set of pattern trees. The
termination condition for the function list2tree is when the
Branches set B is empty. The syntax of functions filter and map

*5 The exact type should be Set, but here we use type List instead to sim-
plify the pattern matching of B. The order in the list is meaningless.

Algorithm 1: Transform where clause to pattern tree
Input: List of binding conditions, graph variable of root

Output: List of pattern tree

Function list2tree(bcList, root)
bcList.filter( . 3 = root)

.map( bc => (N(bc. 1, bc. 2),

B(list2tree(bcList, bc. 2))) )

Fig. 4 Pattern tree of q′4.

in our pseudo code are borrowed from Scala *6, and a. i means
the i-th element of tuple a. We currently allow only one pattern
binding to the root $db because of our framework. The result
generated by Algorithm 1 is therefore a one-element list, and the
pattern tree in this list is the final pattern tree that we need. Fig-
ure 4 shows the pattern tree of q′4 generated by Algorithm 1 with
root $db.

Here we add an extra information for each node: a node is ei-
ther a retrieve-node (rectangle in Fig. 4) or an examine-node (el-
lipse in Fig. 4). A retrieve-node is the nodes on the path from root
to the node in which its graph variable is requested by the select
clause, otherwise it is an examine-node that is used to verify a
condition but does not return a graph. This information is rep-
resented by a boolean for each node: true for retrieve-node and
false for examine-node. If a node’s pointing graph variable is the
exact graph variable requested by the select clause, then this node
is classified as retrieve-node, or if at least one of its branches in-
cludes a retrieve-node, then it is also classified as retrieve-node,
otherwise it is classified as examine-node.
4.2.3 Generating Structural Recursion

At this step we use Algorithm 2 to generate structural recursive
functions from a pattern tree and a graph constructor. The pat-
tern tree was created in the previous step according to the where
clause of a query; and the graph constructor is obtained directly
from the select clause of the same query.

A pattern tree will be, recursively from the leaf nodes to the
root node, translated into structural recursive functions. Each
node of pattern tree corresponds to a structural recursive func-
tion. The function funcgen, that takes a pattern and a tuple with
a graph constructor and an accumulator of structural recursive
functions, is used to 1) generate such structural recursive func-
tion from a node, and 2) combine this newly generated function
and other generated functions from the accumulator. The name of
this new structural recursive function is also created by funcgen
using letter f and an incrementing number. The match cases and
if conditions in codegen are used to determine the situation of
a node: if it has multi-branches, only one branch, or zero branch
(e.g. a leaf). Here for a node has multi-branches, we also need to

*6 http://www.scala-lang.org/
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Algorithm 2: Generate structural recursive functions
Input: Pattern tree, graph constructor from select clause

Output: A tuple of the name of entry function and a list (accumulator)

of structural recursive functions

Function codegen(ptree, sg)
1 match ptree
2 case (N(rpp, pg), B(List()))
3 if N(rpp, pg) is retrieve-node then
4 funcgen({rpp:pg}, (sg, List()))

5 else
6 if pg is {} then
7 funcgen({rpp:newVar},

( “if isempty(newVar)

then {OK:{}} else {}”, List()))
8 else
9 funcgen({rpp:pg}, ({OK:{}}, List()))

10 case (N(rpp, pg), B(bl::Nil))
11 if pg is requested graph in sg then
12 funcgen({rpp:pg},

concat(List(codegen(bl, sg)),

(sg, List())))
13 else
14 funcgen({rpp:pg}, codegen(bl, sg)))
15 case (N(rpp, pg), B(bl))
16 rfl := bl.filter(is retrieve-node)

.map(t => codegen(t,sg))

17 efl := bl.filter(is examine-node)

.map(t => codegen(t,sg))

18 if pg is requested graph in sg then
19 funcgen({rpp:pg}, concat(efl, (sg, List())))

20 else
21 if N(rpp, pg) is retrieve-node then
22 if efl.Length > 0 then
23 funcgen({rpp:pg},

concat(efl, rfl.head))
24 else
25 funcgen({rpp:pg}, rfl.head)
26 else
27 funcgen({rpp:pg},

concat(efl, “{OK:{}}”))

distinguish if it has only examine-nodes as children or it has both
examine-node and retrieve-node. That is because retrieve-nodes
shall return a graph and examine-nodes return only a boolean-
value graph that is used to indicate whether the graph shape is
satisfied (i.e. {OK:{}}) or not (i.e. {}).

For example, N(Title,$t) of Fig. 4 matches the conditions
in line 2 and line 3 of Algorithm 2. Therefore, we apply
funcgen({Title:$t}, ({Title:$t}, List())), which corresponds to
line 4, where the first {Title:$t} is the pattern from the node, and
the second {Title:$t} is the graph constructor from select clause.
As this node is a leaf in the pattern tree, the accumulator is set to
empty with List(). By applying this function, we obtain:

f1({Title : $t}) = {Title : $t}
f1({$l : $t}) = {}

where entry point is f1.
While N(2007,{}) satisfies conditions in line 2, line 5 and

line 6, we thus apply line 7 and obtain:

f2({2007 : $gv2}) = if isempty($gv2)
then{OK : {}} else {}

f2({$l : $gv2}) = {}
where entry point is f2.

N(Year.Int, $gv) satisfies conditions in line 10 and line 13, thus
line 14 is applied. The recursive call here is for N(2007, {}) and
produces f2. A special case is that this pattern is not with a sim-
ple edge label but a regular expression path. funcgen will first
transform this regular expression into an automaton, then gen-
erate structural recursive functions based on the automaton. By
accumulating the function f2 and the newly generated functions
f3 and f4 from the automaton, we obtain:

f2({2007 : $gv2}) = if isempty($gv2)
then {OK : {}} else {}

f2({$l : $gv2}) = {}
f3({Int : $gv}) = f2($gv)
f3({$l : $gv}) = {}
f4({Year : $gv3}) = f3($gv3)
f4({$l : $gv3}) = {}

where entry point is f3.
The recursion is now back to N(Paper, $p). Here the conditions

in line 15, line 20, line 21 and line 22, we thus apply line 23. The
function concat(efl, rf ) is used to generate codes that verifies if
all graphs created by the functions of list efl are not empty then
return rf otherwise an empty graph. Finally, we get:

eval f5 where
f1({Title : $t}) = {Title : $t}
f1({$l : $t}) = {}
f2({2007 : $gv2}) = if isempty($gv2)

then {OK : {}} else {}
f2({$l : $gv2}) = {}
f3({Int : $gv}) = f2($gv)
f3({$l : $gv}) = {}
f4({Year : $gv3}) = f3($gv3)
f4({$l : $gv3}) = {}
f5({Paper : $p}) = if isempty( f3($p))

then {} else f1($p)
f5({$l : $p}) = {}

4.3 Extending to Nested Queries
We allow that the graph constructor in select clause could be

a nested query, or even union of nested queries for more com-
plex problem. For example, a conjunctive regular path query for
retrieving Title and Author of Papers published in 2007 can be
written as follows:

q5 = select ( (select {Title:$t}
where {Title:$t} in $p)

∪ (select {Author:$a}
where {Author:$a} in $p) )

where {Paper:$p} in $db,
{Year.Int:{$y:$g}} in $p,
$y = 2007,
isempty($g)

For deriving the above nested query into parallel-efficient
structural recursive functions, we need first derive the most-inner
queries, then derive recursively outer-level queries using their
entry-point function calls as graph contractor.
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Query q5 is transformed by our compiler into

eval f6 where
f1({Title : $t}) = {Title : $t}
f1({$l : $t}) = {}
f2({Author : $a}) = {Author : $a)}
f2({$l : $a}) = {}
f3({2007 : $g}) = if (isempty($g))

then {OK : {}} else {}
f3({$l : $g}) = {}
f4({Int : $gv1}) = f3($gv1)
f4({$l : $gv1}) = {}
f5({Year : $gv2}) = f4($gv2)
f5({$l : $gv2}) = {}
f6({Paper : $p}) = if (isempty( f5($p)))

then {} else ( f1($p) ∪ f2($p))
f6({$l : $p}) = {}

where f1 was derived from the first inner query of q5, f2 was de-
rived from the second inner query, and f3 to f6 were from the
outer query.

Queries can also be nested as a graph bound by the first bind-
ing condition. For example, we can use the following query to
retrieve all publications that are referred by the papers published
in 2000 by Li.

q6 = select {Publication:$r}
where {Refer to.Paper:$r} in

( select $p

where {Paper:$p} in $db,
{Author.String.$a : $g1} in $p,
$a = Li ),

{Year.Int:{$y:$g2}} in $p,
$y = 2000

The inner query and the outer query are both derived into the
same set of structural recursion functions. The entry-point func-
tion of the inner query is composed with the one of the outer
query.

Query q6 is transformed into

eval f9 ◦ f4 where
f1({Li : $g}) = {OK : {}}
f1({$l : $g}) = {}
f2({S tring : $g}) = f1($g)
f2({$l : $g}) = {}
f3({Author : $g}) = f2($g)
f3({$l : $g}) = {}
f4({Paper : $g}) = if (isempty( f3($g)))

then {} else $g
f4({$l : $g}) = {}
f5({2000 : $g}) = {OK : {}}
f5({$l : $g}) = {}
f6({Int : $g}) = f5($g)
f6({$l : $g}) = {}
f7({Year : $g}) = f6($g)
f7({$l : $g}) = {}
f8({Paper : $g}) = if (isempty( f7($g)))

then {} else $g

f8({$l : $g}) = {}
f9({Re f er to : $g}) = f8($g)
f9({$l : $g}) = {}

where f1 to f4 were derived from the inner query of q6, f5 to f9
were derived from the outer query.

5. Experiments

We implemented our solution in Spark (version 1.4.0 released
on Jun 11, 2015) over GraphX [17]. We first used the Paper Cita-
tion Network dataset [13] to validate the correctness of our deriva-
tion. This dataset includes 1, 632, 442 papers and 2, 327, 450 ci-
tation relationships. The raw dataset was converted to a rooted,
directed and edge-labeled graph with 6, 866, 730 vertices and
9, 364, 118 edges. We used a share-money parallel machine for
the validation. The machine has two 4-core Intel Xeon E5620
2.40 GHz and 48 GB RAM.

We chose q5 of Section 4.3 for the validation, because it is both
a nested query and a conditional query. The generated structural
recursive functions are the same as the ones shown in Section 4.3
for q5, except the names of functions and of variables are differ-
ent, because those were generated by our compiler using a fixed
letter with an incremental number. The result graph has 334, 149
vertices and 354, 341 edges, and the content is exactly what we
queried. Table 1 shows execution time, speedup and efficiency
of evaluation of the generated structural recursive functions from
q5.

The second dataset we used in our experiments is Amazon
Product Co-purchasing Network *7. It includes metadata and
review information of about 548, 552 different products from
Amazon website. The raw dataset was converted to a rooted,
directed and edge-labeled graph with 90, 227, 076 vertices and
103, 573, 986 edges. The schema of the graph is shown in Fig. 5.

The experiments for Amazon Product Co-purchasing Network
were conducted on a cluster of 16 Amazon EC2 instances of the
type r3.2xlarge *8. Each instance has 8 processors (Intel Xeon
E5-2670 v2 Ivy Bridge configured at high frequency) with 61 GB
memory and using SSD as storage.

Two nested queries were prepared:

q7 = select {product:
(select {category:$c}
where {category.Category.name:$c} in $p )
∪
(select {title:$t} where {title:$t} in $p)

where {Product:$p} in $db

and

q8 = select {product:

( (select $a where {asin:$a} in $p)

Table 1 Experimental result on citation network dataset.

Number of Processors 1 2 4 6 8
Execution Time (sec) 1506 830 460 410 339
Speepup 1 1.8 3.3 3.7 4.5
Efficiency 1 0.9 0.83 0.62 0.56

*7 https://snap.stanford.edu/data/amazon-meta.html
*8 https://aws.amazon.com/ec2/instance-types/
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Fig. 5 The schema in KM3 format for the graph of Amazon Product Co-purchasing Network.

Table 2 Experimental result on Amazon Product Dataset.

# of proc 16 32 64
q7 144 62 50
q8 421 217 199
q′7 14 10 15
q′8 295 283 278

∪ (select $t where {title:$t} in $p)

∪ (select $sr where {salesrank:$sr} in $p)
∪ (select $c

where {category.Category.name:$c} in $p)
∪ (select $r

where {review.Review.customer:$r} in $p)

∪ (select $g where {group:$g} in $p)
∪ (select $s

where {similar.Product.similar.Product.asin:$s}
in $p) )}

where {Product:$p} in $db,
{group.Group.name:{$b:{}}} in $p,
$b = “Book”

where query q7 is a regular path query that returns the category
name and the title of every product. Query q8 is a conjunctive
regular path query that returns all information of products that
belong to group Book, in which we don’t return the field asin of
similar products of those products, but the field asin of similar
products of similar products of those products.

These queries were translated into parallel-efficient structural
recursive functions by our framework. The execution times (in
seconds) of querying are shown in Table 2. We vary the num-
ber of processors to evaluate the efficiency of structural recursive
functions generated by our compiler and executed on our frame-
work. It is clear that our generated structural recursive functions
have a very good efficiency when we double the number of pro-
cessors from 16 to 32. It gains a linear speedup. However, when
we increase the number of processors up to 64, we could not gain
linear speedup, but the execution time still decreases. This phe-
nomenon has also been observed in other Pregel-based frame-
works [6], [10]. The exact reasons of this limitation shall be stud-
ied in the future, but it is out of the scope of this paper. q8 was
almost 3 times slower than q7. This is because q8 is conjunctive
regular path query, and it is rewritten using three computations: 2
specifications without if then else statements and one iterative
Pregel algorithm.

It is not realistic to compare our flatten structural recur-

sive functions to naively-nested structural recursions, because
naively-nested ones cannot be evaluated in a distributed envi-
ronment. We therefore prepared two queries, named q′7 and q′8
in Spark SQL [2] using Left-Outer-Join, that query the same re-
sults as q7 and q8 respectively, in order to 1) validate the correct-
ness of our parallel-efficient queries generation, 2) compare the
performance of our solution to an industrial solution also under
Spark implementation. Our solution is slower than Spark SQL
for simple queries, e.g. q7, but faster than Spark SQL for com-
plex queries that contains many joins, e.g., q8. Looking at the
Table 2, we see that, for q7, Spark SQL is much faster than our
solution. This is because our framework needs to consider the
whole graph, while Spark SQL just refers to two tables to obtain
results. However, when we increased the number of joins, say q8

query, our solution can outperform Spark SQL.

6. Conclusion

We have identified monadic queries and proposed a solution to
systematically derive parallel-efficient structural recursive func-
tions from these high-level declarative queries. The term of
parallel-efficiency is based on the restricted form of structural re-
cursive function and the parallel evaluation over our Pregel-based
framework. We restricted the syntax of queries to guarantee the
efficiency of parallel evaluation. Yet practical queries can be eas-
ily designed by a non-expert, and the performance of queries can
always be insured. Using select-where queries over structural re-
cursion to process very large graphs in a distributed environment
was first studied in this paper. Experimental results show that
our solution may even outperform the-state-of-the-art industrial
solution when queries are complex with many joins.

In the future, we will extend supported queries to Cartesian

product, groupby queries and join queries. However, It is not
clear whether those queries can be translated to the restricted form
of structural recursive function, or it is necessary to extend the re-
stricted form of structural recursive function to support them. For
such queries, the syntax and the semantics of structural recursive
function need to be extended in order to be able to join graphs
based on two edge variable that are parameters of two different
structural recursive functions.
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