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概要：省電力化のためのＤＶＦＳを考慮した単一プロセッサ上での複数タスク実行は，ＤＶＦＳにおける
基本問題の一つと考えることができ，その特徴理解は種々の現実的ＤＶＦＳ問題を考える際の基礎となる

と考えられる．本稿では，制限された電圧レベル数の下でのＤＶＦＳにおける電圧レベル決定とタスクの

電圧レベルへの割り当ての同時最適化について考察する．Karush-Kuhn-Tucker 条件は非線形最適化問題

の解に対する必要条件であるが，これを当該問題に適用することで，最適解が持つ特徴を明らかにすると

共に，効率の良い求解アルゴリズムを導出する．

A Study on Multi-Level DVFS for Heterogeneous Task Set

Mineo Kaneko1,a)

Abstract: This paper discusses DVFS with a limited number of voltage levels (ML-DVFS), especially con-
current optimization of voltage levels and voltage assignment is investigated. Based on the KKT conditions

for the optimum solution of a nonlinear optimization problem, several properties of the optimum solution

of ML-DVFS problem are revealed. Proposed solution algorithm consists of the enumeration of partitioning
of a task set and two-level bisection search on a voltage level and an auxiliary parameter which is one of

Lagrangian multipliers in KKT conditions.

1. Introduction

Power consumption is one of the major concerns for

wide range of computing systems from high performance

VLSI chip to highly parallel computer system. For CMOS

LSIs, there is well known power-performance trade-off,

and the efforts to find out a best power supply volt-

age for minimizing consuming power (energy) under a

given performance constraint have been made extensively.

Voltage-Frequency Scaling (VFS) [1]-[5] would be one of

the most popular techniques for this purpose. The con-

cept of VFS is simple enough to be applied to wide range

of LSI/computer systems, which implies that there are

many variants in terms of target system model, target

task model, constraints, objectives, etc.
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In this paper, we will discuss a very basic issue of VFS,

that is, how supply voltage levels are determined in the

VFS environment. We will focus mainly on DVFS for

multiple heterogeneous tasks to be processed on a sin-

gle processors with a single overall deadline. When each

task can take its own voltage level, the solution of DVFS

is computed with linear time complexity with respect to

the number of tasks.[6]. However, the number of available

supply voltage levels is limited in major practical systems.

This paper discusses DVFS with a limited number of

voltage levels, but the aim of this paper is not only to pro-

vide the optimum solution of voltage schedule in DVFS,

but also to afford valuable insights into DVFS. Our discus-

sion is mainly based on Karush-Kuhn-Tucker conditions

(KKT conditions), and shows how KKT conditions char-

acterize the optimum solution of our DVFS problem.
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2. Problem Formulation

2.1 Basic notations

Let Vi and mi be the supply voltage and the number of

cycles, respectively, of a task ti, i ∈ {1, 2, · · · , n}.

Operating (clock) frequency of a task ti is given as;

f(Vi)

with a function f(voltage) which is common for all tasks.

Dynamic energy consumption of a task ti is given with

a dynamic energy per cycle e
(D)
i (Vi) as follows.

e
(D)
i (Vi) ·mi

Static energy consumption of a task ti is given as;

P (S)(Vi)×
mi

f(Vi)

with a static power function P (S)(voltage) which is com-

mon for all tasks.

Our objective is;

Etotal(V ) =
n
∑

i=1

(

e
(D)
i (Vi) +

P (S)(Vi)

f(Vi)

)

·mi → min

subject to Ttotal(V ) =

n
∑

i=1

mi

f(Vi)
≤ Tmax

where Tmax is a deadline specified as a part of the input

description to the problem.

Task ID numbering is assumed to follow the decreasing

order of the dynamic energy consumption under the same

supply voltage. That is,

e
(D)
1 (V ) > e

(D)
2 (V ) > · · · > e(D)

n (V )

2.2 Multi-level DVFS

Now we consider that each task can take one of L sup-

ply voltages, V1,V2, · · · ,VL, where L < n. With out loss

of generality, we assume;

V1 < V2 < · · · < VL

Note that V1,V2, · · · ,VL are unknown variables to be de-

termined in our problem formulation.

In our formulation, initially, we assume that each task

is splittable into several subtasks (without execution-cycle

overhead) so that each subtask can be driven by a differ-

ent supply voltage with other subtasks. We will introduce

a variable xiℓ for a task ti, which denotes the ratio of ex-

ecution cycles in subtasks driven by Vℓ or a lower voltage

than Vℓ over all execution cycles of ti. The following is

trivial from the definition.

0 = xi0 ≤ xi1 ≤ xi2 ≤ · · · ≤ xi(L−1) ≤ xiL = 1

In the following, x denotes the vector of variables xiℓ,

i ∈ {1, · · · , n}, ℓ ∈ {1, · · · , L − 1}, and V denotes the

vector of variables Vℓ, ℓ ∈ {1, · · · , L}.

The overall energy consumption and the overall execu-

tion time for the given set of tasks are given as follows.

Etotal(x,V)

=

n
∑

i=1

L
∑

ℓ=1

(

e
(D)
i (Vℓ) +

P (S)(Vℓ)

f(Vℓ)

)

·mi ·
(

xiℓ − xi(ℓ−1)

)

Ttotal(x,V)

=

n
∑

i=1

L
∑

ℓ=1

mi

f(Vℓ)
·
(

xiℓ − xi(ℓ−1)

)

.

Hence our multi-level DVFS problem (ML-DVFS) is

formulated as follows.

Problem ML-DVFS:

Minimize Etotal(x,V),

subject to Ttotal(x,V)− Tmax ≤ 0

xi(ℓ−1) − xiℓ ≤ 0, i ∈ {1, · · · , n},

ℓ ∈ {1, · · · , L}

where xi0 = 0 and xiL = 1.

3. KKT Conditions and Discussions

In KKT conditions for a non-linear optimization prob-

lem, each constraint is associated with one Lagrangian

multiplier. According to our problem formulation, the

following Lagrangian multipliers are reserved.

Ttotal(x,V)− Tmax ≤ 0 : λ ≥ 0

xi(ℓ−1) − xiℓ ≤ 0 : µiℓ ≥ 0

At first, a general form (a vector form) of KKT conditions

is shown below.

∇x(Etotal(x,V))

+λ · ∇x(Ttotal(x,V)− Tmax)

+
n
∑

i=1

L
∑

ℓ=1

µiℓ · ∇x(xi(ℓ−1) − xiℓ) = 0 (1)

∇V(Etotal(x,V))

+λ · ∇V (Ttotal(x,V)− Tmax) = 0 (2)

(Ttotal(x,V)− Tmax) · λ = 0 (3)
(

xi(ℓ−1) − xiℓ

)

· µiℓ = 0, 1 ≤ i ≤ n,

1 ≤ ℓ ≤ L (4)

where ∇x(g) denotes the gradient vector of g with respect

to the variable vector x, and ∇V(g) does with respect to

V.
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3.1 ∇x-relevant conditions

If we focus on ∂/∂xkp in ∇x, each scalar condition in

(1) is given as;

∂Etotal

∂xkp

+ λ ·
∂(Ttotal − Tmax)

∂xkp

+

n
∑

i=1

L
∑

ℓ=1

µiℓ ·
∂(xi(ℓ−1) − xiℓ)

∂xkp

= 0

which can be embodied as follows.
(

e
(D)
k (Vp) +

P (S)(Vp)

f(Vp)

)

·mk

−

(

e
(D)
k (Vp+1) +

P (S)(Vp+1)

f(Vp+1)

)

·mk

+λ ·

(

mk

f(Vp)
−

mk

f(Vp+1)

)

− µkp + µk(p+1) = 0

Since we are assuming Vp < Vp+1, and the clock frequency

function f(V ) is assumed to be a monotonically increasing

function of V , we have

1

f(Vp)
−

1

f(Vp+1)
> 0, p ∈ {1, · · · , L− 1}.

Hence we can divide the above KKT condition by

(mk/f(Vp)−mk/f(Vp+1)), and have the following.

(

e
(D)
k (Vp) +

P (S)(Vp)
f(Vp)

)

−
(

e
(D)
k (Vp+1) +

P (S)(Vp+1)
f(Vp+1)

)

(

1
f(Vp)

− 1
f(Vp+1)

)

+λ−
µkp − µk(p+1)

(

mk

f(Vp)
− mk

f(Vp+1)

) = 0

Introducing a function EOTk as;

EOTk(Vp,Vp+1)

△
=

(

e
(D)
k (Vp+1) +

P (S)(Vp+1)
f(Vp+1)

)

−
(

e
(D)
k (Vp) +

P (S)(Vp)
f(Vp)

)

(

1
f(Vp)

− 1
f(Vp+1)

) ,

the first KKT condition (1) can be written finally as fol-

lows.

EOTk(Vp,Vp+1) +

(

µkp − µk(p+1)
mk

f(Vp)
− mk

f(Vp+1)

)

= λ,

k ∈ {1, · · · , n}, p ∈ {1, · · · , L− 1} (5)

We will introduce several assumptions about EOT func-

tions.

Assumption1 When the inequalities

EOTk(V1,V2) < EOTk(V2,V3) < · · · < EOTk(VL−1,VL)

hold, EOT function is said to be monotonic.

Assumption2 From the task ID numbering rule,

e
(D)
k (V ) > e

(D)
k+1(V ). Under this task ID numbering rule,

we assume

EOTk(Vp,Vp+1) > EOTk+1(Vp,Vp+1)

for all 1 ≤ k ≤ n− 1 and 1 ≤ p ≤ L− 1.

Lemma1 Let (x,V) be an optimum solution of ML-

DVFS, and let λ and µ be Lagrangian multipliers which

satisfies KKT conditions.

(1) If EOTk(Vp,Vp+1) < λ for some p, then µkp > µk(p+1),

which implies µkp > 0 and hence xk(p−1) = xkp.

(2) If EOTk(Vp,Vp+1) > λ for some p, then µkp < µk(p+1),

which implies µk(p+1) > 0 and hence xk(p) = xk(p+1).

2

Theorem1 Let (x,V) be an optimum solution of ML-

DVFS, and let λ and µ be Lagrangian multipliers which

satisfies KKT conditions. When EOT function is mono-

tonic, and there exists an integer p∗ such that

EOTk(Vp∗−1,Vp∗) < λ < EOTk(Vp∗ ,Vp∗+1)

then,

0 = xk0 = xk1 = xk2 = · · · = xk(p∗−1)

xkp∗ = xk(p∗+1) = · · · = xk(L−1) = xkL = 1

Considering the definition of variable xiℓ, such solution in-

dicates that a task tk is driven by the sole supply voltage

Vp∗ .

2

Theorem2 Let (x,V) be an optimum solution of ML-

DVFS, and let λ and µ be Lagrangian multipliers which

satisfies KKT conditions. When EOT function is mono-

tonic, and there exists an integer p∗ such that

EOTk(Vp∗ ,Vp∗+1) = λ

then,

0 = xk0 = xk1 = xk2 = · · · = xk(p∗−1)

0 ≤ xkp∗ ≤ 1

xk(p∗+1) = xk(p∗+2) = · · · = xk(L−1) = xkL = 1

Considering the definition of variable xiℓ, such solution

indicates that a task tk is split into two part at a ratio

of xkp∗ − xk(p∗−1) = xkp∗ to xk(p∗+1) − xkp∗ = 1 − xkp∗ ,

and the former subtask is driven by the supply voltage

Vp∗ and the latter by another supply voltage Vp∗+1.

2

Lemma2 Under the task ID numbering rule, when

EOTk(Vp∗−1,Vp∗) < λ ≤ EOTk(Vp∗ ,Vp∗+1)
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holds for a task tk, then, for a task tk+1,

EOTk+1(Vp−1,Vp) < λ ≤ EOTk+1(Vp,Vp+1)

holds with p ≥ p∗.

2

Corollary1 In an optimum solution of ML-DVFS,

task tk, 1 ≤ k ≤ n − 1, is always driven by a supply

voltage no larger than the supply voltage which drives

task tk+1.

2

3.2 ∇V -relevant conditions

With respect to the second KKT condition (2), each in-

dividual condition associated with ∂/∂Vq , q ∈ {1, · · · , L},

in ∇V , is written as;

∂Etotal

∂Vq
+ λ ·

∂(Ttotal − Tmax)

∂Vq
= 0

which can be embodied as follows.

n
∑

i=1





∂
(

e
(D)
i (Vq) +

P (S)(Vq)
f(Vq)

)

∂Vq
·mi · (xiq − xi(q−1))





+ λ ·

n
∑

i=1





∂
(

1
f(Vq)

)

∂Vq
·mi · (xiq − xi(q−1))



 = 0

It can be further rewritten as;

EV T (Vq,xq,xq−1) = λ (6)

where EV T (Vq,xq ,x(q−1)) (energy-vs-time efficiency, or

EVT-efficiency) is defined as follows;

EV T (Vq,xq,xq−1) =

−

n
∑

i=1





∂
(

e
(D)
i (Vq) +

P (S)(Vq)
f(Vq)

)

∂Vq
·mi · (xiq − xi(q−1))





n
∑

i=1





∂
(

1
f(Vq)

)

∂Vq
·mi · (xiq − xi(q−1))





Here we will make the following assumption about EV T

functions.

Assumption3 EV T (V ,xq,x(q−1)) is assumed to be

monotonically increasing with respect to V .

4. Solutions of ML-DVFS

4.1 Optimum Voltage Assignment for Fixed Sup-

ply Voltages

Before showing a solution algorithm for our ML-DVFS

problem, we briefly discuss a solution for DVFS with fixed

supply voltages. Discussions done in section III.A (∇x-

relevant conditions) are important bases for our solution

algorithm.

Since V is given and fixed, KKT conditions (1), (3) and

(4) with fixed V are our concern, and our algorithm is

based on Theorems 1 and 2. The outline of the algorithm

is as follows.

Algorithm for Fixed-DVFS:

Preliminary step: We will confirm that Ttotal ≤ Tmax

is achieved by assigning the highest supply voltage

VL to all tasks. If it is not achieved, we will quit the

routine without any solution.

We will also confirm that Ttotal > Tmax is achieved by

assigning the lowest supply voltage V1 to all tasks. If

it is not, we will quit the routing with such a solution

as Vi = V1 for every task ti.

Step 1: We will compute EOTk(Vℓ,Vℓ+1) for all k,

1 ≤ k ≤ n, and for all ℓ, 1 ≤ ℓ ≤ L − 1, and sort

them in ascending order. Let LIST be the sorted

list of EOT s, and LIST [i] denotes the ith element

in LIST . Note that LIST [1] must be EOTn(V1,V2),

and LIST [n× (L− 1)] must be EOT1(VL−1,VL).

Step 2: Let λt and J be a trial (value) of Lagrangian

multiplier λ and an integer for controlling loop itera-

tion, respectively. Initially we will set J = n×(L−1)

and λt = LIST [n× (L− 1)].

Step 3: Assuming λ = λt and using Theorem 1 and 2,

we will find x, and check Ttotal achieved by this tenta-

tive solution. For LIST [J ] = EOTk(Vp,Vp+1), xkp is

given as large as possible while keeping Ttotal ≤ Tmax.

Step 4: If Ttotal = Tmax is achieved, quit with the cur-

rent tentative solution as the final solution. Other-

wise, i.e, xkp = 1 is achieved with Ttotal < Tmax,

then update J ← J − 1 and λt = LIST [J ], and go to

Step 3.

2

4.2 Solution for ML-DVFS

In this section, we will consider ML-DVFS solutions

satisfying Theorem 1 for all tasks. From Theorem 1 and

Corollary 1, under our task ID numbering rule, tasks

which are driven by a same supply voltage have consecu-

tive ID numbers. As for simplicity of notation, let a pair

of integers with square brackets [a, b] denote a set of tasks
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having consecutive ID numbers starting at a and ending

at b, i.e., {ta, ta+1, · · · , tb}.

Our algorithm for solving ML-DVFS is based on the

enumeration of partitions of tasks into L consecutive tasks

and λ-centric voltage computations. Now we let [s1, e1],

[s2, e2], · · ·, [sL, eL] be an instance of L consecutive task

partition, where s1 = 1, si = ei−1 + 1 for 2 ≤ i ≤ L and

eL = n. Note that there are n−1CL−1 different partitions,

which is exponential order of L (the number of voltage

levels). However, L is not so large number in practice,

and enumerating partitions might be tractable.

KKT conditions for ML-DVFS request that (6) is ful-

filled for every part of partition with the same λ. Here

we will recall (6), but it is arranged by the syntax of task

partitioning.

EV T (Vq, sq , eq) = λ, q ∈ {1, 2, · · · , L} (7)

where

EV T (Vq, sq , eq)

= −

eq
∑

i=sq





∂
(

e
(D)
i (Vq) +

P (S)(Vq)
f(Vq)

)

∂Vq
·mi





eq
∑

i=sq





∂
(

1
f(Vq)

)

∂Vq
·mi





When EV T function is monotonic with respect to Vq ,

we can solve (7) under the constraint

Ttotal(x,V)− Tmax = 0.

One possible algorithm is to use bisection search of λ [6].

After finding optimum supply voltages for each of pos-

sible task partitions, one best solution among them is se-

lected.

5. Conclusions

In this paper, we have discussed the optimum design of

DVFS with limited voltage levels (ML-DVFS). Based on

the KKT conditions for the optimum solution of a nonlin-

ear optimization problem, several properties of the opti-

mum solution of ML-DVFS problem have been revealed.

Through discussions, we found that one Lagrangian mul-

tiplier (it is named λ in this paper) appears in all con-

straints originated from ∇x and from ∇V , and plays an

important role for characterizing optimum solutions and

for solving the optimization problem. However, the au-

thor feels that the meaning of λ in DVFS problem is not

sufficiently comprehended yet. Proposed ML-DVFS algo-

rithm is naive enough to rely on the enumeration of task

partitioning. Deeper understanding about λ is expected

to help in improving the algorithm.
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