
Vol. 47 No. SIG 19(TOD 32) IPSJ Transactions on Databases Dec. 2006

Regular Paper

An Index Allocation Method for Data Access over

Multiple Wireless Broadcast Channels

Damdinsuren Amarmend,† Masayoshi Aritsugi†

and Yoshinari Kanamori†

With the advent of mobile technology, broadcasting data over one or more wireless channels
has been considered an excellent way to efficiently disseminate data to a large number of mobile
users. In such a wireless broadcast environment, the minimization of both access and tuning
times is an important problem because mobile devices usually have limited battery power. In
this paper, we propose an index allocation method for data access over multiple channels. Our
method first derives external index information from the scheduled data, and then allocates
it over the channels, which have shorter broadcast cycles and hotter data items. Moreover,
local exponential indexes with different parameters are built within each channel for local
data search. Experiments are performed to compare the effectiveness of our approach with
an existing approach. The results show that our method outperforms the existing method by
30% in average access time and by 16% in average tuning time when the data skew is high
and data item size is much bigger than index node size.

1. Introduction

The advanced achievements in wireless net-
work and portable computer technologies have
made it a reality that people access their de-
sired data at anytime from anywhere using their
mobile computing devices. In general, wireless
environments have the following properties:
• Mobile devices have limited capacities in

power,
• Mobile devices have much weaker commu-

nications capacities than fixed host com-
puters do,

• Large volume of mobile users will access the
shared data, and

• Most users are expected to be highly mo-
bile.

Periodic data broadcasting compensates these
aspects, and is considered to be an excellent so-
lution to disseminate data in wireless environ-
ments.

A user can access the broadcast data just by
tuning into the channel. However, data can
only be accessed in sequential order. The users
need to wait until the data of interest appear
on the broadcast channel. How to improve the
efficiency of data broadcasting becomes a chal-
lenging issue 7),10).

To analyze the performance of the broadcast-
ing methods, two metrics have to be considered:
access time and tuning time. Access time is

† Faculty of Engineering, Gunma University

measured from the moment when a user ini-
tially poses a query to the moment all the re-
sult is acquired. Tuning time is the amount
of time a user actively listens to the broad-
cast channel. By reducing these times, the re-
lated work aim to contribute to reduction of
power consumption of mobile users and short-
ening the delay required for getting their in-
formation from wireless channel. The actual
power consumption of mobile devices is essen-
tially reflected by the tuning time reduction.
In general, it is difficult to say that how much
power is saved by reducing these times. For ex-
ample, it may depend on what kind of chipset
is used. In Ref. 18), it is given that the Hob-
bit chip from AT&T consumes 5,000 times less
power when it operates in doze mode (50 µW)
than in active mode (250 mW). Let us take
the Hobbit chip for example and compute how
much power would be saved by reducing the
times. If we assume that the device spend T
time for actively listening to the channel and I
time for dozing off for fulfilling a request, then
the power P = 250000 µW × T + 50 µW × I.
Now, let us suppose that we have saved the
access time by 30% and the tuning time by
20%. Then, the saved power will be as follows:
P = 250000 µW × 0.2× T + 50 µW × I × 0.3 =
5000 µW × +15 µW × I. Our work and the re-
lated work aim to optimize this issue from the
server side.

To improve the average access time, many
data scheduling methods have been in-

86

Vol. 47 No. SIG 19(TOD 32) An Index Allocation for Multiple Wireless Broadcast Channels 87

vented 1),4),6),13),14),16),20).
Moreover, many research efforts have been

reported in the literature that aim at the im-
provement of data broadcast efficiency by pro-
viding index information 8),11),18),21). Indexes
let the mobile users stay in the doze mode most
of the time and only come to the active mode
when the data of interest appear on the channel.
However, mixing indexes with broadcast data
increases broadcast cycle length. As a result,
the average access time increases. Therefore,
an optimal allocation of indexes to the broad-
cast channels is an important issue.

In this paper, we contribute an index al-
location method for the broadcast data with
different access frequencies over multichannels.
Our method minimizes the average access and
tuning times with the help of the external in-
dex and the optimal allocation of them to the
broadcast channels. The extended abstract of
the contents of this paper was presented at
Ref. 5). The rest of the paper is organized as
follows. Section 2 introduces the related work
on the problem. In Section 3, the proposed in-
dex method is explained in detail. Then, we
analyze the performance of our method in Sec-
tion 4. Finally, Section 5 presents conclusions
and future work.

2. Related Work

2.1 Data Broadcast Methods
Acharya et al. propose Broadcast Disks,

in which hot (more frequently accessed) data
items are allocated more frequently than cold
(less frequently accessed) data items in each
broadcast period 1),4). By shortening the broad-
cast cycles of hot data, the average access time
decreases. Their work is improved further in
Refs. 2), 3), 6). Vaidya and Hameed consid-
ers optimal broadcasting for variable-sized data
in Ref. 20). In Ref. 13), the authors considered
broadcasting semantically related data. The
above methods assumed only a single broadcast
channel. The data broadcasting over multiple
broadcast channels, which can not be coalesced
in to a single physical channel, is considered in
Refs. 14), 16).

2.2 Index Methods for Data Broadcast
Imielinski et al. propose three indexing tech-

niques for accessing data items on the broad-
cast channel. (1,m) indexing in Ref. 18) simply
replicates the whole index tree m times in each
broadcast cycle. Distributed indexing 18) reme-
dies it by replicating only an upper part of the

tree. The third technique called flexible index-
ing 11) is non-tree structured method. In flexi-
ble indexing, the broadcast data is divided into
several equi-sized segments. Each segment con-
tains some binary-based index information of
data in other segments. Their work proves that
providing index with broadcast data saves a sig-
nificant amount of energy of mobile devices.

Xu, et al. extend the idea of flexible index-
ing and propose exponential index 21). The dif-
ference from flexible indexing is that any in-
dex base can be used. By adjusting the two
parameters (the number of segments and the
index base), it improves the performance. By
their performance analysis, exponential index
outperforms flexible indexing and distributed
indexing. The above indexing methods assume
that all the data items have the same access fre-
quencies. Taking access frequency into account
is important to improve the efficiency of index-
ing methods. Chen et al. explored the issue
of indexing data with skewed access. To mini-
mize the average tuning time, they considered
unbalanced index trees with fixed and variant
fanout 8). However, these work assumed only
flat broadcast program.

Tan and Yu 19) propose an indexing method
for data broadcast with skewed access. One
thing about all these work is that they assume
data is broadcast over a single broadcast chan-
nel.

Recently, some research work discuss the
problem of minimizing the access and tun-
ing times in multiple channels environ-
ments 9),12),15)∼17),22). In Ref. 16), some effi-
cient algorithms for broadcasting data to mo-
bile users over multiple channels are proposed.
The index allocation method they employed is
inefficient, since the whole (1,1) index is repli-
cated once in a broadcast cycle in each chan-
nel. Two approaches are observed among these
methods. One approach interleaves indexes
with data over all channels 9),15),22). In con-
trast, in the other approach, data and index
are broadcast in separate channels 12),17).

Hsu, et al. extend distributed indexing into
multiple channel environments. In this method,
hot data and its index tree nodes are replicated
several times in one broadcast cycle 9). Yee
and Navathe propose some techniques of strip-
ping index nodes over multichannels 20). Their
methods are based on balanced index trees,
which do not capture the different access fre-
quencies of data nodes. Lo and Chen proposed

88 IPSJ Transactions on Databases Dec. 2006

topological tree, in which data and index are
mixed and broadcast in the same time slot 15).
Topological tree is based on an unbalanced tree
to reflect the different access frequencies of data
nodes. Their approach consider the sizes of in-
dex and data nodes are the same. In practice,
index nodes are much smaller than data nodes.

In contrast to these approaches, Shivakumar
and Venkatasubramanian propose k-ary Alpha-
betic Huffman Tree and allocate it to the ded-
icated index channel 17). However, this ap-
proach is not efficient when the number of in-
dex channels is less than the depth of the in-
dex tree. In Ref. 12), Jung et al. propose a
tree-structured index allocation method, which
is based on Alphabetic Huffman Tree. They
allocate the index tree to the dedicated index
channels with the same frequencies as the re-
lated data. All these work for multichannel en-
vironments have tree structures. A user has
to wait for the root node to access any data.
To decrease this waiting time, above methods
replicate the upper parts of the index tree many
times within a broadcast cycle. As a result, the
broadcast cycle becomes longer increasing the
average access time.

Unlike these approaches, our method has the
following properties at the same time:
• Non-tree structured but well distributed.
• The given channels are not separated.

3. Index Allocation over Multiple
Broadcast Channels

In our method, we do not separate the chan-
nels in order to fully utilize the channel band-
widths. We have the following assumptions
throughout this paper.
• All the broadcast channels are assumed to

have the same bandwidth.
• Given k broadcast channels, we number

them 1 through k. For the broadcast chan-
nels, upper means their channel number is
closer to 1, lower means closer to k.

• The switching time from one channel to an-
other is considered to be negligible.

• The sizes of all the data nodes are assumed
to be the same. And the sizes of the index
nodes are assumed to be the same. How-
ever, the size of a data node can be larger
than that of an index node.

• An index node is assumed to have the in-
formation about the channel number and
the time offset for the next index node or
data nodes.

• A data (or index) broadcast cycle is one
period of broadcast data (or index).

Our method consists of two parts: external
index and local indexes. A user first retrieves
the channel number of data of interest from the
external index. After that, the user searches in
that channel using local indexes.

External index can be derived from any
scheduled data. External index entries are
packed into nodes, and then allocated to the
upper channels. This allocation is based on the
following observations. First, the size of the
external index is relatively much smaller than
the size of the broadcast data. Secondly, data
broadcast algorithms for multichannel environ-
ments such as Refs. 12), 16) tend to allocate a
few hot data to the upper channels, and more
and colder data to the lower channels. If the
data node size gets bigger, the difference be-
tween broadcast cycle lengths of the top and
the bottom channels increases proportionally.
Therefore, allocating the external index nodes
on upper channels will not affect much to the
average access time.

For local searches within a channel, in princi-
ple, any index method for a single channel can
be used. To make the discussion in this paper
concrete, we employ exponential index 21) for
this purpose.

In the next sections, we discuss how to build
external and local indexes and users access al-
gorithm.

3.1 Data Allocation over Multiple
Channels

Our proposed index can be based on any good
data broadcast algorithm for multiple channels
environments. In this paper, we adopt the data
broadcast methods used in Refs. 12), 16). This
method assumes every data item has a tempera-
ture, which equally means an access frequency.
In this paper, we take temperature as access
probability.

At first, the data set is sorted according to
their temperatures. The average channel tem-
perature is found by dividing the sum of all the
temperatures to the number of channels, say k.
Starting from the hottest data item to the cold-
est one, the algorithm allocates a data item to
a channel if the sum of that channels’ temper-
atures is less than the average channel temper-
ature.

We also adopt an example of this broadcast
program from Ref. 12), which is illustrated in
Fig. 1. In the example, 14 data are allocated

Vol. 47 No. SIG 19(TOD 32) An Index Allocation for Multiple Wireless Broadcast Channels 89

Fig. 1 An example of data broadcast program.

according to their temperatures to 4 channels.
Among the others, [E, N] have the highest tem-
peratures while [I, J, F, G, H] have the lowest
temperatures.

3.2 The External Index
The purpose of the external index is to let

users quickly find out in which channel their
data of interest is being broadcast. In this sec-
tion, we explain how to derive it from an exist-
ing data broadcast program.

Definition 1 Let us have given k number
of channels, and N number of data items. We
define a working set (WS), which includes all
the data items in ascending order by their index
keys.

Definition 2 Let Ni be the number of data
allocated to channel i. Let min(WS) de-
note the element of WS with the minimum
index key. Similarly, let max(WS) denote
the element with the maximum index key. A
data list Di contains all the data in chan-
nel i in ascending order. We add min(WS)
and max(WS) if they are not included in Di.
Thus, Di ={min(WS), d1, . . . , dNi

, max(WS)},
where min(WS)≤d1≤ . . .≤dNi

≤max(WS).
Definition 3 A set Ij can be derived from

WS for every sequential two data items, dj and
dj+1, in Di. For any e ∈ Ij except min(WS)
and max(WS), it holds that dj < e < dj+1.
If min(WS) and max(WS) are not originally
in Di, then they will be included in Ij . Also,
the data items on the upper channels will not
be entered in Ij . From Ij , we define a triple of
values [min(Ij), max(Ij), ch(Ij)] as an external
index entry. The first and second are minimum
and maximum elements of Ij , respectively. The
third one is the highest channel number of ele-
ments of Ij . The elements of Ij are allocated to
the different channels. In other words, ch(Ij)
finds the location of the data with the highest
access frequencies in Ij .

With these definitions, all the index entries
must be derived for the channels 1 through k−
1, except channel k. For the data in the last
channel, we do not need to derive index entries
from them, since those data are already indexed

Algorithm 1 Deriving External Index Entries

1. WS = {d1, d2, ..., dN}: the working set
2. Ni: number of data items allocated to channel i
3. SD = {D1, D2, ..., Dk} the set of

scheduled data over k channels, where
4. Di = {di1, di2, ..., diNi

}
5. Sort WS in ascending order;
6. Sort each Di in ascending order;
7. for (i = 1; i ≤ k − 1; i + +)
8. if (di1 <> min(WS)) then
9. Insert min(WS) into Di;

10. Ni = Ni + 1
11. end if
12. if (diNi

<> max(WS)) then

13. Insert max(WS) into Di

14. Ni = Ni + 1
15. end if
16. for (j = 1; j < Ni; j + +)
17. Determine Ij for [di,j , di,j+1] from WS
18. Determine and save a triple

T = [min(Ij), max(Ij), ch(Ij)]
by Definition 3

19. end for
20. end for
21. Remove Di’s original elements from WS
22. Remove any duplicates from the external

index set

Fig. 2 An example of external index entries.

in the upper channels. The derivation method
is illustrated in Algorithm 1.

In the running example, the working set is ini-
tially WS = {A, B, C, D, E, F, G, H, I, J, K, L,
M, N}. The result of the Algorithm 1 on this
example is shown in Fig. 2. On the left side,
the entries derived from the corresponding I
sets are shown. The first index entry [A, D, 2] is
obtained from the set I1 = {A, B, C, D} which
corresponds to E. Among the elements of I1, A
and D have the highest access frequencies. So,
ch(I1) is set to 2. The final set of the derived
index entries contains two [F, J, 4] entries. The
first one is from the interval [D, K], and the sec-
ond is from [C, L]. This because [C, L] includes
[D, K] in WS . By removing the last one, the
final set is displayed on the right side of the
figure.

3.3 Allocation of External Index
A user finds out that his data of interest is al-

located to channel i if the intervals of the exter-

90 IPSJ Transactions on Databases Dec. 2006

nal index entries, which belong to that channel,
do not include the key of the data. The average
access time for a request consists of two times:
Text.acc - average access time for traversing ex-
ternal index, and Tloc.acc - time for searching in
local index. Similarly, the average tuning time
for a request consists of two parts: Text.tun - av-
erage tuning time for the external index traver-
sal, and Tloc.tun - average tuning time for the
local index traversal plus the data retrieval.

The total expected average access time for a
request can be expressed as:

Tacc = Text.acc + Tloc.acc , (1)
and the total expected average tuning time for
a request as:

Ttun = Text.tun + Tloc.tun . (2)
From these equations, in order to minimize

Tacc and Ttun , we have to minimize the com-
ponent costs: Text.acc , Tloc.acc , Text.tun , and
Tloc.tun . In this section, we attempt to minimize
Text.acc and Text.tun by allocating the external
indexes optimally.

We accommodate the entries into external in-
dex nodes. We consider two approaches for the
allocation of external indexes over multichan-
nels.

The first approach is to allocate the index
nodes according to which channels they have
been derived from. In each channel, the exter-
nal index nodes will be located contiguously.

Let Bi and Ni be the number of external in-
dex nodes and the number of data assigned to
channel i, respectively. Here, Tempi denotes
the sum of temperatures of data items in chan-
nel i while tempij denotes the sum of temper-
atures of data items which are pointed by the
jth index node of the channel i. Moreover, R is
the ratio of an index node size to a data node
size. We measure the costs in terms of index
node. Due to the non-uniform data allocation
algorithm, the number of data in the channels
will be sorted as N1 ≤ N2 ≤ . . . ≤ Nk−1.
The broadcast cycle length of channel i will be
Bi + Ni × R. When R and the number of data
are high but the given number of channels is
relatively low, it is highly expected that the cy-
cle lengths of the channels will be sorted in as-
cending order as Bi + Ni × R ≤ Bj + Nj × R,
where i ≤ j. The external indexs nodes will
be assigned to channels 1 through n, where
1 ≤ n ≤ k − 1. Any search will be started by
finding the first external index node in channel
1. If the desired item is not included in the
external index entries, then that item must be

broadcast on the channel. If the item is in an-
other channel, the search will be jumped to that
channel. The expected average access time for
traversing the external index is as follows:

Text.acc =
n∑

i=1

(
(Bi + Ni × R)

2

×
(

Bi∑
j=1

tempij + Tempi

)

+
Bi∑
j=1

j × tempij + Bi × Tempi

)
(3)

The first term of Eq. (3) indicates the aver-
age time for waiting for the beginning of the
external index in channel i. The second term
is the time for traversing external index for the
data items, which are broadcast on other chan-
nels. The third one shows the average external
index traversal time for the data items, which
are broadcast on channel i.

And, the expected average tuning time for
traversing the external index can be found as
follows:

Text.tun =
n∑

i=1

(
1 + R

2
+

Bi∑
j=1

j × tempij

+ Bi × Tempi

)
. (4)

In each channel, any node will contain an off-
set to the beginning of the external index in
that channel. Thus, before reading the external
index in channel i, we read one index or data
node. This explains the first term in Eq. (4).
The second and third terms of Eq. (4) are ex-
plained similarly with Eq. (3).

From the above Eqs. (3) and (4), it can be ob-
served that access and tuning times will be very
high when R and the number of data are high
but the given number of channels is relatively
lower. In that case, the broadcast cycle lengths
of the lower channels are much longer than the
lengths of broadcast cycles on the upper chan-
nels. Therefore, users will wait for a long time
to read the external index in the lower channels.
For this reason, this allocation is not considered
favorable.

The other method in our consideration al-
locates the nodes to the channels more flexi-
bly yet efficiently. In this method, more nodes
are allocated to the upper channels than to
the lower channels to avoid the long waits in

Vol. 47 No. SIG 19(TOD 32) An Index Allocation for Multiple Wireless Broadcast Channels 91

the lower channels. In other words, it will be
B1 ≥ B2 ≥ . . . ≥ Bm, where Bi is the number
of index nodes allocated to channel i. As a re-
sult, the external index nodes are allocated to
fewer channels 1 through m, where 1 ≤ m ≤ n,
than to the first method. In the extreme case,
we put all the external index nodes on channel
1. Therefore, the first method becomes a case
of the second.

To indicate the relation of the index entries to
the belonging channel, we should add one more
attribute to the index entry. So, the external
index entry for the second method becomes as
[min, max, ch1, ch2], where ch1 is for the next
channel number to traverse, and ch2 for which
channel this entry belongs to.

The expected average access time for the in-
dex traversal becomes

Text.acc =
m∑

i=1

(
(Bi + Ni × R)

2

×
(

Bi∑
j=1

tempij + Tempi

)

+
Bi∑
j=1

j × tempij + Bi × Tempi

)
, (5)

and the expected average tuning time is:

Text.tun =
m∑

i=1

(
1 + R

2
+

Bi∑
j=1

j × tempij

+ Bi × Tempi

)
. (6)

Equations (5) and (6) are similar to Eqs. (3)
and (4) except for m, n, and Bi variables. In
general, we expect Bi is much less than Ni, es-
pecially when the size ratio R is high. There-
fore, putting the external index nodes on up-
per channels with short broadcast cycle lengths,
saves us from waiting for a long time in the
lower channels. Therefore, we employ the lat-
ter method in this paper.

For the example in Fig. 2, let the data items
have the temperatures as shown in Table 1.
The first and the second column show the chan-
nel number and its data items. The last one
displays the sum of temperatures of the data
items. The data items in the same channel are
considered to have the same temperatures.

Using this configuration, in Table 2 we cal-
culated the expected average access times for
different external index allocations and differ-

Table 1 Temperatures for the data items in the
example in Fig. 2.

Ch Data Items Sum of Temperatures
1 E, N 0.4 = 0.2 × 2
2 A, D, K 0.3 = 0.1 × 3
3 B, C, L, M 0.2 = 0.05 × 4
4 F, G, H, I, J 0.1 = 0.02 × 5

Table 2 The expected average access times for the
Example in Fig. 2.

Size Ratio
Ext. Index Allocation

(2 : 3) (3 : 2) (4 : 1) (5 : 0)
R = 1 9.35 10.7 11.05 10.1
R = 10 35.45 38.7 37.75 32.5
R = 30 101.95 97.7 93.75 76.6
R = 50 175.95 168.7 161.75 132.6

Algorithm 2 External Index Node Allocation

1. Derive an initial allocation by the first method
2. NB =

∑n

i=1
Bi

3. Compute this allocation’s average access time
by Equation (4) and assign it to minAcc

4. for(i = B1; i ≤ NB ; i = i + 1)
5. Find all the partitions B2 through Bm

satisfying B1 ≥ B2 ≥ ... ≥ Bm and
1 ≤ m ≤ k.

6. For (each such partition) Compute the
average access time by the Equation (5)
and assign it to tAcc

8. if (tAcc < minAcc)
9. minAcc = tAcc; save the partition

10. end for
11. Allocate the external index nodes according

to the saved partition with minAcc

ent R’s values. The Tloc.acc is computed by the
following formula considering that there are no
local indexes:

Tloc.acc =
n∑

i=1

(Bi+Ni×R)
2

× Tempi. (7)

The (2 : 3) means the first two index nodes are
allocated to channel 1 whereas the last three
index nodes are assigned to channel 2. The
(2 : 3) allocation is by the first method, in which
[A, D, 2] and [F, M, 2] are on the channel 1, and
[B, C, 3], [F, J, 4], and [L, M, 3] are allocated to
the channel 2. The other three are the varia-
tions of the second method. From the results,
we see that the last three allocations outper-
form the (2 : 3) when R increases. It shows
that we should put more index nodes on the
upper channels when R increases.

We devise a greedy algorithm for the optimal
allocation of the second method in Algorithm
2. After allocation of the external index nodes,
we can duplicate the index nodes within chan-
nels to decrease the waiting time. However, this

92 IPSJ Transactions on Databases Dec. 2006

Fig. 3 Division of the next chunks.

issue will not be covered in this paper.
3.4 Building Local Indexes
For the local search in a channel, we extend

the exponential index method 21). Originally,
the exponential index is proposed for uniform
data access over a single channel data broad-
casting. They considered a bucket as a logical
broadcast unit, and all the formula and algo-
rithms were based on the bucket conception.
However, we take an index node as a broadcast
unit. External and local indexes have the nodes
of the same size. The size of data node can be
different from the index node size. Therefore,
we explain our extension in terms of nodes in
this paper.

In this method, the broadcast data is divided
into chunks. Each chunk has I (called chunk
size) data nodes, and an index information of
the next chunks. The index consists of two
parts: global and local. The local part plainly
contains the keys of I data nodes within the
chunk. If the key in search is found to be the
ith entry in the local part, it means that the
desired data node will come after i − 1 data
nodes.

The global part indexes the next chunks. For
a chunk, the global index splits the next chunks
into parts with the following lengths: 1, r, r2,
. . . , rn as in Fig. 3. Here, r is called an index
base.

The first entry of the global index describes
the maximum key value of the next r0 = 1
chunk. The next entry is the maximum key
value of the next r chunks, and so on. In other
words, ith entry is the maximum key value of a
segment of ri−1 chunks(i.e., the chunks that are
�∑i−2

j=1 rj + 1� = � ri−1−1
r−1 + 1� to �∑i−1

j=1 rj� =
� ri−1

r−1 � away). If we consider R and I, the first
node of the segment pointed by the ith entry
will come after � ri−1−1

r−1 + 1� · (I ·R + 1) + I ·R
broadcast units, since each chunk has I num-
ber of data nodes plus an index node, includ-
ing the local chunk. This method indexes not
only the current broadcast period but also the
next broadcast period. Its performance can be
improved and adjusted by tuning I and r pa-
rameters. Exponential index is not tree struc-

Algorithm 3 The General Index Allocation

1. Derive The External Index Entries
by Algorithm 1

2. Allocate The External Index Nodes to the
given k channels by Algorithm 2

3. Build The Local Indexes for each channel i
with (Ii, ri) parameter

Fig. 4 An example of the broadcast with the external
and local indexes.

tured but has advantages over tree structured
methods. It is possible to start searching from
any chunk index, therefore naturally better dis-
tributed in the wireless broadcast environment
than tree structured methods.

We employ this method for our local index
in each channel with different parameters. The
parameter values will depend on the broadcast
cycle lengths of the channels. The local in-
dexes will be allocated in the start of the related
data chunks. Given k broadcast channels, we
have (I1, r1), (I2, r2), . . . , (Ik, rk) parameters to
tune. In order to achieve a good performance,
we have to find optimal values for these param-
eters. The general index allocation algorithm is
illustrated in Algorithm 3.

An example of our broadcast method with
the external and local indexes is shown in
Fig. 4. The external index nodes on channel
1 have shorter broadcast cycles than the exter-
nal index nodes on channel 2.

3.5 User Access Algorithm
In this section, we discuss how a user accesses

the data of interest over the multiple channels.
Each access starts by reading the first node of
the external index in channel 1. To find the first
external index node in a channel, a user needs
to know the following information:
• Bcast(i): the broadcast cycle length of

channel i in terms of index nodes
• ExtOFF (i): the offset of the first node of

external index in channel i
We set ExtOFF (i) = 1 in this paper, because

we put the external index nodes in the head
of the broadcast in each channel. Algorithm 4
shows the method of finding the position of the
first external index node in channel i.

The access method for this part is illustrated

Vol. 47 No. SIG 19(TOD 32) An Index Allocation for Multiple Wireless Broadcast Channels 93

Algorithm 4 Compute position of Ext.Index

1. / ∗ channel = i ∗ /
2. period = �current time/Bcast(channel)�
3. position = period × Bcast(i) + ExtOFF (i)
4. while(position < current time)
5. period + +;
6. position = period × Bcast(i) + ExtOFF (i)
7. end while

Algorithm 5 Search for External Index

1. ch = 1
2. Compute position of the first ext. index

node in channel ch by the Algorithm 4
3. while(current time < position)
4. Wait in the doze mode.
5. for (each ext. index entry e) do
6. if (e.ch2 <> ch) then goto 10
7. if (e.min ≤ Key ≤ e.max) then
8. ch = e.ch1; goto 2
9. end for

10. Search through the Local Indexes
in channel ch by the Algorithm 6

Algorithm 6 Search for the Local Index

1. Wait until the first local index node of the
next chunk to appear

2. Check the local index
3. if (the data item is within the key range

specified by the ith entry) then
4. Go into the doze mode, wait for the ith node,
5. retrieve the data, and the query is finished
6. end if
7. Check the global index
8. if (the data item is within the key range

specified by the ith entry) then

9. dist = � ri−1−1
r−1

+ 1� · (I · R + 1) + I · R
10. if (external indexes within the interval)
11. then dist = dist + Bi end if
12. Go into the doze mode, wait for

dist broadcast units, goto 2
13. end if

in Algorithm 5. If the data of interest is not
included in the intervals of the index entries
for the searching channel, it is known that the
data is broadcast in that channel. Otherwise,
the next channel number to search in must be
found from the index entries related with the
current channel. The local search method is
shown in detail in Algorithm 6.

4. Performance Analysis

For convenience, we name our method as
AIM (for Air Index for data access over Mul-
tiple broadcast channels). In this section, we
analyze the performance of our method in com-
parison with a tree structured index allocation
method SIRAH (Separated Index Replication
based on Alphabetic Huffman tree) proposed in

Ref. 12). In Ref. 12), SIRAH is compared with
other similar methods TOPO 15) and ALH 17).
The authors 12) conclude that SIRAH outper-
forms TOPO and ALH in almost all the con-
figurations of their experiments. Therefore, it
is enough for our method, AIM, to compare its
performance only with SIRAH. SIRAH sepa-
rates the channels into two parts: index channel
and data channel. They suggested a method to
find the optimal ratio of this separation. The
method computes average access and tuning
times for all the ratios for a given environment.
The ratio that gives the minimum average ac-
cess and tuning time becomes the optimal one.
The computation takes the sizes of data and in-
dex nodes, number of data, and NRF , IL (pa-
rameters which are derived from SIRAH index
allocation algorithm). In their environment,
2 : 8 = index : data for total of 10 channels was
the optimal ratio. When data node size is big
and number of data is high, it is very intuitive
that much more channels must be allocated to
data than index. We adopted all the parame-
ters and the data distribution from Ref. 12) to
create the same experimental environment for
fair comparisons. The index and data are allo-
cated by the same algorithm of Ref. 12). There-
fore, we adopted the 2 : 8 ratio as optimal in
our experiments.

SIRAH allocates index nodes to the index
channels by combining Alphabetic Huffman
Tree (AHTree) 17) with a data broadcast sched-
ule. They consider that the data items allo-
cated to the upper channels are closer to the
root of the AHTree than the data items on the
lower channels. Also, the ancestor nodes of the
data items on the upper channels are expected
to have higher frequencies in a broadcast cy-
cle than other index nodes. The index nodes
of AHTree closer to the root node are allocated
first, and with high frequencies. Index nodes
with immediate parental relationships must be
allocated to one channel, otherwise they can be
allocated to separate channels.

4.1 Simulation Model and Workload
The simulation was carried out on a Pentium

IV 1.4 GHz with 754 MB memory running Red
Hat Linux version 9. We implemented the simu-
lator in standard C language. The nonuniform
(or skewed) access pattern of mobile users is
modeled by the Zipf distribution with θ param-
eter 23). This distribution models the nonuni-
form access by tuning the θ parameters value
between 0 through 1. For example, a highly

94 IPSJ Transactions on Databases Dec. 2006

Table 3 Simulation parameters.

Parameter Value
Total number of channels 10

channels for AIM 10
index channels for SIRAH 2
data channels for SIRAH 8

Number of broadcast data 3,000
Node size ratio R 1–50
θ 0.95
Number of requests 5,600
The size of an index node 1,280B

skewed access is modeled when θ is closer to 1.
Since the setting θ = 0.95 is common in broad-
cast environments 12),16), we take this value as
default. The other parameters used in the sim-
ulation are listed in Table 3. To make the
comparison of the performances of the SIRAH
and AIM fair, we used the same size of index
node (1,280B) 16).

We chose the average access and average tun-
ing times as our primary performance metrics.
We built different request sets with nonuniform
access pattern for various number of broadcast
data. The average access and tuning times are
obtained by averaging the access and tuning
times of those requests. All the metrics are
measured in terms of broadcast units. A broad-
cast unit is a time to broadcast an index node.
Downloading a data node will require R broad-
cast units.

4.2 Effects of the Ratio a Data Node
Size to an Index Node Size

In this section, we discuss how the changes
in the ratio of a data node size to an in-
dex node size affects the performance of AIM
and SIRAH. When the node size ratio R in-
creases, the broadcast cycle lengths become
longer. Thus, the average access time of all the
data naturally increases. The results are shown
in Fig. 5 and Fig. 6. From Fig. 5, our ap-
proach significantly outperforms (by 30% when
R = 50) SIRAH for the average access time.
The difference of the performance tends to be
bigger when R increases. The reason is that
our approach better utilizes the bandwidths of
given k channels than SIRAH by not separating
the channels. Also, the optimal allocation of ex-
ternal index nodes greatly helps to minimize the
average access time. The average tuning time
comparison is shown in Fig. 6. AIM performs
16% better than SIRAH when R = 50.

4.3 Effects of the Number of Broad-
cast Data

In this section, we investigate how increas-

Fig. 5 The average access time varying R.

Fig. 6 The tuning time varying R.

ing the number of broadcast data affects the
performances of AIM and SIRAH. In this ex-
periment, the node size ratio R is set to 50.
The number of data to broadcast is increased
from 500 to 5,000 with the step of 500. Fig. 7
and Fig. 8 show that AIM has much better per-
formance than SIRAH on all the cases. Note
that the scale values of vertical axes of these
graphs are not started from 0. The lengths of
broadcast cycles increase when the number of
data increases. Thus the average access times
of both methods increase. However, the aver-
age access time of AIM increases very slowly.
When the number of broadcast data increases,
the AHTree becomes bigger. That means the
broadcast cycle lengths get longer in the dedi-
cated index channels. This explains the sharp
increase of the graph for SIRAH. AIM out-
performs by 27% when number of data items
reaches 5,000.

Figure 8 also shows the average tuning times
of the two methods. Although the tuning times

Vol. 47 No. SIG 19(TOD 32) An Index Allocation for Multiple Wireless Broadcast Channels 95

Fig. 7 The average access time varying number of
data (R = 50).

Fig. 8 The average tuning time varying number of
data (R = 50).

of both methods looks stable, we observe that
AIM outperforms by 19% when number of data
items is less than or equal to 1,000, and by 14%
from that point up.

4.4 Effects of Various Access Patterns
In this section, we study the behaviour of our

index allocation method AIM when user access
patterns change. In this experiments, the ac-
cess frequencies are changed according to the
Zipf parameter θ. According to the Zipf distri-
bution, as θ tends to 1, users access patterns
are very skewed. That is, few data items have
high access frequencies. For our method, the
performance should be low when θ tends to 0
(or the access pattern gets closer to uniform dis-
tribution). The waiting times of external index
nodes in the lower channels affect this. When
the access pattern gets less skewed, the perfor-
mance of SIRAH must become worse. Because
users should spend a long time for retrieving
cold index nodes from AHTree. These obser-
vations are proved by the results in Fig. 9 and

Fig. 9 The average access time varying θ (R = 50).

Fig. 10 The average tuning time varying θ (R = 50).

Fig. 10. Note that the scale values of verti-
cal axes of these graphs are not started from 0.
From the graphs, we see that the average access
times of the two methods decreases when the
value of θ tends to 1. However, AIM still per-
forms better at each points than SIRAH. The
difference decreases from 21% at θ = 0.1 to 16%
at θ = 1. The tuning time for AIM sharply
drops by about 20% when θ reaches 1. This
is because first, fewer data nodes are allocated
to the upper channels by AIM than by SIRAH,
secondly, the traversing external indexes on the
upper channels incurs less tuning times for re-
trieving hot data.

5. Conclusion

In this paper, we proposed an efficient yet
flexible index allocation method for broadcast-
ing data with nonuniform access patterns over
multiple wireless channels in mobile environ-
ments. The existing methods in this domain
mainly have tree structures, thus they need to

96 IPSJ Transactions on Databases Dec. 2006

replicate the tree nodes. Some of them sep-
arates the channels into dedicated index and
data channels. These replication and separa-
tion make the broadcast cycles longer.

Therefore, due to the broadcasts sequential
nature, the access time is long in these ap-
proaches. Unlike these approaches, our method
minimizes average access and tuning times with
the help of external index. The optimal al-
location of external index nodes improves the
performance. We employ exponential index for
local data searching within a channel. We ex-
tend this method by building exponential in-
dexes with different parameters for each chan-
nel. Tuning these parameters, we are able to
improve the performance of our method, too.

We analyzed the performance of our method
in comparison with the existing method SIRAH
in various experiments. The results of the simu-
lated experiments prove that our approach per-
forms much better than SIRAH. However, in
case of enough number of available channels,
SIRAH may perform better than AIM. In fu-
ture work, we will think two issues: considera-
tion of our method in more realistic error-prone
environments and the actual effect of the access
and tuning times in power consumption of mo-
bile devices.

Acknowledgments This research was par-
tially supported by Japan Society for the Pro-
motion of Science, Grant-in-Aid for Scientific
Research (B) 15300029.

References

1) Acharya, S., Franklin, M. and Zdonik,
S.: Dissemination-based Data Delivery Using
Broadcast Disks, IEEE Personal Communica-
tions, Vol.2, No.6, pp.50–61 (1995).

2) Acharya, S., Franklin, M. and Zdonik, S.: Dis-
seminating Updates on Broadcast Disks, Proc.
VLDB Conf., pp.354–365 (1996).

3) Acharya, S., Franklin, M. and Zdonik, S.:
Prefetching from a Broadcast Disk, Proc. IEEE
Int’l Conf. on Data Engineering , pp.276–285
(1996).

4) Acharya, S., Franklin, M., Zdonik, S. and
Alonso, R.: Broadcast Disks: Data Manage-
ment for Asymmetric Communication Environ-
ment, Proc. ACM SIGMOD Int’l Conf. Man-
agement of Data, pp.199–210 (1995).

5) Amarmend, D., Aritsugi, M. and Kanamori,
Y.: An Air Index for Data Access over Multiple
Wireless Broadcast Channels, Proc. 22nd Int’l
Conf.on Data Engineering (ICDE 2006), p.135
(2006).

6) Bar-Noy, A., Patt-Shamir, B. and Ziper, I.:
Broadcast Disks with Polynomial Cost Func-
tions, Wireless Networks, Vol.10, No.2, pp.157–
168 (2004).

7) Barbara, D.: Mobile Computing and Data-
bases—A Survey, IEEE Trans. on Knowledge
and Data Engineering , Vol.11, No.1, pp.108–
117 (1999).

8) Chen, M., Yu, P. and Wu, K.: Indexed Se-
quential Data Broadcasting in Wireless Mo-
bile Computing, Proc. 17th IEEE Int’l Conf.
on Distributed Computing Systems, pp.124–131
(1997).

9) Hsu, C., Lee, G. and Chen, A.: Index and Data
Allocation on Multiple Broadcast Channels
Considering Data Access Frequencies, Proc.
Third Int’l Conf. Mobile Data Management
(MDM’02) (2002).

10) Imielinski, T. and Badrinath, B.: Wireless Mo-
bile Computing: Challenges in Data Manage-
ment, Comm. ACM , Vol.37, No.10, pp.18–28
(1994).

11) Imielinski, T., Viswanathan, S. and Badrinath,
B.: Power Efficient Filtering of Data on Air,
Proc. 4th International Conference on Extend-
ing Database Technology (EDBT), pp.245–258
(1994).

12) Jung, S., Lee, B. and Pramanik, S.: A
Tree-Structured Index Allocation Method with
Replication over Multiple Broadcast Chan-
nels in Wireless Environments, IEEE Trans.
on Knowledge and Data Engineering , Vol.17,
No.3, pp.311–325 (2005).

13) Lee, K., Leong, H. and Si, A.: Adaptive Se-
mantic Data Broadcast in a Mobile Environ-
ment, Proc.ACM Symposium on Applied Com-
puting (SAC 2001), pp.393–400 (2001).

14) Leong, H. and Si, A.: Data Broadcasting
Strategies over Multiple Unreliable Wireless
Channels, Proc. 4th Int’l Conf. on Informa-
tion and Knowledge Management (CIKM’95)
(1995).

15) Lo, S. and Chen, A.: Optimal Index and
Data Allocation in Multiple Broadcast Chan-
nels, Proc. 16th Int’l Conf. Data Eng., pp.293–
302 (2000).

16) Prabhakara, K., Hua, K. and Oh, J.: Multi-
Level Multi-Channel Air Cache Design for
Broadcasting in a Mobile Environment, Proc.
16th Int’l Conf. Data Eng. (2000).

17) Shivakumar, N. and Venkatasubramanian, S.:
Efficient Indexing for Broadcast Based Wire-
less Systems, Mobile Networks and Applica-
tions, Vol.1, No.4, pp.433–446 (1996).

18) Imielinski, T., S.V. and Badrinath, B.: Data
on Air: Organization and Access, IEEE Trans.
on Knowledge and Data Engineering , Vol.9,

Vol. 47 No. SIG 19(TOD 32) An Index Allocation for Multiple Wireless Broadcast Channels 97

No.3, pp.353–372 (1997).
19) Tan, K. and Yu, J.: An Analysis of Selec-

tive Tuning Schemes for Nonuniform Broad-
cast, Data and Knowledge Eng., Vol.22, No.3,
pp.319–344 (1997).

20) Vaidya, N. and Hameed, S.: Scheduling Data
Broadcast in Asymmetric Communication En-
vironments, ACM/Baltzer Wireless Networks,
Vol.5, No.3, pp.171–182 (1999).

21) Xu, J., Lee, W. and Tang, X.: Exponential
Index: A Parameterized Distributed Indexing
Scheme for Data on Air, Proc. 2nd Int’l Conf.
on Mobile Systems, Applications, and Services
(ACM MobiSYS’04), pp.153–164 (2004).

22) Yee, W. and Navathe, S.: Efficient Data Ac-
cess to Multi-Channel Broadcast Programs,
Proc. ACM Conf. Information and Knowledge
Management (CIKM’03), pp.153–160 (2003).

23) Zipf, G.: Human Behaviour and the Princi-
ple of Least Effort: An Introduction to Human
Ecology, Addison Wesley Press, Cambridge,
Massachusetts (1949).

(Received June 20, 2006)
(Accepted October 5, 2006)

(Editor in Charge: Ushio Inoue)

Damdinsuren Amarmend
received his B.E. in computer
science from Mongolian Tech-
nical University, Mongolia, in
1996, and his M.E. degree in
computer science from Gunma
University, Japan, in 2003. He

is currently a Ph.D. student at the Depart-
ment of Computer Science, Gunma University.
His research interests include database systems,
specially parallel and distributed database sys-
tems.

Masayoshi Aritsugi received
his B.E. and D.E. degrees in
computer science and communi-
cation engineering from Kyushu
University, Japan, in 1991 and
1996, respectively. Since 1996,
he has been working at the Fac-

ulty of Engineering, Gunma University, Japan,
where he is now an Associate Professor. His re-
search interests include database systems and
parallel and distributed data processing. He is
a member of IPSJ, IEICE, IEEE-CS, ACM, and
DBSJ.

Yoshinari Kanamori re-
ceived his D.E. degree from To-
hoku University in 1975. Since
1991, he has been a Profes-
sor at the Department of Com-
puter Science, Gunma Univer-
sity. His research interests in-

clude database systems and image processing.
He is a member of IPSJ, IEICE, ACM, and
IEEE-CS.

