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An active database is a database system that can react to internal, as well as external,
database events. The reactive behavior of an active database is determined by a predefined
set of active database rules, along with a rule processing strategy. A common problem as-
sociated with active database systems is the possible non-termination of the active database
rules. Previous work on the analysis of the conditions required for the termination of active
database rules has only considered limited rule processing strategies. This paper proposes
an approach for automatically detecting the non-termination of active database rules using
a model checking technique. With this approach, a general framework for modeling active
database systems is first proposed. This framework is useful for analyzing the behavior of
rules with different rule processing strategies and for allowing the adoption of different con-
texts and different execution coupling modes for the active database rules. Based on the
proposed modeling framework, the termination property of active database rules with vari-
ous rule processing strategies is next checked using SPIN, a model checking tool. Through
experimental results, we demonstrated the feasibility of using this method.

1. Introduction

An active database 17) is a database system
that has the functionality to react to internal,
as well as external, database events. On the
other hand, a traditional database is limited to
responding to external events that can include
user queries or outside applications. Since 1980,
the extra functionality of an active database,
which allows the integration of reactive behav-
ior in a centralized and timely manner, has at-
tracted the attention of researchers and has led
to the development of a number of systems, in-
cluding Starburst 21), SQL-3 13), HiPAC 7), and
Chimera 4).

The reactive functionality of active database
systems can be described by rules, which have
three components: an event, a condition, and
an action. The event defines the trigger for the
given rule; the condition defines when the given
rule is activated; and the action defines the ac-
tion that must be taken based on the activated
rule. The behavior of an active database rule
system depends not only on a predefined set of
rules, but also on the rule processing strategy
that is adopted by the system. It is usually
difficult to predict the behavior based on the
interactions of the active database rules associ-
ated with a given rule processing strategy.
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One of the most common problems in an ac-
tive database system is the non-termination of
active database rules, since a given rule may in-
definitely trigger another rule. In general, de-
tecting the termination of active database rules
is known as the undecidable problem. Most
of the previous research 1),2),6),12),14),19),20) that
analyzed active database rules has focused on
static analysis and has provided the principal
conditions for the termination of rules, includ-
ing acyclicity in the trigger-graph of the rules 1).
However, static analysis cannot be used to pre-
dict or specify the undesirable behavior of ac-
tive database rules. In addition, previous work
on the termination analysis of active database
rules has only considered limited rule process-
ing strategies.

To remedy this gap, our paper proposes an
approach for automatically checking the termi-
nation of active database rules with different
rule processing strategies using a model check-
ing technique 5),10),15). Model checking is a ver-
ification technique that can exhaustively check
whether or not a finite state transition system
satisfies the temporal logic property. It is auto-
matically performed using the currently avail-
able model checkers.

Specifically, we propose a modeling frame-
work for constructing an abstract finite model
of an active database system with different
rule processing strategies. This model is para-
metric in several contexts and several coupling
modes used in the existing active database sys-
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tems 4),7),13),21). The model is also amenable to
verification by the model checker, SPIN 10). We
determine how to automatically check the ter-
mination property of the rules in the proposed
model using model checking.

Thus, the proposed method is the first termi-
nation checking method of active database rules
that is not limited to specific contexts and ex-
ecution coupling modes of the active database
system. Moreover, the proposed termination
checking of the active database rules is auto-
matically performed using model checking and,
if the termination property does not hold, one
can specify the undesirable behavior of the ac-
tive database rules by analyzing a counterexam-
ple output from the model checker. We believe
that the proposed approach can be applied and
extended for analyzing rule behaviors in various
active database systems with different features
of rule processing.

This paper is organized as follows. Section 2
introduces the rules, the rule processing strate-
gies of active database systems, and model
checking with SPIN. Section 3 explains the
proposed modeling framework, which can deal
with various contexts and execution coupling
modes. Section 4 describes how, based on the
proposed modeling framework, model checking
can be used to determine the termination prop-
erty of rules. Section 5 shows the experimen-
tal results obtained when the proposed method
is applied to a sample rule set with different
rule processing features. Section 6 briefly dis-
cusses the related work. Section 7 summarizes
the main conclusions that can be drawn from
the study.

2. Preliminaries

2.1 Active Database Rules
An active database system consists of a set of

rules that describe the desired reactive behav-
iors. An active database rule consists of three
components: an event, a condition, and an ac-
tion, with the following syntax:

ON[event ] IF[condition] DO[action].
Example 1 Figure 1 shows two sample

data tables, ‘Emp’, which contains the records
employee’s ‘id’ and employee’s ‘rank’, and
‘Bonus’, which contains the records employee’s
‘id’ and employee’s ‘amount’ of bonus. Now,
consider the following two rules, r1 and r2,
which are given in Fig. 2. The rules add
the following reactive behaviors to an active

Table Emp
id employee’s id

rank employee’s rank

Table Bonus
empid employee’s id
amount employee’s bonus

Fig. 1 Sample data tables.

r1

ON update(Emp(rank))
IF Emp(rank) mod 2 = 0
DO update(Bonus(amount))

Bonus(amount) = Bonus(amount) + 10

r2

ON update(Bonus(amount))
IF TRUE
DO update(Emp(rank))

Emp(rank) = Emp(rank) + 1

Fig. 2 Sample active database rules.

database system ☆: Rule r1 signifies that when-
ever Emp(rank), the rank of an employee, is up-
dated, Bonus(amount), the amount of the em-
ployee’s bonus, is increased by 10, if Emp(rank)
is even. Rule r2 signifies that whenever
Bonus(amount), the amount of the employee’s
bonus is updated, Emp(rank), the rank of the
employee is increased by 1. �

Active database rules are characterized by
two models: a knowledge model and an ex-
ecution model 8),17). The knowledge model
describes the structural characteristics of the
rules, while the execution model captures the
runtime characteristics of the rule processing.

The knowledge model is characterized by the
event type and action type, as well as the con-
text of the conditions and the actions. Event
types include data modification (e.g., insert and
update) and clock (e.g., at 13:00 every Mon-
day). Two or more events can be combined,
and this is also considered to be a single event.
Action types include data retrieval and modifi-
cation, transaction operations, such as commit
or abort, and an external call.

The execution model is characterized by the
conflict resolution policy, the scheduling policy,
and the coupling mode of the rules. When mul-

☆ The definition of rules, R1 and R2, given in Fig. 2, is
implicit in that the definitions of the rules are given
independently of which entries in the table’s tuples
are used for the events, the conditions, and the ac-
tions. Such an abstraction is used in the definition
of active database rules, since the explicit seman-
tics of the definitions are derived based on the rule
description languages.
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tiple rules are triggered and activated at the
same time, the conflict of rules is resolved based
on the numerical or relative priorities of the
rules according to the conflict resolution pol-
icy. Multiple rules are executed sequentially or
in parallel based on the scheduling policy.

In this paper, for simplicity, we will assume
that the event and action types are only data
modifications and that the rules and the trans-
actions are executed sequentially. These as-
sumptions have been made in previous research
papers 1),9),18).

2.2 Rule Processing of Active Data-
base Systems

Figure 3 shows the general abstract archi-
tecture of an active database system, which is
reproduced from Ref. 17). An active database
system consists of several principal components
(rectangles in the figure) and data stores (cir-
cles in the figure), as illustrated in Fig. 3. Once
a set of active database rules has been defined
in a rule base, an active database system per-
forms rule processing as follows:
• The Event Detector detects the events of

interest to the system. Data modification
events are noticed from the database.

• The Condition Monitor evaluates the con-
ditions of rules associated with the detected
events and stores the rules whose condi-
tions are evaluated to true in a conflict set.

• The Scheduler chooses and runs a rule from
the conflict set according to the conflict res-
olution policy.

• The Query Evaluator executes the data-
base queries, such as transaction queries
and conditions and actions resulting from
the rules. When evaluating such queries,
the query evaluator accesses not only the
current state of the database but also,
if necessary, past states, history, of the
database.

Fig. 3 General active database architecture.

The behavior of the active database rules de-
pends on the rule processing strategy, that is,
the knowledge and execution model of the rule
processing adopted by the system. Among the
characteristics of the knowledge and execution
model, the contexts and the coupling modes of
rules are important factors in determining the
termination of rules. Therefore, in this paper,
for the knowledge model, we focused on the rule
contexts, while for the execution model, we fo-
cused on the coupling modes of rules.

Context indicates, which state of a database
is used in the rule processing. Let DT , DE ,
DC , and DA denote the states when the cur-
rent transaction starts, the event occurs, the
condition is evaluated, and the action is exe-
cuted. In this paper, we consider the choices
in Table 1 as the contexts for the condition,
condition-context, and for the action, action-
context. These contexts are, in fact, used in
existing active database systems 4),7),13),21).

Execution coupling mode consists of the
event-condition mode and the condition-action
mode. The event-condition mode determines
when the condition is evaluated after the cor-
responding event has occurred. The condition-
action mode determines when the action is ex-
ecuted after the corresponding condition was
evaluated. The following coupling modes
are supported in current active database sys-
tems 4),7),13),21):
• Immediate, where the condition (action) is

evaluated (executed) immediately after the
event (condition) of the rule.

• Deferred, where the condition (action) is
evaluated (executed) anywhere within the
same transaction as the event (condition)
of the rule.

• Decoupled (or detached), where the condi-
tion (action) is evaluated (executed) as a
different transaction.

Table 1 Contexts.

Choices Condition-Context Action-Context
C1 DC DA

C2 DT DT

C3 DE DE

Table 2 Execution coupling modes.

Modes Event-Condition Condition-Action
M1 Immediate Immediate
M2 Immediate Deferred
M3 Deferred Immediate
M4 Deferred Deferred
M5 Decoupled Decoupled
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Fig. 4 Abstract model of an active database system.

In this paper, we will consider the five choices
given in Table 2 for the event-condition mode
and the condition-action mode.

2.3 Model Checking and SPIN
Model checking is a verification technique

that exhaustively checks whether or not a sys-
tem modeled using a finite state transition sys-
tem satisfies the property expressed by the tem-
poral logic formula. Since, given a transition
system and a temporal logic formula, model
checking can be automatically and rapidly per-
formed using existing tools, it has recently re-
gained the attention of researchers. Model
checking is also helpful in locating system er-
rors, since whenever a system model does not
satisfy a property formula, a counterexample
that gives the system behavior that violates the
property is given as the output.

SPIN 10) is known as one of the most power-
ful model checkers. An input model to SPIN is
described in Promela (Process Meta-Language)
which has C-like syntax. A Promela model
consists of one or more asynchronous pro-
cesses with data objects, non-deterministic con-
structs, and communication primitives. Pro-
cesses can communicate via synchronous and
asynchronous message passing with buffered
channels or shared memory. SPIN verifies the
claims specified by the Linear Temporal Logic
(LTL) formulae or process invariants, which can
express the basic safety and liveness properties.
SPIN performs on-the-fly verification and sup-
ports several useful state search and compres-
sion strategies. With our approach, we used
SPIN because of its powerful verification capa-
bility. Furthermore, SPIN was used since an ac-

tive database system can easily be modeled as
an asynchronous process system using Promela.

3. Modeling of Active Database Sys-
tems under Different Rule Process-
ing Strategies

3.1 Basic Modeling Framework
Figure 4 illustrates our abstract model of

an active database system. We constructed
the model based on the general active database
architecture in Fig. 3, by adding the model
of transactions. This transaction model is
necessary for checking the behavior of active
database rules. As will be explained below, the
proposed model is thus slightly different from
the architecture in Fig. 3. The difference lies
only in the facility of modeling and abstraction
and thus does not affect the generality of the
proposed modeling framework.

The state of the proposed model is deter-
mined from the states of four types of data stor-
age illustrated using circles in the figure, DB,
DB p, RuleBase, and ConflictSet, and buffered
channels ch query, ch event, ch cond, ch action
where
• DB denotes the current database state;
• DB p denotes the list of the database past

states;
• RuleBase denotes the defined set of rules,
• ConflictSet denotes the current conflict set

of rules,
• ch event denotes the channel buffering de-

tected events,
• ch cond denotes the channel buffering con-

ditions to be evaluated, and
• ch action denotes the channel buffering ac-
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tions to be executed.
The proposed model consists of the follow-

ing four processes (illustrated using rectangles
in the figure): Manager, Scheduler, Evaluator,
and Transaction. The Process Manager models
the behavior of the event detector and the con-
dition monitor. The Process Scheduler mod-
els the behavior of the scheduler, while the
process Evaluator models the behavior of the
query evaluator of the active database system.
The Process Transaction models the users or
the applications that send transactions to the
database system. The processes read and up-
date the data storage and buffered channels,
as well as communicate with each other via
synchronous or asynchronous message passing
through the channels. The behavior of each
process is as follows:

Process Transaction
This process generates and sends the trans-

action queries (data operations) to the buffered
channel, ch query. The Process Evaluator
will receive the transaction queries via asyn-
chronous message passing through the channel.
In the model, we allow the transaction to con-
sist of multiple data modification operations.
However, we fixed the length of the transactions
so that the state model is finite.

Process Manager
This process cycles through the following pro-

cedure:
(1) Detect an event occurrence via asyn-

chronous message passing using the
buffered channel ch event.

(2) Trigger rules associated with the de-
tected event by referring to RuleBase.

(3) Request the evaluation of conditions for
the triggered rules to the Process Evalua-
tor. The identifier for the rule to be eval-
uated is buffered to the channel ch cond.

(4) The result of the evaluation is received
from the Process Evaluator via asyn-
chronous message passing through the
channel, ch answer. After receiving the
results of the evaluation, the rules, whose
conditions evaluated to true, are sent to
ConflictSet.

(5) Request the execution of rules in Con-
flictSet to the Process Scheduler via syn-
chronous message passing using the chan-
nel, ch schedule.

Process Scheduler
This process non-deterministically chooses a

rule among the rules having the highest priority

from the ConflictSet and sends a request to the
Process Evaluator to execute the action of the
rule. The identifier of the rule to be activated
is sent via asynchronous message passing using
the buffered channel, ch action.

Process Evaluator
This process evaluates the following three

kinds of data operations: transaction queries
requested by the Process Transaction, rule con-
ditions requested by the Process Manager, and
rule actions requested by the Process Sched-
uler.
(a) Evaluation of the transaction queries:

After receiving a transaction query from
the channel, ch query, the query is eval-
uated and a new event corresponding
to the query is sent to the channel,
ch event. This evaluation procedure is
finished when an acknowledgment mes-
sage is received from the synchronous
channel called ack eval.

(b) Evaluation of the rule conditions: Af-
ter receiving the identifiers of the rules
from the channel, ch cond, the rule con-
ditions are evaluated, and the results of
the evaluation are sent to the channel
ch answer. The evaluation procedure is
finished when an acknowledgment mes-
sage is received from the channel called
ack exe.

(c) Execution of the rule actions: After re-
ceiving the rule identifier from channel
ch action, the rule action is executed, and
a new event corresponding to the action
is sent to channel ch event. This evalu-
ation procedure is finished when an ac-
knowledgment message is received from
the channel ack eval.

To evaluate these three kinds of operations,
this process accesses the data from either DB
or DB p. In the case of (a) and (c), a new
event may occur after the evaluation. In these
two cases, the acknowledgment is received from
channel ack eval after the Process Manager no-
tices the new event and sends the additional
rules triggered by the event to ConflictSet. In
the case of (b), the acknowledgment is received
from channel ack exe after the Process Sched-
uler has sent the activated rule to the channel
ch action. Waiting for the acknowledgment pre-
vents the evaluation procedures of (a), (b), and
(c) from being intermingled with the other pro-
cedures.
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3.2 Modeling Different Contexts and
Execution Coupling Modes

The basic framework for modeling an active
database system was proposed in Section 3.1,
and the modeling framework is applicable to
active database systems with different rule pro-
cessing strategies. In this section, we explain
how to model active database systems with
the contexts given in Table 1 and the coupling
modes given in Table 2, based on the modeling
framework.

Modeling of Contexts
Let us examine the condition-context and the

action-context. We consider the three choices,
C1, C2, and C3, shown in Table 1. In our mod-
eling framework, as shown in Fig. 4, the Pro-
cess Evaluator reads the current and/or the
past database states when evaluating data op-
erations. Active database systems with C1, C2,
or C3 are then straightforwardly modeled by se-
lecting the state of the database to be read by
the Process Evaluator.

In the case of C1, DC , the state when the
condition is evaluated, is the condition-context
state, and DA, the state when the action is ex-
ecuted, is the action-context state. Hence, to
model C1, we let the Process Evaluator access
DB, that is, the current state of the database
when evaluating conditions and executing ac-
tions.

In the case of C2, DT , the state when the
transaction starts, is used for the condition-
context and the action-context. Hence, to
model C2, we store the state when the cur-
rent transaction starts in DB p and let the Pro-
cess Evaluator access DB p when evaluating the
conditions and executing the actions.

In the case of C3, DE , the state when the
corresponding event occurs, is used for the
condition-context and the action-context. To
model C3, we store the state when each event
occurs in DB p. When evaluating a condition
or a rule action, we let the Process Evaluator
access the state of the DB p corresponding to
the event of the rule.

Modeling of Coupling Modes
Let us examine the coupling modes that

consist of the event-condition mode and the
condition-action mode. We consider the five
choices, M1, M2, M3, M4, and M5, given in
Table 2. In our model framework, the Pro-
cess Evaluator performs three types of evalu-
ations: (a) the transaction query evaluation,
(b) the condition evaluation, and (c) the ac-

tion execution. Operations for (a), (b), and
(c) are respectively received from the buffered
channels ch query (from the Process Transac-
tion); ch cond (from the Process Manager); and
ch action (from the Process Scheduler). As
shown in Table 3, an active database system
with M1, M2, M3, M4, or M5 is then modeled
by assigning priorities to the three channels to
determine the order of receiving operations in
the Process Evaluator.

In the case of M1, the coupling modes for
both the event-condition and the condition-
action are Immediate, and thus the condition
(the action) has to be evaluated (executed) im-
mediately after event occurrence (the condi-
tion evaluation). Mode M1 is modeled by giv-
ing a higher priority to channels ch cond and
ch action than to channel ch query.

In the case of M2, the event-condition mode
is Immediate and the condition-action mode
is Deferred. Thus the condition has to be
evaluated immediately after event occurrence,
while the action has to be executed within the
same transaction. Thus, mode M2 is mod-
eled as follows. Since the event-condition mode
is Immediate, the higher priority is given to
channel ch cond than to channels ch action and
ch query. T end in the table denotes a Boolean
variable that is true during the period after the
current transaction is completed and before the
next transaction starts. Since the condition-
action mode is Deferred, the higher priority
is given to channel ch action than to channel
ch query when T end is true. This guarantees
that the action is executed within the same
transaction.

In the case of M3, the event-condition mode
is Deferred and the condition-action mode is
Immediate. Thus, mode M3, like mode M2, is
modeled as follows. The higher priority is given
to channel ch action than to channels ch cond
and ch query. The higher priority is given to
channel ch cond than channel ch query when
T end is true.

In the case of M4, the event-condition and
the condition-action modes are both Deferred.
Mode M4 is modeled by giving a higher priority
to channels ch cond and ch action than channel
ch query when T end is true.

In the case of M5, the event-condition and the
condition-action modes are Decoupled. Thus
the condition (action) is evaluated (executed)
as a different transaction after terminating the
transaction associated with the corresponding
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event (condition). Mode M5 is modeled by giv-
ing a higher priority to channel ch query than to
channels ch cond and ch action if T end is false;
otherwise a higher priority is given to channels
ch cond and ch action than to channel ch query.

4. Termination Checking of Active
Database Rules

In order to verify the behavior of the active
database rules, we first translate the proposed
model described in Section 3 into the equivalent
Promela model. Then, we check the termina-
tion property of rules using the Promela model
and SPIN.

4.1 Promela Model of Active Data-
base Rule Systems

The proposed model for the active database
systems can be easily translated to an equiv-
alent Promela model. We briefly illustrate the
translation of our active database system model
with the sample rule sets, R1 and R2, as shown
in Example 1, the context, C1, and the coupling
mode, M1. Sample Promela code is given in
Appendix A. (For more details about Promela
syntax, see Ref. 10).)

Initialization
Lines 1 to 5 define the number of rules, the

size of the conflict set, the maximum num-
ber of operations in a transaction, the maxi-
mum number of transactions, and the size of
buffered channels. Note that the state space of
a Promela model is required to be a minimum
in order to avoid the state explosion problem
and hence to be verifiable by model checking.
In the example Promela code, we set the values
of variables in Lines 2 to 5 to be a minimum
level required for checking the termination of
the example rule set R1 and R2. These values
should be determined to be suitable for check-
ing a given target rule set.

Lines 7 to 26 declare global variables and
user-defined types. The variable, emp rank,
represents the current value of the record,
Emp(rank), while the variable, bonus amount,
represents the current value of the record,
Bonus(amount). For simplicity, in this exam-
ple, we abstracted a data model in such a way
that the tables Emp and Bonus contain one tu-
ple with the same employee’s id. (In the case
of C2 or C3, DB p is necessary, and thus we
prepared a buffered channel, which stores the
past record states, DT or DE .) The rule set,
rules[N], represents RuleBase, while the rule
buffer, cs, represents ConflictSet. User-defined

Table 3 Priorities of channels under different
coupling modes.

Modes Priorities of Channels
M1 ch query < ch cond = ch action
M2 ¬T end → ch query = ch action < ch cond

T end → ch query < ch action < ch cond
M3 ¬T end → ch query = ch cond < ch action

T end → ch query < ch cond < ch action
M4 ¬T end → ch query = ch cond = ch action

T end → ch query < ch cond = ch action
M5 ¬T end → ch cond = ch action < ch query

T end → ch query < ch cond = ch action

types, event type and rule type, represent re-
spectively the types of events and rules.

Lines 28 to 40 declare the communication
channels in Fig. 4. In order to model the chan-
nel priorities in Table 3, channels ch query,
ch event, ch cond, ch answer, and ch action
are declared as asynchronous communication
channels with a fixed buffer size. In our
model, multiple messages (data operations or
rules) are needed to be buffered in channels
ch cond, ch answer, and ch action but not in
ch query and ch event. Hence, in the example
Promela program, the buffer sizes of ch query
and ch event are set to one, while the buffer
sizes of ch cond, ch answer, and ch action are
set to the value of size buffer. Other chan-
nels ch schedule, ack eval, and ack exe are
declared as synchronous channels, because they
need only to pass a message but not to buffer a
message.

Line 42 declares the Boolean variable, T end,
in Fig. 4.

Lines 45 to 77 declare the initial process.
The initial process declares RuleBase and cre-
ates the process for Transaction, Manager,
Scheduler and Evaluator. Promela processes
are executed concurrently and scheduled non-
deterministically. Using d step and atomic
statements reduces the state space and prevents
the statements that are to be executed from be-
ing interfered with by other processes.

Process Transaction
Lines 79 to 103 declare the Process Trans-

action. This process chooses the data opera-
tion for the transaction and sends it to chan-
nel ch query. The last operation of the trans-
action is specially marked so that the Pro-
cess Evaluator can know the tail of the cur-
rent transaction. In Promela execution seman-
tics, each statement is either blocked or exe-
cutable. As for the do-statement and the if-
statement, if more than one of these state-
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ments is to be executable, that is, the guards of
the statements are true, then one of the state-
ments is non-deterministically selected and ex-
ecuted. In checking the model, SPIN exhaus-
tively explores all possible behaviors. The Pro-
cess Transaction models the possible transac-
tions by selecting the transaction operations
non-deterministically.

Process Manager
Lines 105 to 174 declare the Process Manager.

When an event is received from the channel
ch event, this process finds the rules in rules
triggered by the event and sends the identifiers
for the triggered rules to the channel ch cond.
When the evaluation results are received from
the channel ch answer, this process sends to
cs the identifiers for the rules whose conditions
are true. After both procedures, T end is set to
false if cs, ch cond, and ch action are empty,
that is, there are no rules to be evaluated or ex-
ecuted; otherwise a scheduling request is sent to
the channel ch schedule.

Process Scheduler
Lines 176 to 197 declare the Process Sched-

uler. When a scheduling request is received
from the channel ch schedule, this process
non-deterministically chooses a rule from cs
and sends the identifier for this rule to the chan-
nel ch action. In Promela, a non-deterministic
receive operation from a buffered channel is de-
scribed using the operator ‘??’.

Process Evaluator
Lines 199 to 262 declare the Process Eval-

uator. This process receives data operations
from the three channels ch query, ch cond
and ch action, and evaluates the operations
received. The receiving order from the three
channels follows the channel priority in Ta-
ble 3 and then the different execution coupling
modes can be easily modeled as explained in
Section 3.2.

In the case of M1, the channel priority is
ch query < ch cond = ch action in Table 3.
This priority is expressed by Lines 208, 230,
and 246. Lines 208, 230, and 246 respec-
tively represent the conditions of receiving op-
erations from the channels ch query, ch cond
and ch action. Line 208 signifies that an op-
eration is received from the channel ch query
if the channel ch query is not empty and
the both channels ch cond and ch action are
empty. This implies that ch query < {ch cond,
ch action}. On the other hand, Line 230 (246)
signifies that an operation is received from the

channel ch cond (ch action) only if the chan-
nel is not empty. This implies that ch cond
≥ {ch query, ch action} (ch action ≥ {ch query,
ch cond}). Therefore, by Lines 208, 230, and
246, the channel priority for M1 can be ex-
pressed. Promela models for M2 to M5 are
also easily obtained by changing the lines in this
way, according to the channel priorities in Ta-
ble 3.

4.2 Termination Checking
In our Promela model of an active database

system, we can easily express the termina-
tion property for the rules using Promela’s
progress label, as shown in Lines 140 and 164
of the Promela code in Appendix A.

137 if

138 :: T_end==1 && (len(ch_cond)==0)

139 && (len(ch_action)==0) ->

140 progress1: T_end = 0

141 :: else -> skip

142 fi;

In SPIN, progress is the label name for
specifying the liveness properties. A statement
marked by the progress label is required to be
visited an infinite number of times in any infi-
nite execution sequence. In our Promela code,
the statements labeled with progress are exe-
cutable if and only if there remain no rules to be
evaluated or executed. Therefore, this implies
that rule processing is terminated. If there is an
execution sequence where the rule processing is
never terminated, the statement labeled with
progress is not visited and SPIN detects an
error, as well as reporting the counterexample
execution sequence.

Example 2 Appendix B shows the result
of checking whether there are any non-progress
execution cycles for the sample Promela model
given in Appendix A. The result shows that,
for the sample model, no errors are detected
and, thus, rules, R1 and R2, under the Con-
text, C1, and Coupling mode, M1, satisfy the
termination property. �

Note that, for rules R1 and R2, a previous
static checking method in 1) detects a cycle rep-
resenting a potential non-termination. Differ-
ently from the previous method, the proposed
model checking method can answer that rules
R1 and R2 indeed terminate mutual triggering
as a result of an exhaustive search on the pro-
posed finite active database model, since condi-
tion evaluation for rules is explicitly considered
in our modeling.
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(a) Termination Property

M1 M2 M3 M4 M5

C1 True True False False False
C2 False False False False False
C3 True True True True True

(b) Time and Memory needed for Model Checking

M1 M2 M3 M4 M5

C1 Time (s) 0.320 0.400 0.160 1.370 1.410
Memory (Mbyte) 325.886 326.910 324.657 339.505 339.300

C2 Time (s) 0.030 0.030 0.050 0.030 0.070
Memory (Mbyte) 322.302 322.302 322.302 322.302 322.302

C3 Time (s) 0.450 0.710 0.700 0.890 0.730
Memory (Mbyte) 327.934 331.723 331.62 333.976 332.337

Fig. 5 Experimental results.

Note that in our approach each data item in-
volved in rule processing is explicitly modeled.
Because of this fine grained representation and
of the exhaustive state search with the model
checking technique, the proposed method can
carry out exact termination detection, which
means that it does not allow any false nega-
tives.

SPIN verifies the claims specified by the
LTL 11) formulae in addition to the process
invariants. Therefore, other desirable safety
properties can also be checked using our
Promela model. For example, suppose that the
Query Evaluator must answer a request from
the Condition Manager in active database sys-
tems. In our model, this property is expressed
using LTL as follows: [] (nempty(ch cond)
-> <> nempty(ch answer)), which then can
be verified using SPIN.

5. Experiment

In the experiment, we checked the termina-
tion property of the sample rules, R1 and R2,
in Example 1 for different contexts and cou-
pling modes by applying the proposed method.
(In previous works 1),9),18), using almost iden-
tical rules as R1 and R2, termination checking
had been performed assuming only a specific
context and coupling mode.)

First, we constructed the Promela models for
every pair of contexts, C1 to C3, and coupling
modes, M1 to M5, as explained in Section 4.
Next, using SPIN, we checked the termination
property of the Promela models. For model
checking, we used a Linux workstation with an
Intel Xeon 3.0 GHz and 4GB memory.

Figure 5 shows the experimental results.
Figure 5-(a) shows the result of model checking
the termination property for each pair of con-
texts and coupling modes. Based on the results,

we know whether or not, depending on the con-
texts and coupling modes, a given rule set sat-
isfies the termination property. For the cases
where an error is detected by the model check-
ing, we can obtain the counterexample trace
that results in the rule processing to violate the
termination property.

When the context is C1 and the coupling
mode is M3, M4, or M5, the termination of
rules r1 and r2 does not hold in the following
counterexample trace: After the execution of
a transaction query that updates the value of
rank to an even number, rule r1 and rule r2,
triggered by r1, are consecutively executed, re-
sulting in an odd value of rank. Subsequently,
rule r1 triggered by r2 is executed after another
transaction query updated the value of rank to
an even number. In this way r1 and r2 are ex-
ecuted indefinitely. This can happen when the
context is C1 and the event-condition mode is
not Immediate, that is, the coupling mode is
M3, M4, or M5.

If the context is C2, the termination of rules
r1 and r2 does not hold regardless of coupling
modes. The counterexample trace is as follows:
The value of rank, x, is even, when a transaction
starts. After a query of a transaction updated
the value of rank, rule r1 is executed and there-
after rule r2 triggered by r1 is executed. Subse-
quently, r1 and r2 are indefinitely executed by
turns, since value x of rank when the transac-
tion started is used for the condition evaluation
of r1 and thus r1 is activated repeatedly.

Figure 5-(b) shows the time and memory re-
quired for model checking. For all cases, less
than 1.5 seconds was needed, with a memory
usage of about 330 Mbytes.

6. Related Work

As mentioned in Section 1, termination
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checking of active database rules is generally
an undecidable problem. Most previous works
on analyzing active database rules have focused
on static analysis 1),2),6),12),14),19),20).

Aiken, et al. 1) first presented the concept of
a trigger-graph of rules and the approach us-
ing the trigger-graph basically predicts possi-
ble non-termination of active database rules by
investigating sufficient conditions for termina-
tion, such as acyclicity in the trigger-graph.

Thereafter, in order to improve the accuracy
of predicting potential non-termination, several
techniques like the refinement of the trigger-
graph and the investigation of more accurate
termination conditions for the trigger-graph ap-
proach have been proposed 2),6),12),14),19),20).

However, to the best of our knowledge, no
previous trigger-graph approaches have pre-
sented a general method that can deal with
various contexts and coupling modes including
immediate, deferred, and decoupled, unlike our
proposed method. For example, only the decou-
pled coupling mode was addressed in Ref. 6).

Most previous work has addressed the prob-
lem of analyzing the behaviors of single events;
however, there is little work on the verification
of the complex behavior of composite events.
An exception is Ref. 19), where termination
analysis for composite events is addressed. Al-
though for simplicity we assumed single events
in the paper, it is not difficult to deal with com-
posite events in the proposed approach. Specifi-
cally, such composite events can be described in
Promela using, for example, user-defined record
structures.

Unlike static methods previously proposed,
our approach automates rule analysis with no
need to create a new program. By using an
existing model checking tool, not only the ver-
ification result (whether terminating or non-
terminating) but also the non-terminating rule
execution can be automatically obtained.

Model checking has been applied for ac-
tive database rule analysis in two previous
works 9),18). However, so far, the general mod-
eling framework applicable to active database
systems with various rule processing strategies
has not been considered.

In Ref. 9), Ghazi and Huth presented an ab-
stract model framework for active database
management systems and implemented a pro-
totype of the Promela code generator. In their
model, an active database system was simply
modeled as two concurrent processes called sys-

tem and environment. In their model, questions
dealing with how to model data operations for
query evaluation, condition evaluation, and ac-
tion execution were not addressed.

In Ref. 18), Ray, et al. verified the termina-
tion of rules using the model checker SMV 15).
Their model assumed that only specific execu-
tion semantics were used for the rules, that is,
a transaction consisted of a single data oper-
ation, that rule processing was performed only
after a transaction was committed, and that the
contexts for the condition and the action were
limited to the current state of the data.

7. Conclusion

This paper’s main contribution is a new
method to model check active database rules
with different contexts and coupling modes.
First, we proposed the modeling framework,
which is applicable to various active database
systems with different contexts and coupling
modes. Next, we presented how to translate our
model to Promela and how to check the rule be-
havior using the SPIN model checker. Finally,
using sample rules, we showed that the pro-
posed method can efficiently check the termi-
nation of the rules with different contexts and
coupling modes. To the best of our knowledge,
this is the first time that the rule termination
has been checked for context cases, C2 to C3,
and coupling mode cases, M2 to M5.

The main difficulty in model checking active
database rules is how to make an appropriate fi-
nite state model that represents the behavior of
the active database rules. Since general model
checking tools can only handle finite state mod-
els that do not cause state explosion, it is nec-
essary to make an efficient finite abstraction of
an active database system model.

Since our active database model incorporates
some degree of abstraction, the proposed ter-
mination checking is not an exact method, like
the previous works on rule termination analy-
sis. However, the proposed method is more ac-
curate than, for example, the previous work in
Refs. 1), 12), 14), in the sense that the proposed
method (1) can predict the termination of rules
that are decided to terminate by the previous
work, (2) can predict the termination of rules
that are predicted to possibly non-terminate by
the previous work, and (3) can predict the non-
termination of rules that are decided not to ter-
minate by the previous work and can further-
more specify undesirable behavior of the rules.
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7.1 Discussion and Further Work
Here we discuss some questions raised by our

approach and further works.

• How accurate is the proposed method, com-
pared to the previous trigger-graph ap-
proach?

Because of the very different nature of the
proposed approach and the trigger-graph ap-
proach, they have different strength and weak-
ness with respect to the accuracy.

Although the proposed method has advan-
tages over the trigger-graph approach as de-
scribed in Section 6, it has also weakness with
respect to accuracy. Specifically, the accuracy
of the proposed method is suffered from the size
of the model, since model checking tools can
only handle finite state models of limited size.

Thus we would conclude that our approach
can be best utilized, by using it together with
the trigger-graph approach in a complementary
fashion.

• What is the advantage of using the proposed
method for actual active database systems?

The functionality of active database rules
has started attracting more attention, not
only in the traditional database systems area
but also in the field of various databases
and applications, for example, XML 16), sensor
databases 22), etc. The proposed approach is
intended not to depend on particular settings
and thus can be helpful for rule analysis in var-
ious environments with different rule contexts
and execution semantics.

Moreover, the proposed approach can be
useful for complementing the previous meth-
ods. In the cases where further analysis is
needed after the conventional methods pre-
dicted the potential non-termination, the pro-
posed method can be used for a more detailed
analysis, thus improving the accuracy of detect-
ing non-termination of active database rules.

• How well does the proposed method scale?

The scalability of the proposed method de-
pends on the state space size of the active
database model and the verification power of
the model checking tool. The state space size
of the active database model is determined from
many factors such as the number of rules, the
type of events, the complexity of the conditions,
etc. Consequently, the quantitative evaluation
of scalability of the proposed method is not

easy.
Our future work will evaluate the applicabil-

ity of the proposed model through case studies
using actual active database rules. Many active
database rules can be set in active databases.
We conjecture that, even in such cases, the rules
that must be checked can be separated into
small-to-moderate sized groups so that the pro-
posed method can handle each of these groups
of rules. We also anticipate that model check-
ing tools will be continuously improved become
to handle more complex system models.

Applying model checking of an infinite be-
havior model 3) to termination analysis of ac-
tive database rules is also an interesting topic
for further study.
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Appendix

A.1 Example Promela Program

1 #define num_R 2 /*number of rules*/

2 #define num_CS 4 /*size of the conflict set*/

3 #define N 2 /*maximum number of operations in a transaction*/

4 #define M 2 /*maximum number of transitions*/

5 #define size_buffer 4 /*size of buffered channels*/

6

7 mtype = {update,emp,rank,bonus,amount};

8

9 byte emp_rank; /*current value of Emp(rank) in DB*/

10 byte bonus_amount; /*current value of Bonus(amount) in DB*/

11

12 typedef event_type{ /*type of events*/

13 mtype operation;

14 mtype table;

15 mtype field;

16 byte m;

17 };

18

19 typedef rule_type{ /*type of rules*/

20 event_type event;

21 bool condition;

22 event_type action;

23 };

24 rule_type Rules[num_R]; /*RuleBase: Set of rules*/

25

26 chan CS = [num_CS] of {byte}; /*ConflictSet*/

27

28 /*channels*/

29 chan ch_query = [1] of {bool,mtype,mtype,mtype,byte};

30 /*{1 iff end of transaction,operation,table,field,value}*/

31 chan ch_event = [1] of {mtype,mtype,mtype,byte};

32 /*{operation,table,field,value}*/

33 chan ch_cond = [size_buffer] of {byte}; /*{rule-id}*/

34 chan ch_answer = [size_buffer] of {byte,bool};

35 /*{rule-id,evaluation-result}*/

36 chan ch_schedule = [0] of {bool};

37 chan ch_action = [size_buffer] of {byte}; /*{rule-id}*/

38

39 chan ack_eval = [0] of {bool};

40 chan ack_exe = [0] of {bool};

41

42 bool T_end;

43 /*TRUE after queries of the current transition were completed*/

44

45 init

46 {

47 /*declare RuleBase*/

48 d_step{

49 Rules[0].event.operation = update;

50 Rules[0].event.table = emp;

51 Rules[0].event.field = rank;

52 Rules[0].event.m = 1;

53 Rules[0].condition = 1;

54 Rules[0].action.operation = update;

55 Rules[0].action.table = bonus;

56 Rules[0].action.field = amount;

57 Rules[0].action.m = 10;

58

59 Rules[1].event.operation = update;

60 Rules[1].event.table = bonus;

61 Rules[1].event.field = amount;

62 Rules[1].event.m = 1;

63 Rules[1].condition = 0;

64 Rules[1].action.operation = update;

65 Rules[1].action.table = emp;

66 Rules[1].action.field = rank;

67 Rules[1].action.m = 1;

68 };

69

70 /*run processes*/

71 atomic{

72 run Transaction();

73 run Manager();

74 run Scheduler();

75 run Evaluator()

76 }

77 }

78

79 proctype Transaction(){
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80

81 byte n; /*current number of operations in a transaction*/

82 byte m; /*current number of transactions*/

83 bool tail; /*TRUE for the last operation of a transaction*/

84

85 end:do

86 :: m<M ->

87 atomic{

88 n++;

89 if

90 :: n<N -> tail=0 /*not tail of a transaction*/

91 :: n<=N -> tail=1; n=0; m++ /*tail of a transaction*/

92 :: else -> skip

93 fi;

94 /*select a data operation nondeterministically and

95 buffer it as a query of a transaction to ch_query*/

96 if

97 :: ch_query!tail,update,emp,rank,1

98 :: ch_query!tail,update,bonus,amount,1

99 fi

100 }

101 :: break

102 od

103 }

104

105 proctype Manager(){

106

107 mtype ev_operation,ev_table,ev_field;

108 byte ev_m, i;

109 bool trg; /*TRUE if any rule is triggered*/

110 bool result; /*evaluation result*/

111 end:do

112 :: ch_event?ev_operation,ev_table,ev_field,ev_m;

113 /*receiving an event*/

114 atomic{

115 i=0; trg = 0;

116 do /*find Rules triggered by the event*/

117 :: (i<num_R)->

118 if

119 :: ev_operation==Rules[i].event.operation

120 && ev_table==Rules[i].event.table

121 && ev_field==Rules[i].event.field ->

122 /*request condition evaluation to Evaluator*/

123 ch_cond!i; trg = 1;

124 i++

125 :: else -> i++

126 fi

127 :: (i>=num_R) -> break

128 od;

129 };

130 if

131 :: (trg==0) ->

132 /*if ConflictSet is empty and no rules to be evaluated

133 or executed remain, set T_end to FALSE,

134 otherwise call Scheduler*/

135 if

136 :: empty(CS) ->

137 if

138 :: T_end==1 && (len(ch_cond)==0)

139 && (len(ch_action)==0) ->

140 progress1: T_end = 0

141 :: else -> skip

142 fi;

143 ack_eval!1

144 :: nempty(CS) -> ch_schedule!0

145 fi

146 :: else -> ack_eval!1

147 fi

148 :: nempty(ch_answer) -> /*receiving evaluation results*/

149 atomic{

150 do

151 /*add rules evaluated to true to ConflictSet*/

152 :: nempty(ch_answer) ->

153 ch_answer?i,result;

154 if

155 :: result -> CS!i

156 :: else -> skip

157 fi

158 :: empty(ch_answer) -> break

159 od

160 };

161 /*if ConflictSet is empty and no rules to be executed

162 remain, set T_end to FALSE, otherwise call Scheduler*/

163 if

164 :: empty(CS) ->

165 if

166 :: T_end==1 && (len(ch_action)==0) ->

167 progress2: T_end = 0

168 :: else -> skip

169 fi;

170 ack_exe!1

171 :: nempty(CS) -> ch_schedule!1

172 fi

173 od

174 }

175

176 proctype Scheduler(){

177

178 byte id; /*id of a rule to be executed*/

179 bool b;

180

181 end:do

182 /*nondeterministically choose a rule to be executed

183 from ConflictSet and send a request to Evaluator*/

184 :: atomic

185 {

186 ch_schedule?b ->

187 do

188 :: nempty(CS) -> CS??id; ch_action!id

189 :: empty(CS) -> break

190 od;

191 if

192 :: b==0 -> ack_eval!1

193 :: b==1 -> ack_exe!1

194 fi

195 }

196 od

197 }

198

199 proctype Evaluator(){

200

201 mtype ev_operation,ev_table,ev_field;

202 byte ev_m;

203 byte id; /*id of a rule to be evaluated or executed*/

204 bool tail;

205

206 end:do

207 :: /*(a) evaluation of query*/

208 nempty(ch_query) && empty(ch_cond) && empty(ch_action)

209 ->

210 atomic{

211 /*receiving a query from Transaction*/

212 ch_query?tail,ev_operation,ev_table,ev_field,ev_m;

213 /*if the query is the tail of the transaction,

214 set T_end to 1*/

215 if

216 :: tail -> T_end = 1

217 :: else -> skip

218 fi;

219 /*evaluate the query and notice an event to Manager*/

220 if

221 :: ev_table==emp -> emp_rank = emp_rank+ev_m

222 :: ev_table==bonus ->

223 bonus_amount = bonus_amount+ev_m

224 :: else -> break

225 fi;

226 ch_event!ev_operation,ev_table,ev_field,ev_m;

227 ack_eval?1

228 }

229 :: /*(b) evaluation of condition*/

230 nempty(ch_cond) ->

231 atomic{

232 do

233 /*receiving the id of a rule to be evaluated*/

234 :: empty(ch_cond) -> break

235 :: nempty(ch_cond) ->

236 ch_cond?id;

237 /*evaluate the condition and send the result*/

238 if

239 :: id==0 -> ch_answer!id,(emp_rank % 2 == 0)

240 :: id==1 -> ch_answer!id,1

241 fi

242 od;

243 ack_exe?1

244 }

245 :: /*(c) execution of action*/

246 nempty(ch_action) ->

247 atomic{

248 /*receiving the id of a rule to be executed*/

249 ch_action?id;

250 /*execute the action and notice an event to Manager*/

251 if

252 :: id==0 -> bonus_amount = bonus_amount+ev_m

253 :: id==1 -> emp_rank = emp_rank+ev_m

254 :: else -> break

255 fi;

256 ch_event!Rules[id].action.operation,

257 Rules[id].action.table,Rules[id].action.field,

258 Rules[id].action.m;

259 ack_eval?1

260 }

261 od

262 }

A.2 Example Output of SPIN

% ./pan -l

(Spin Version 4.2.6 -- 27 October 2005)

+ Partial Order Reduction

Full statespace search for:

never claim +

assertion violations + (if within scope of claim)

non-progress cycles + (fairness disabled)

invalid end states - (disabled by never claim)

State-vector 156 byte, depth reached 808, errors: 0

27741 states, stored (41570 visited)

73537 states, matched
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115107 transitions (= visited+matched)

127857 atomic steps

hash conflicts: 1445 (resolved)

Stats on memory usage (in Megabytes):

4.550 equivalent memory usage for states (stored*(State-vector + overhead))

3.877 actual memory usage for states (compression: 85.21%)

State-vector as stored = 132 byte + 8 byte overhead

2.097 memory used for hash table (-w19)

320.000 memory used for DFS stack (-m10000000)

319.824 other (proc and chan stacks)

0.088 memory lost to fragmentation

325.886 total actual memory usage
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