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Studying mutual context of grasp types and object
attributes in hand manipulation activities

CaiMinjie1,a) Kitani Kris2,b) Sato Yoichi1,c)

Abstract: Recognizing hand grasp types and object attributes are important in understanding human hand manipula-
tion activities. However, the recognition tasks are challenging as hands and objects are often occluded by each other
during interactions. We observe that there is strong correlation between grasp types and object attributes, which can
serve as mutual context in recognition. In this paper, we propose an unified model in which contextual relationship
between grasp types and object attributes are studied. First, we develop a novel method to extract probabilistic informa-
tion about grasp types and object attributes from still images in which hand-object interactions are recorded. We then
explore the contextual relationship between grasp types and object attributes and show how the context information is
used to boost the recognition of both. On public cooking datasets involving egocentric hand manipulation activities,
experiment results strongly support our proposal.

1. Introduction
The ability to understand hand-object manipulation automati-

cally from visual sensing is important for the robotics commu-
nity with potential applications such as robotic hand design and
robotic action planning. In robotic hand design, the study of hand
grasping behavior in daily manipulation tasks provides critical in-
formation about hand functions that can be used for robotic hand
development [5, 30, 1, 6]. It can also facilitate robotic task plan-
ning by studying the relationship between different components
(grasps, objects and actions) in performing a manipulation task
[10, 28]. Wearable cameras enable continuous recording of un-
constrained natural hand-object interactions at a large scale, both
in time and space, and provides an ideal first-person point-of-
view under which hands and objects are often visible up-close
in the visual field. In this work, we develop automatic egocen-
tric (first-person) vision techniques that can be used as a tool to
promote the studies of hand manipulation in real-life settings.

In this work, we investigate grasp types, object attributes and
their mutual context (contextual relationship between two compo-
nents that by knowing one component facilitates the recognition
of the other) for the understanding of natural hand manipulation
activities under first-person vision paradigm. Grasp types are a
discrete set of canonical hand poses often used in robotics to de-
scribe various strategies for holding objects stably in hand. For
example, the use of all fingers around a curved object like a cup
is called a medium wrap. Object attributes characterize physical
properties of the objects such as rigidity or shape. Grasp types
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and object attributes together provide rich semantic information
regarding hand-object interactions and therefore are worth inves-
tigating for understanding hand manipulation activities.

However, the recognition of grasp types and object attributes
from monocular images is challenging. There are many occlu-
sions of a hand, especially fingers, during hand-object interac-
tions, making it hard to observe and recognize distinct grasp
types. It is also challenging to reliably detect the manipulated
object and infer attributes since the object is also often occluded
by the hand. This suggests that visual information about hands
and objects need to be reasoned about jointly by taking into ac-
count their mutual context. On the one hand, object attributes
(e.g. , thick or long shape of a bottle) have strong constraints on
the selection of hand grasp types (e.g. , Large Wrap). Thus, with
the knowledge of object attributes, we obtain a prior information
about the possibility of different grasp types. On the other hand,
humans use the same or similar grasp types for certain types of
objects, thus the grasp type used reveals attributes of the object
being grasped.

We propose an unified framework (as illustrated in Figure 1)
in which the relationship between hands and objects are studied
from a single image. Egocentric hand detectors are trained to
detect the hand regions from which grasp types are recognized.
Instead of training category-level object detectors, we detect the
grasped part of the object during manipulation by exploring spa-
tial hand-object configurations. Attribute information is then ex-
tracted from the manipulated object. Furthermore, we propose to
enhance the recognition of grasp types and object attributes by
their mutual context. We formulate a Bayesian model to encode
the mutual context between grasp types and object attributes in
which recognizing one facilitates the recognition of the other. Fi-
nally, we test our hypothesis that grasp types together with object
attributes encode high-level semantic constraints about hand ac-
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Fig. 1 An unified framework for understanding hand manipulation activi-
ties with grasp types and object attributes. Grasp types and object
attributes at both hands are learned from image evidence. Mutual
context between grasp types and object attributes is explored. Hand
actions are recognized on top of grasp types and object attributes.

tions (patterns of hand-object interaction). Specifically, we train
discriminative classifiers for different actions based on the prob-
abilistic estimation (belief distribution) of grasp types and object
attributes.

The contributions of this work are as follows: (1) We propose a
novel method for extracting attribute information of the grasped
objects by exploring spatial hand-object configurations; (2) We
study the contextual relationship between grasp types and object
attributes in hand manipulation activities; (3) We greatly improve
the recognition performance of both grasp types and object at-
tributes by joint inference based on both image evidence and mu-
tual context.

2. Related work
2.1 Hand grasp

Hand grasp has been studied for decades to better under-
stand the use of human hands [20, 23, 22, 2, 12]. Grasp tax-
onomies have also been proposed to facilitate hand grasp anal-
ysis [5, 14, 9]. Cai et al. [3] first developed techniques to rec-
ognize hand grasp types in everyday hand manipulation tasks
recorded with a wearable RGB camera and provided promising
results with appearance-based features. Yang et al. [27] utilized
a convolutional neural network to classify hand grasp types on
unstructured public dataset and presented the usefulness of grasp
types for predicting action intention. Saran et al. [24] used de-
tected hand parts as intermediate representation to recognize fine-
grained grasp types. However, the recognition performance is
still not good enough for practical usage in real-world environ-
ments. In this paper we explore object contextual information to
improve the grasp recognition performance.

2.2 Visual attributes
Visual attributes (physical properties inferred from image ap-

pearance) are often used as intermediate representation for many
applications, such as object recognition [7, 18, 26], facial veri-
fication [17], image retrieval and tagging [25, 21, 29]. Lampert
et al. [18] performs object detection based on a human-specified
high-level description of the target classes for which no training
examples are available. The description consists of attributes like

shape, color or even geographic information. Parikh and Graumn
[21] explored the relative strength of attributes by learning a rank
function for each attribute which can be used to generate richer
textual descriptions. In this work, we extract visual attribute in-
formation from the manipulated object and use it as semantic in-
formation for modeling manipulation actions.

The relations between object attributes and hand grasps are
widely studied for decades. It has been shown that humans use
the same or similar grasp types for certain types of objects, and
the shape of the object has a large influence on the applied grasp
[15, 11]. Recently, Feix et al. [10] investigated the relationship
between grasp types and object attributes in a large real-world
human grasping dateset. However, behavioral studies in previ-
ous work do not scale to massive dataset. In this work, we use a
Bayesian network to model the relations between grasp types and
object attributes to boost the recognition of both.

3. Grasp types and object attributes
We propose an unified framework to recognize grasp types, ob-

ject attributes from a single image. This framework is mainly
composed by three components: 1) Recognition of grasp types
from hand appearance. 2) Extraction of attribute information
from appearance of the manipulated objects. 3) A Bayesian net-
work which models the mutual context of grasp types and object
attributes to boost the recognition of both.

3.1 Grasp types
Hand grasp types are important for understanding hand manip-

ulation since they characterize how hands hold the objects during
manipulation. A number of work have investigated the catego-
rization of grasps into a discrete set of types [5][9] to facilitate
the study of hand grasps. We train classifiers for recognizing nine
different grasp types selected from a widely used grasp taxon-
omy proposed by Feix et al. [9]. The grasp types as shown in
Figure 2 are selected to cover different standard classification cri-
terion based on functionality [20], object shape, and finger artic-
ulation. We also abstract some grasp types in original taxonomy
which are ambiguous from appearance into single grasp type (e.g.
, Thumb-n Finger). Furthermore, all the nine grasp types have a
high frequency of daily usage based on the work of [2]. Thus the
selected grasp types can be used to analyze large amount of ma-
nipulation tasks and meanwhile are possible for automatic recog-
nition from image appearance.

Hand patches are needed to train grasp classifiers. Following
[19], we train a multi-model hand detector composed by a collec-
tion of skin pixel classifiers which can adapt to different imaging
conditions often faced by a wearable camera. For each test image,
a pixel-level hand probability map is generated from the hand de-
tector, and hand patches are then segmented with a bounding box.
In detail, candidate hand regions are first selected by binarizing
the probability map with a threshold. Regions under a certain area
proportion are discarded and at most two regions are retained.
Ellipse parameters (length of long/short axis, angle) are fitted to
the hand region and the arm part is approximately removed by
shortening the length of long axis to 1.5 times of the length of
short axis. Then the remaining region is cropped with a bounding
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Fig. 2 The list of nine grasp types selected from [9], grouped by function-
ality (Power and Precision) and object shape (Prismatic, Round and
Flat).

box. Linear SVM classifiers are trained for each grasp type using
feature vectors extracted from hand patches. As the recognition
output, belief distribution of grasp types (or posterior probability
of grasp types given image evidence denoted as P(G| fG)) as well
as the predicted grasp type with highest probabilistic score are
obtained.

Recognition of grasp types provide information about how the
hands are holding the objects during manipulation. However, The
grasp type alone is not enough to identify fine-grained actions
without information from the manipulated objects. In the next
section, we present the method to recognize object attributes.

3.2 Object attributes
Attribute information of the grasped object part is important for

understanding hand manipulation since it indicates possible hand
motion in hand-object interactions. For example, the body part
of a bottle with long and thick shape indicates a motion of “hold-
ing”, while the bottle cap with small and round shape probably
indicates a motion of “screwing”. While objects can be assessed
by a wide range of attributes (shape, weight, surface smoothness,
etc.), we only focus on attributes that are relevant to grasping and
are also possible to be learned from image appearance. Figure 3
illustrates the attributes studied in this work, three of which are
related to object shape and the fourth is related to object rigidity.
We identify three different shape classes based on the criterion
in Table 1. The fourth attribute of Deformable identifies the ob-
ject that deforms under normal grasping forces. Examples are a
sponge or a rag. In this work, we aim to extract the above four
object attributes from each grasped object part.

Similar to grasp type recognition, appearance-based features
are extracted from object patches to train object attribute classi-
fiers. However, object detection is a challenging task in computer
vision, particularly unreliable when there are occlusions during
manipulation. We observe that hand appearance provides impor-
tant hint about the relative location and size of the grasped part
of the object (not the whole object, and we will refer to “grasped
part of the object” simply as “object” in the following paper) from
which attribute information is extracted. As illustrated in Fig-
ure 4, relative location (dx, dy) from the center of hand to the cen-
ter of object is consistent to the hand orientation, and the object
scale (Wo,Ho) is related to the size of hand opening. Therefore,
we propose to train a target regressor for predicting the relative
location and scale of the grasped object based on hand appear-
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Fig. 3 Object examples with four different attributes: Prismatic, Round,
Flat, and Deformable.
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Fig. 4 Illustration of relative location and scale of the hand and the manip-
ulated object.

ance. Specifically, we do regression on three quantities: normal-
ized relative location of (Nx,Ny) and relative scale of Ns specified
as follows: 

Nx =
dx

Wh

Ny =
dy
Hh

Ns =

√
Wo × Ho

Wh × Hh

(1)

Table 1 Classification criterion of three shape classes. Length of object
along three object dimensions (major axes of the object) are de-
noted as A, B, and C, where A ≥ B ≥ C.

Shape classes Object dimensions
Prismatic A > 2B

Round B ≤ A < 2B, C ≤ A < 2C
Flat B > 2C

Here are the steps of how to extract object attribute informa-
tion: First, linear SVM regressors for object detection are pre-
trained based on hand appearance features and manually anno-
tated object bounding boxes. Note that when annotating ob-
ject bounding box, we are not labeling the whole object but the
grasped part of the object. Then, object patches are segmented
with bounding boxes estimated based on the regressed quantities
defined in Equation 1. Finally, linear SVM classifiers for ob-
ject attribute classification are trained based on object appearance
features extracted from segmented object patches and manually
annotated attribute labels. As output, belief distribution of object
attributes (or posterior probability of object attributes given image
evidence denoted as P(O| fO)) as well as the predicted attributes
are obtained.

Visual recognition of grasp types and object attributes are chal-
lenging tasks as there are many occlusions during manipulation.
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Fig. 5 Object attributes of the grasped part affect the selection of grasp
types.

In the next section, we present how to boost the recognition per-
formance by mutual context.

3.3 Mutual context of grasp types and object attributes
There is strong causal relations between object attributes and

grasp types. One the one hand, object attributes such as geo-
metric shape and rigidity have a large impact on the selection of
grasp types. As illustrated in Figure 5, to hold a mug cup from its
thin prismatic handle, grasp type of Small Wrap is often selected,
while to grasp from its top surface with bog round shape, grasp
type of Power Sphere is preferred. On the other hand, knowing
the grasp types used helps to infer the attributes of the grasped
object (e.g. , medium wrap can only be used for cylindrical ob-
jects). Therefore, mutual context between grasp types and object
attributes can be explored that knowing the information of one
side facilitates the recognition of the other.

We use a Bayesian Network to model the context information
between grasp types and object attributes as illustrated in Fig-
ure 6. There is a directional connection from object attributes
O to grasp types G, encoding the causal relation between object
attributes of O and the grasp types of G. fO and fG denote the im-
age evidence from the detected object regions and hand regions
respectively. Based on this model, the posterior probability of
object attributes and grasp types given the image evidence can be
computed as:

P(O,G| fO, fG) =
P(O)P(G|O)P( fO|O)P( fG |G)

P( fO)P( fG)

=
P(G|O)P( fO,O)P( fG,G)

P( fO)P( fG)P(G)

∝ P(G|O)P(G| fG)P(O| fO)

(2)

Thus, we can jointly infer object attributes O∗ and grasp types G∗

by maximizing a posterior (MAP) as:

(O∗,G∗) = arg max
O,G

P(O,G| fO, fG)

= arg max
O,G

P(G|O)P(G| fG)P(O| fO)
(3)

The optimal inference is obtained by searching the joint space
of object attributes and grasp types that maximizes the multipli-
cation of three components. The first component P(G|O) is the
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Fig. 6 A Bayesian network modeling the relationship between object at-
tributes and grasp types.

conditional probability of grasp types given object attributes and
has been learned in advance from occurrence frequencies of the
training data. The last two components P(G| fG), P(O| fO) are pos-
terior probability of grasp types and object attributes given image
evidence, and can be estimated from the probabilistic output of
grasp classifiers and object attribute classifiers (belief distribu-
tion of grasp types and object attributes) respectively. Note that
grasp classifiers and object attribute classifiers are learned from
the training data as introduced in previous sections.

4. Evaluation
In this section, we present four sets of results to validate differ-

ent components of our approach: (1) grasp type recognition, (2)
target regression and object attribute recognition, (3) improved
recognition by mutual context of object attributes and grasp types.

We evaluate the approach on a public dataset (GTEA Gaze
Dataset [8]) of daily activities recorded by a head-worn wear-
able camera. This dataset consists of 17 sequences of cooking
activities performed by 14 different subjects. The action verb and
object categories with beginning and ending frame are annotated.
The details of evaluation for each component are introduced in
following sections.

4.1 Grasp type recognition
To train grasp classifiers for grasp type recognition from ego-

centric video, we annotate grasp types for 1000 hand images from
GTEA Gaze Dataset. Previous work on grasp type recognition
used Histogram of Oriented Gradient (HoG) [3] and Convolu-
tional Neural Network (CNN) [27] for classifying different grasp
types from monocular images. In this work we choose HoG as
baseline feature and compare it with two different CNN-based
features. Since the number of annotated grasp images is not suf-
ficient for training CNN with large number of parameters, we
perform fine-tuning to existing pre-trained CNN model and ex-
tract mid-layer features from it. In particular, we combine a large
pre-trained CNN model proposed by Krizhevsky et al. [16] with
domain-specific fine-tuning on our annotated hand images using
the open source Caffe library [13]. We replace the original CNN’s
1000-way classification layer with a randomly initialized 9-way
classification layer (for the 9 grasp types) and perform stochastic
gradient descent (SGD) training at a learning rate of 0.001. Fea-
ture vectors are extracted from two different layers (CNN-pool5
and CNN-fc6) of the CNN separately. Compared to CNN-pool5
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which is the max-pooled output of the CNN’s final convolutional
layer, CNN-fc6 adds one fully connected layer to CNN-fc6. Based
on the extracted features, linear SVMs are trained for 9 grasp
types. 5-fold cross-validation is used for evaluation.

Table 2 Classification accuracy for nine grasp types on GTEA Gaze
Dataset.

HoG CNN-pool5 CNN-fc6
Accuracy 50% 61.2% 56.9%

Grasp recognition performance of different features is shown in
Table 2. Highest classification accuracy of of 61.2% is achieved
by CNN-pool5. It can be seen that CNN-based feature outper-
forms hand-crafted feature HoG, also validated by the work of
[27]. However, our work shows the feasibility of adapting pre-
trained CNN model to grasp recognition problem with scarce
training data.

4.2 Object attribute recognition
To train target regressors for predicting object location and

scale, we annotated object bounding boxes for 1000 images
with well detected hand patches from GTEA Gaze Dataset.
The bounding box is annotated to include the object part being
grasped. To train attribute classifiers, we also annotate attribute
information for regions enclosed by annotated object bounding
boxes. Linear SVM target regressors are trained based on an-
notated object bounding boxes and features extracted from hand
patches. Linear SVM attribute classifiers are trained based on
annotated object attributes and features extracted from annotated
object patches. We use the libSVM library [4] for implementa-
tion. Since this is the first work by far as we know on recogniz-
ing object attributes from hand-object manipulation, we use same
features as in Section 4.1.

Table 3 Quantitative results of target regression evaluated by Intersection
of Union (IoU).

HoG CNN-pool5 CNN-fc6
IoU 0.471 0.739 0.736

Table 3 shows quantitative results of target regression evalu-
ated by Intersection of Union (IoU) which measures the over-
lap ratio of ground-truth object bounding box and the predicted
object bounding box. The predicted object bounding box with
equal width and height are determined based on the regressed
quantities defined in Equation 1. CNN-pool5 and CNN-fc6 obtain
similar performance but work much better than HoG. Figure 7
demonstrates qualitative results of target regression. It can be
seen that the predicted object bounding boxes match well with
ground-truth object bounding boxes, although the background is
cluttered and objects are partially occluded by hands. The results
indicate that it is possible to detect the grasped object parts simply
from hand appearance.

Table 4 shows the classification results for four binary object
attributes. Accuracy is evaluated for four binary attributes sepa-
rately as well as combined. When evaluating combined attributes,
a prediction is considered as accurate if all the attributes are cor-
rectly classified. Accuracy of over 80% is achieved for all binary

10 

Fig. 7 Qualitative results of target regression. Blue and green bounding
boxes show the detected hand regions and ground-truth object re-
gions respectively. Red circles show the predicted object regions
with center of circle indicating object location and radius indicating
object scale.

Table 4 Performance of attribute classification on GTEA Gaze Dataset.
Object Attribute HoG CNN-pool5 CNN-fc6

Prismatic 80.2% 87.9% 84.5%
Round 94.0% 94.0% 95.7%

Flat 81.0% 85.3% 87.1%
Deformable 88.8% 92.2% 91.4%
Combined 60.3% 72.4% 71.9%

attributes and the advantage of CNN-based features over hand-
crafted features is verified. For combined attributes, CNN-pool5
achieves best accuracy of 72.4% which means the percentage
of cases that all binary features are correctly classified is over
72.4%. The results demonstrate the potential of learning physical
properties of the manipulated objects from monocular images.

4.3 Better recognition by mutual context
In this section, we show that the recognition of grasp types and

object attributes can be improved by mutual context. We estimate
the probability of grasp types conditioned on object attributes as
prior information by occurrence frequencies from training data.
Figure 8 shows the estimated conditional probability. It can be
seen that different kinds of objects have very different distribu-
tion over applied grasp types. Rigid-Prismatic object such as a
bottle is often held with Large Wrap or Index Finger Extension,
while Rigid-Round object such as a bottle cap is often held with
Precision Sphere.

We compare the recognition performance of with and without
context information. For recognition without context informa-
tion, grasp types and object attributes are inferred independently
by simply selecting the category which outputs best score from
classifiers. For recognition with context information, grasp types
and object attributes are jointly inferred from Equation 3. Fea-
tures of CNN-pool5 are used in both two cases. The results in Ta-
ble 5 and Table 6 show that visual recognition of grasp types and
object attributes are significantly improved by using context in-
formation. For grasp types, overall classification accuracy is im-
proved by 12.9%. Performance of most grasp types are improved
by object context, except for Power Sphere and Precision Sphere.
We believe the performance deterioration of the two grasp types
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Fig. 8 Probability of grasp types given object attributes estimated by occur-
rence frequencies from training data.

is due to some false classification of the attribute Round. For ob-
ject attributes, classification accuracy for combined attributes is
improved by 9.5%. Experiment results strongly support the use
of contextual information for improving visual recognition per-
formance.

Table 5 Performance improvement for grasp type recognition by mutual
context (evaluated by accuracy).

Grasp Category CNN CNN+Context
Extension Type 16.6% 20%

Index Finger Extension 66.6% 94.9%
Large Wrap 71.1% 81.8%

Lateral Pinch 87.5% 90.3%
Power Sphere 57.1% 33.3%

Precision Sphere 74.9% 66.6%
Small Wrap 52.6% 100%

Thumb-n Finger 55% 59%
Writing Tripod 73.3% 80%

Overall 61.2% 74.1%

Table 6 Performance improvement for object attribute recognition by mu-
tual context (evaluated by accuracy).

Object Attributes CNN CNN+Context
Prismatic 87.9% 88.8%

Round 94.0% 95.7%
Flat 85.3% 88.8%

Deformable 92.2% 92.2%
Combined 72.4% 81.9%

5. Application to hand action recognition
5.1 Semantic modeling of hand actions

We now take a further step to utilize the grasp types of hands
as well as the attributes of manipulated objects for recognition of
hand actions. Our hypothesis is that grasp types together with
object attributes provide complementary information for charac-
terizing the hand action. There are several advantages for jointly
modeling actions in this way: (1) Grasp type helps describe the
functionality of an action, whether it requires more power, or
more flexible finger coordination; (2) Object attributes provide
a general description about the manipulated object and indicates
possible interaction patterns; (3) Semantic information of grasp
types and object attributes enable the model to encode high-level
constraints, and as a result, the learned action model is immedi-
ately interpretable.

To model this hypothesis, we learn a linear function which
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Fig. 9 Action recognition accuracy of different methods on two evaluation
criterion: within-dataset and cross-dataset.

maps belief distribution of grasp types and object attributes to
that of actions, denoted as:

PAction = f (PGl, PGr, POl, POr |θ) (4)

where PAction is the probabilistic estimation of manipulation ac-
tions, PGl, PGr are belief distribution of grasp types for both
hands, POl, POr are belief distribution of object attributes, and
θ is a set of parameters that measure the relationship between
each action and its semantic components. More specifically, from
each image, visual recognition of grasp types and object attributes
is applied to extract semantic information represented by a 25-
dimensional feature vector, of which 17 dimension is composed
by belief distribution of grasp types for two hands (Writing Tri-
pod is never used by the left hand) and 8 dimension is composed
by belief distribution of object attributes of two grasped objects.
Linear SVM classifiers are trained for different actions based on
the obtained 25-dimensional feature vectors.

5.2 Recognition results
To evaluate the effectiveness of the proposed semantic action

model, action recognition performance is compared with two
other methods which train action classifiers based on standard
hand-crafted HoG features as a baseline and also on state-of-the-
art CNN-based features. Both HoG and CNN-based features are
extracted from two hand regions and two object regions. The verb
part of original action labels in GTEA Gaze Dataset are used as
action labels in this work. We focus on actions which require
two-hand coordination. Seven action classes are learned in this
work (Close, Cut, Open, Pour, Screw, Spread, and Stack). Two
different evaluation criterion are adopted. In the first criterion
commonly used, action classifiers are tested on hold-out testing
data but within the same GTEA Gaze dataset. In the second crite-
rion, actions are tested on another different dataset (GTEA Gaze+

Dataset [8]) to evaluate the model generality.
Figure 9 shows action recognition accuracy of different meth-

ods. Evaluated within the same dataset, our model outperforms
HoG features and is comparative to CNN-based features. Note
that our method uses much lower feature dimension of 25 com-
pared to 36864 used in CNN-pool5-4. However, when eval-
uated across different datasets, our model significantly outper-
forms other two methods. The experiment verifies the generality
of the proposed method which takes into account semantic con-
straints of grasp types and object attributes, and therefore is more
robust to overfitting.
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6. Conclusion and future work
We proposed an unified framework for understanding hand-

object manipulation with a wearable camera. From a single im-
age, grasp types are recognized from the detected hand regions
and attribute information are extracted from the detected object
parts. Furthermore, mutual context is explored to boost the recog-
nition of both grasp types and object attributes. Finally, actions
are recognized by combining information of grasp types and ob-
ject attributes.

Experiments were conducted to verify our proposal: (1) We
achieved average accuracy of 61.2% for grasp type recognition
and 72.4% for object attribute classification. (2) By mutual con-
text, recognition performance is improved by 12.9% for grasp
types and by 9.5% for object attributes. (3) Our proposed se-
mantic action model achieved classification accuracy of 79.3%
which is comparative to state-of-the-art feature representation
with much lower feature dimension. Evaluation results for model
generality support our hypothesis that grasp types and object at-
tributes contain consistent information for characterizing differ-
ent actions. We believe our work of studying the relationship
between hands, objects and actions points out an important direc-
tion for understanding hand manipulation activities.

In future work, we wish to extend the current single-image
framework to temporal dimension in order to study the temporal
evolution of hand grasping dynamics in different manipulation
tasks. Another direction we wish to step on is to extract more
complex object attributes (such as 3D shape) in studying grasp-
object relationship based on depth information by using wearable
RGB-D camera.
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