
Resolutions to Technical Challenges Regarding the Distributed

Development and Deployment of a Node.js Web Application for

Cloud Solution Design

Scott Trent
†1 Takayuki Kushida

†1
 Hamid R. Motahari-Nezhad

†2
 Taiga Nakamura

†2
 Peifeng Yin

†2

Gil Shurek
†3

 Karen Yorov
†3

 Cristian Petrut Pertrache
†4

 Juan Cappi
†2

 Uma Subramanian
†5

Abstract: Our team, a distributed team of over 10 researchers and developers in six countries, has encountered multiple

technical issues in the development and deployment of a Node.js based web application to enhance the automation of the design

of Cloud Solutions. This paper provides an overview of the goals and uses of our Cloud Solution Design Tool known as COOL,

and presents the six major categories of technical challenges we encountered and how we overcame them. These areas include:

application reliability, serviceability/maintainability, functionality verification, development coordination, and usage reporting. It

is our belief that this information will be useful to other development teams.

Keywords: Node.js, web application, reliability, performance, serviceability, verification, development, reporting.

1. Introduction

 This paper describes many of the technical challenges and

solutions that our team has encountered in the design and

development of a Node.js based web application that provides

services to ease the creation of cloud solution design. We

developed specific solutions to the various issues surrounding

reliability, serviceability, verification, coordination, and

reporting as our team grew in number and our application grew

in complexity.

 The layout of this paper is as follows. After an introduction of

the tool, we describe each of five major technical challenges and

how we overcame them in this project. We conclude the paper

with a summary of the lessons we have learned.

2. Overview of the Cloud Solution Design Tool

(COOL)

2.1 High Level Overview

The Cloud Solution Design Tool (hereafter abbreviated as

COOL) that our team is developing has been previously

described in papers by Kushida [1, 2, 3] and Motahari-Nezhad

[4]. Given the increasing need for and adoption of cloud based

infrastructure deployment, there is also an increased need for

low-overhead, easy-to-use tools to design such solutions. The

design tool that our team has developed enables a solution

architect to enter by hand as well as import information

regarding a cloud deal from an existing sales databases and from

spreadsheet files. This information includes overview

information, business requirement questions, and detailed IT

Requirements regarding the existing installation (if any) and the

desired environment. The initial release of the design tool

focuses on supporting the design of comprehensive SAP

†1 IBM Research – Tokyo

†2 IBM Research – Almaden

†3 IBM Research – Haifa

†4 IBM Romania

†5 IBM Cloud Business Unit

installations with multiple servers in multiple SAP landscapes

across multiple data centers. The tool requests information from

the solution architect in order to generate an architectural

solution including memory, storage, and processing capacity,

number, disaster recovery, high availability, required hardware,

software, and version information, etc. This information is

then verified against our extensible model for completeness and

suitability. This is used to create a draft solution complete with

the required feature codes (i.e., purchasable components which

make up a sales offering). This solution is then created in a data

format which can be used in the next step in the sales process.

The intent of this tool is not only to make it easier for a solution

architect to design a cloud solution, but to decrease the

end-to-end time required for a cloud sales engagement. The

architectural overview of this tool is graphically illustrated in

Figure 1.

Figure 1. The architecture of the Cloud Solution Design Tool

(COOL) [4]

2.2 Technical Architecture of Cloud Solution Design Tool

(COOL)

To enable rapid prototyping and development of a web based

application, The Cloud Solution Design Tool is an Express web

application largely written in Javascript served by Node.js [5].

Some of the primary modules used include Express as the web

Customer’s
IT Environments

Output

Business
Requirements

Cloud Technical
Sales/ Customer

Input for
Pricing/Costing

Tool

Input
3. Solution

Generator and
Optimizer

Deployment Plan

Cloud Solution

4. Solution
Analyzer and

Validator

Valid: Yes/No,
List of Valid Values, Violations

1. Biz Req. / IT
Req. Capture

2. Requirements
Analyzer

Cloud Offering Models

Cloud Requirements Model

Offering Description
Language
<generic, offering-specific>

Constraints, Rules & Patterns
<generic, offering-specific>

Cloud Offerings/Deployment
Capacity Information

5. Solution
Design Editor

Cloud Solution Design Tool

6. Output
Generator

7. Offering Definition and Admin Tool

Data
Center

 ソフトウェアエンジニアリングシンポジウム 2016
 IPSJ/SIGSE Software Engineering Symposium (SES2016)

 ©2016 Information Processing Society of Japan 237

application framework, csv-parse and xlsx for importing and

exporting spreadsheet data, multer for file upload, passport and

passport-ldapauth for ldap authentication, pug as a template

language, and Jasmine for unit testing. MongoDB is used for

database storage. In many cases, due to flexibility and built-in

availability in Javascript, JSON strings are used for data

interchange, permanent storage, configuration and

customization. Certain operations including constraint solving

are performed with external calls to separate applications

written in C or Java. Although, by carefully avoiding the use of

our reference platform in development, our development team

has shown the flexibility of this tool by running it on a wide

variety of platforms including multiple flavors of Linux, MacOS,

Windows, as well as our reference platform, Red Hat Enterprise

Linux version 6.

3. Technical Challenges and Solutions

Regarding Project Development and Deployment

Although the project included many facets including business

requirement definition, model creation, constraint solving,

content creation, etc., this paper will focus on the development

and deployment issues surrounding this project.

3.1 Ensuring Application Reliability

The first topic we will touch on is the issue of reliability or

availability. We define this to mean that the application is

available for use by an end user, providing the current developed

level of functionality. Essentially, this section describes the

techniques used to keep the tool up and running. The importance

of this topic is clear, since service outages could endanger the

continuation of this kind of project.

As with most software development projects, we start by

logging and analyzing errors and warnings and other debugging

activities. We quickly learned that it was all too easy to crash

our application with minor Javascript programming errors.

Initial approaches included creating and logging known

exceptions as shown in Figure 2. Next, we utilized the cluster

[6] module using cluster.on(‘exit’, …) to fork() a new thread to

immediately replace each thread that died/crashed. This gave

us the additional advantage of utilizing multiple threads of

execution to assist with performance scaling with our multiple

CPU server. Additionally, we used the forever [7] tool to ensure

that the entire application is restarted in the event of a high level

application crash. We wrote additional monitoring scripts which

run periodically as Unix cron jobs to restart any processes or

services which are not running. This technique is useful for

recovering from unexpected system crashes or reboots. Each

approach also generates log output for future debugging and

problem determination.

We also found it useful to create an off-system heartbeat

monitoring application which verifies that end users can access

the tool over the network. Failures here are considered serious

enough to immediately send diagnostic email messages to team

members for analysis and resolution. This has enabled us to

quickly identify issues with external dependencies including

network routing, name resolution, and authentication service

availability. It has also enabled the team to quickly resolve

environmental problems with the server that prevent the

application from running, for example, disk full conditions, or

lack of other resources that prevent the application from fully

running.

The concept of software rejuvenation [8] also has a place in

our repertoire, as we also restart the application periodically

during times of low use to reduce certain classes of errors.

3.2 Enabling Painless Serviceability and maintainability

As the project progresses, bugs are identified and fixed, and

new features are created, it is necessary to update and service an

application. Our team uses two primary approaches to enable

painless serviceability and maintainability. Our first is to use a

documented development process that embraces the git

branching philosophy, and our second is to use extensive

automation and monitoring in our development and

infrastructure.

Although our team is not huge, we feel that having a

documented development process helps keep processes and

output consistent. This is also useful when onboarding new team

members. We follow the git branching model eloquently

described by Driessen [9]. This involves separate source

branches for development (development branch) and production

(master branch), the use of function branches to update

development release branches, and the use of hotfix branches to

update staging and production branches. Our development

process also covers issues including source control, coding

conventions, work item/project management, unit testing, and

standards compliance.

Regarding the second approach, we actively utilize

automation for steps that must be reliably repeated. For example,

we use scripts which automatically update and deploy our

application to team servers. This is used to ensure that each of

the servers that our team uses is running a known current

version of the application. Specifically, we automatically

update and deploy our development branch to our development

server every 60 minutes, similarly, we update the application

running on our staging server every 60 minutes with the staging

branch. This enables developers to observe their code on a

controlled reference platform in a timely fashion. And since we

use automated error and availability monitoring, we can rapidly

identify problems as soon as code is deployed to one of our

servers. We are more conservative with our User Acceptance

Testing (UAT) and production servers. These servers must be

more stable than a development environment, so we limit our

process.on('ECONNRESET', function (err) {

 console.error("app.js:" + (new

Date()).toUTCString() + " otherwise uncaught

connection reset exception");

 console.error("app.js: err = " +

JSON.stringify(err,null,4));

});

Figure 2. Sample Execution Trapping

 ソフトウェアエンジニアリングシンポジウム 2016
 IPSJ/SIGSE Software Engineering Symposium (SES2016)

 ©2016 Information Processing Society of Japan 238

modifications to these branches, and we update the servers less

frequently. However, update, deployment, and monitoring on

these servers is also fully automated with the same tools we use

in development.

3.3 Verification of Application Functionality

The ability to easily verify the correct functionality of

software is critical to maintain the trustworthiness of that

software. This problem becomes increasingly serious as teams

grow, members are replaced, and is even more challenging when

members are located in multiple locations.

Initially our developers perform ad-hoc and/or manual unit

testing on the functionality that they add to our source control

system. Next while creating new functionality developers also

write Jasmine unit test cases. The Jasmine test framework

enables straight forward Javascript code that can test for

expected conditions. Figure 3 demonstrates how a simple test

case can be written. These Jasmine test cases then form the

foundation of a test suite that can be run by developers before

they deliver modified source code, and can also be run as an

automated process to identify potential problems immediately

and without manual intervention.

Our development process requires separate functional

verification at certain points. Namely, before we release a new

version we prepare a User Acceptance Test (UAT) server with

our release candidate code. The staging server hardware and

software is configured to be as similar as possible to the

production server. The UAT server is then used by the UAT team

to ensure that all required functionality is included, and that in

fact the application behaves as it should. The next functional

verification point is when we update our production server with

hot fixes. Before modifying the production server with

non-functional but important bug fixes, we make our changes to

the staging branch, which is then deployed to the staging server.

As with the UAT server, the staging server hardware and

software is configured to be as similar as possible to the

production server. When the hotfix has been applied to the

staging server, both standard functionality and the absence of

the bug are verified before allowing the hotfix to be applied to

the production server via the master branch.

As mentioned in a previous section, we also run tools which

frequently monitor the end-user accessibility of our application

on each of the servers it runs on, including development,

demonstration, staging, UAT, and production. We also have

automation that notifies our team when error and log files are

found to contain certain “bad” patterns such as “thread died”

that requires human intervention or problem determination.

3.4 Coordination of Development

As hinted at in earlier sections, there are obvious coordination

issues involving a growing, changing team with members in

multiple time zones throughout the world. Our development

process is not explicitly either “agile” or “extreme”, however,

our activities are certainly intense as demonstrated by a high

level of user and sponsor expectation, a short release cycle, and

frequent detailed coordination for development and planning,

(including close collaboration regarding business requirements).

The techniques, processes, and tools we have found useful fall

into four categories: direct communication, task/project

management process/tools, artifact management tools, and

shared environments.

Direct communication may seem the most obvious. Standing

all-hands telephone conference calls are both unavoidable and

necessary, though we have found that smaller 2-3 person calls

focused on a single topic are quite productive and efficient.

Screen sharing can make these working sessions almost as

effective as a face-to-face meeting with a whiteboard and a

projector. It goes without saying that email and instant

messaging are also irreplaceable tools. Even though our team

has members residing in six countries we have found occasional

face-to-face meetings both productive and invaluable for laying

the groundwork for intense remote coordination afterwards.

Once a project grows to a certain size, some form of task

management tool becomes irreplaceable for both project

management purposes and also to track and document

deliverables including bug fixes, new function development, and

progress towards larger goals such as release delivery. Our team

has found the flexibility of Rational Team ConcertTM to be

powerful and flexible for these purposes.

Artifact management is a broad and vague concept. Initially, a

source management system is invaluable for storing source code,

maintaining multiple versions, understanding historical changes,

and sharing a common code base amongst team members. It is

hard to conceive of any software development project with more

than several people without a source control system. Our team

has found a community version of GitLab to suite our purposes

well. Other artifact management systems include shared wiki

type collaboration systems for sharing and collaborating on text

type documents, and shared file storage systems for sharing

larger binary files such as spreadsheets and presentation files.

Our team has found all of these tools useful.

Finally, shared computer environments are similar to speaking

the same language. Although we have an official reference

platform, since our application is built on open software

components, it can run on nearly any environment that can

support Node.js. Thus we find it necessary to maintain shared

reference platforms that team members can use to verify

functionality and compatibility.

3.5 Enablement of Usage Data Reporting

As we have developed an application for business which is

used by hundreds of people, it is clearly necessary to provide

describe("A suite", function() {

 it("contains spec with an expectation",

function() {

 expect(true).toBe(true);

 });

});

Figure 3. Sample Jasmine spec from Jasmine

Documentation [10]

 ソフトウェアエンジニアリングシンポジウム 2016
 IPSJ/SIGSE Software Engineering Symposium (SES2016)

 ©2016 Information Processing Society of Japan 239

consistent management reports and insights on the data stored in

this system. Initially, we gathered and emailed simple daily

usage reports through an automated reporting program that

directly accessed the backend database. However, as the amount

of data grew, and our requests for analysis became more

complicated and frequent, we have experimented with various

tools to access and run queries on MongoDB databases, as well

as writing numerous ad-hoc MongoDB queries in Node.js

Javascript to answer specific questions. As of this point, we are

developing a more flexible framework for predefined and

custom reporting of important and consistent queries, which will

be accessible by a defined set of administrative users.

Additionally from a more technical point of view we have

several tools which create email notifications and reports when

abnormal conditions such as crashed threads or inaccessible

services are detected.

4. Conclusions

 This project is still ongoing and expanding. As the number of

users we have continue to grow, new solutions will need to be

found for certain areas. However, we are confident that the

various approaches we use to accomplish the following are

common to many development projects: (a) ensure an

available web application through rejuvenation, redundancy,

monitoring, and automation, (b) manage serviceability and

maintainability through the use of a common development

process, branching philosophy, and extensive automation, (c)

verify correct application functionality through unit testing,

automated testing, staging and UAT development processes, and

automated monitoring, (d) coordinate development through

shared source repository, work flow system, communication

tools, and various shared artifacts and servers, and (e) create and

distribute consistent timely usage reports. It is our hope that

these tools and techniques can be considered best practices and

benefit other development teams.

5. Bibliography

[1] T. Kushida and S. Trent, "The Provision of Cloud Solution

Design Service," in Information Processing Society of

Japan, Tokyo, Japan, 2015.

[2] T. Kushida, "Cloud Solutioning," IPSJ SIG-DPS, Tokyo,

Japan, 2015.

[3] T. Kushida and T. Mishina, "Cloud Solutioning -

Self-service infrastructure design," IPSJ SIG-DPS technical

Report (March), Tokyo, Japan, 2015.

[4] H. R. Motahari-Nezhad and et. al., "COOL: A

Model-Driven and Automated System for Guided and

Verifiable Cloud Solution Design," in Submitted to ICSOC,

Banff, Alberta, 2016.

[5] Node.js Foundation, "About Node.js(r)," [Online].

Available: https://nodejs.org/en/about/. [Accessed July

2016].

[6] Node.js Foundation, "Cluster Node.js Manual &

Documentation," [Online]. Available:

https://nodejs.org/api/cluster.html. [Accessed July 2016].

[7] C. Robbins, "foreverjs/forever: A simple CLI tool for

ensuring that a given scrip runs continuously," [Online].

Available: https://github.com/foreverjs/forever. [Accessed

July 2016].

[8] R. Hanmer, "Software rejuvination," in Proceedings of the

17th Conference on Pattern Languages of Programs, Reno,

Nevada, 2010.

[9] V. Driessen, "A successful Git branching model," [Online].

Available:

http://nvie.com/posts/a-successful-git-branching-model/.

[Accessed July 2016].

[10] Pivotal Labs, "Jasmine: Introduction," [Online]. Available:

http://jasmine.github.io/2.0/introduction.html. [Accessed

July 2016].

Trademarks

IBM, Rational®, Rational Team Concert, ibm.com®, are

trademarks of the IBM Corporation in the United States, other

countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or

both.

Linux is a registered trademark of Linus Torvalds in the United

States, other countries, or both.

UNIX is a registered trademark of The Open Group in the

United States and other countries

Red hat and Red Hat Enterprise Linux are registered trademarks

of Red Hat, Inc., registered in the United States and other

countries

Node.js is an official trademark of Joyent.

MongoDB, Mongo, and the leaf logo are registered trademarks

of MongoDB, Inc.

Java, JavaScript, and all Java-based trademarks and logos are

trademarks or registered trademarks of Oracle and/or its

affiliates.

Apple, Macintosh, and Mac OS are trademarks of Apple Inc.,

registered in the United States and other countries.

SAP and SAP logos are trademarks or registered trademarks of

SAP AG in Germany and in several other countries.

GITLAB is a trademark of GITLAB BV.

Other names may be trademarks of their respective owners.

Other company, product, and service names may be trademarks

or service marks of others.

 ソフトウェアエンジニアリングシンポジウム 2016
 IPSJ/SIGSE Software Engineering Symposium (SES2016)

 ©2016 Information Processing Society of Japan 240

	paper 41

