

Towards an Integrated Framework for

Software Requirements Analysis and Its Support Tool

ANDRE RUSLI
†1

 OSAMU SHIGO
†1

Abstract: Requirements analysis is a very critical step in software development. In order to develop adequate software which

answers to user’s needs, it is essential to understand the real-world environment, stakeholders, goals, constraints, and risks and its

possible solutions. Unable to describe correct requirements can lead to a massive software development failure. This paper aims

to propose an integrated framework for requirements analysis which combines the characteristics of goal-based requirements

engineering methods, Problem Frames (PF), and Message Sequence Chart (MSC). The proposed framework uses i* framework

to describe the dependency relationships between actors, PF to analyze the constraints that exist in the real world, KAOS’ to

analyze obstacles, and MSC to show the dynamic behavior of the system. Furthermore, in order to assist engineers in using the

framework, our research also emphasizes the importance of a support tool.

Keywords: Requirements Analysis, Goal Models, i* framework, Problem Frames, KAOS, Message Sequence Chart

1. Introduction

 Requirements engineering is gaining more attention in recent

years as it has become clear that extracting the correct require-

ments is vital to the success of a software project. Poor require-

ments have a negative effect on the estimation process; this then

leads to schedule and cost underestimates, inadequate staffing

and then staffing itself becomes a major risk factor [9]. Re-

quirements engineering (RE) is an engineering activity that ties

up the development activities with the real-world problems. It

represents a series of engineering decisions that lead from

recognition of a problem to be solved to a detailed specification

of that problem [8]. Those activities include requirements elici-

tation, analysis, specification, human machine interface design,

and validation [1]. In this paper, we aim to propose an integrated

framework that combines the advantages of several existing

methods to assist engineers in analyzing requirements.

 In the requirements engineering community, goal-based mod-

eling approaches have gained considerable attention. In this

sense, a goal is defined as a prescriptive statement of intent

whose satisfaction requires the cooperation of agents forming

the system [6]. In KAOS, one of Goal-Based Requirements

Engineering (GBRE) methods, requirements are described in a

goal hierarchy model. High-level abstract goals are identified

and decomposed into low-level goals. A goal model is an

AND/OR graph showing how goals contribute to each other. An

AND-refinement requires all sub-goals to be satisfied for the

parent goal to be satisfied. An OR-refinement captures alterna-

tive system options; the parent goal is satisfied provided one of

the alternative sub-goals is satisfied [3]. Another popular meth-

od in GBRE is i* framework. I* framework is an improved goal

model that inherited some of KAOS characteristics. This

framework consists of two main modeling, Strategic Depend-

ency Model and Strategic Rationale Model. I* focuses on de-

scribing the relationships between actors, tasks, goals, and re-

sources in the environment where the software-to-be will be

†1 Graduate School of Information Environment, Tokyo Denki University

developed.

 Other methods that we considered in our research are mes-

sage sequence chart (MSC) and problem frames. In describing

requirements, it is important to be able to visualize the behavior

of the intended program. However, MSC in our research is not

used to describe detailed behaviors of the software, such as

method call, as it will be done in the next step of software de-

velopment, not in requirements analysis process. MSC in this

paper will only describe the flow of resources between actors in

the system. On the other hand, problem frames, which main idea

is to focus more on the real world than the computer world when

analyzing requirements, helps our research in describing the

real-world constraints that are limiting the system. Correctly

describing constraints is vital as it will affect the software’s

behaviors and helps software designers to know what they

should/should not build.

 However, there are also some trade-offs. Using an integrated

framework of several methods to analyze requirements can be

complicated, especially if it is hand-written. There might some

tasks or actors that are drawn in more than one diagram in the

framework and also connections between diagrams that are hard

to describe without the aid of a software tool. Our research also

includes a development of support tool to assist and help soft-

ware engineers in using the framework.

 Section 2 will simply explain about the methods that are

considered in this paper. Section 3.1 will say about the case

study that is used in this paper to explain the framework and its

support tool and the rest of section 3 will explain how the

framework and support tool work.

2. Background

2.1 Goal Based Requirements Engineering Methods

 A goal is a prescriptive statement of intent that the system

should satisfy through the cooperation of its agents [6]. The core

of goal model consists of a refinement graph showing how

higher-level goals are refined into lower-level ones and, con-

versely, how lower-level goals contribute to higher-level ones.

Among many goal based methods, this research takes two pop-

 IPSJ/SIGSE Software Engineering Symposium (SES2016)

 172

 ソフトウェアエンジニアリングシンポジウム 2016

 ©2016 Information Processing Society of Japan

ular methods into consideration, KAOS and i* framework.

 KAOS is a goal-driven, model-based approach for elaborating

a complete, adequate, consistent, and well-structured set of

measurable software requirements and environment assumptions

[3]. Obstacle analysis in KAOS is a goal-anchored form of risk

analysis whereby exceptional conditions obstructing system

goals are identified, assessed, and resolved to produce more

complete requirements [6]. While i* frame-work is an integra-

tion of goal based requirements engineering and agent based

requirements engineering method. I*’s strategic dependency

model is used to describe the dependency relationships among

various actors in an organizational context [11].

2.2 Problem Frames

Problem Frames [5] (PF) considers that it is important to fo-

cus directly on a problem, not just going straight to the design of

a solution. We need to recognize that the solution is located in

the computer and its software, but the problem is in the world

out-side. A problem frame consists of domains, interfaces be-

tween them, and a requirement [7]. Domains describe entities in

the real world, while interfaces connect domains and they con-

tain shared phenomena. Each requirement constrains at least one

domain. Such a constrained domain is the core of any problem

description because it has to be controlled according to the

requirements [7].

2.3 Message Sequence Chart

Message sequence chart describes the scenario in the system.

It shows the flow of data and the actor responsible for sending,

and receiving messages in the system. Message Sequence Charts

(MSCs) are a technique to describe patterns of interaction be-

tween the components of interactive distributed systems by

specific diagrams [2].

Fig. 1. RE Technology Map [11]

Processes are described in vertical lines and messages passed

between actors (source and target) are written in a horizontal

arrow with description above them. Unlike UML’s sequence

diagram, in our framework, MSC does not specifically describe

the sequences for the design-level which includes lifelines,

methods, etc. It functions only to describe the scenarios and the

orders of resources flowing in the system which are necessary in

the requirements analysis process.

These four methods have different characteristics, as shown in

figure 1 which shows the different techniques and dimensional

space of several requirements engineering methods in this world.

A static and closed method means that requirements elicited

from the domain by examining its static structure and the object

space is relatively stable, known, and closed. While a dynamic

and open method means that requirements are elicited from the

domain focusing on their dynamic context and the object space

is relatively unstable, unknown, changing, and open.

Problem frame is in the static and closed dimension, while

KAOS and i* are in the static and open dimension and Message

Sequence Chart which describe the dynamic sequence of a sys-

tem is in the dynamic and closed dimension. Our framework

aims to get the best of these methods by proposing a new

framework which combines their advantages.

3. Research Question

The research that we are conducting are aimed to answer the

following research questions :

1. RQ1. What are the advantages of using the integrated

framework to conduct a requirements analysis, compared to

using each method separately?

In order to know the advantages of using the integrated

framework in conducting requirements analysis, we imple-

mented the framework on a case study, which is the Barbados

Car Crash Management System (bCMS). The objective is to

know whether the framework is usable and to find out what are

the things that result better by using the framework in analyzing

requirements.

2. RQ2. Is a support tool needed to be able to use the proposed

integrated framework effectively? What are the advantages of

using the support tool?

We started to develop a support tool to assist requirements

engineers as the users to use of the proposed framework. To

understand whether the tool is truly needed and what the ad-

vantages are, we used the support tool to elicit the case study of

bCMS and evaluate the tool in its early stage.

4. Integrated Framework

The framework combines i* approach to describe the rela-

tions between actors in the system along with their tasks and

goals, with Message Sequence Chart (MSC) and Problem Frame

method to explain the scenarios of the system, the process se-

quences and constraints in the system [10]. The simple flow of

the proposed integrated model is shown in figure 2. We use i*’s

strategic dependency diagram as the first diagram in the frame-

work to describe the connection between actors that exist in the

environment, including the machine software that will be de-

veloped. It is considered that recognizing actors in the early

phase of requirements analysis is a huge boost for understanding

the whole system, therefore, i*’s dependency diagram are de-

 IPSJ/SIGSE Software Engineering Symposium (SES2016)

 173

 ソフトウェアエンジニアリングシンポジウム 2016

 ©2016 Information Processing Society of Japan

scribed first in our framework.

Furthermore, the actors in the diagram can be expanded, and

then goals and tasks inside each actor will be described so at this

point, the main diagram shows the dependency connection be-

tween actors and also inside each actor. Next, utilizing problem

frames concept, constraints in the real world are added into the

diagram with arrows pointing to tasks or goals that are con-

strained. So before the dependency diagram have goals or tasks

there can be no constraint in the system.

Fig. 2. Integrated Framework Model

System behaviors, resource flow and orders, will be described

in the next step using Message Sequence Chart, importing actors

and resources from the dependency diagram. Lastly, obstacle

analysis is held based on the model from KAOS framework.

Possible solutions for each obstacle are described, and solutions

that should be implemented in the will-be-developed system will

be added into the main diagram and constraints and scenario

analysis are reconsidered in respect to the newly added task or

goal.

Figure 3 shows the simplified meta-model of the proposed

integrated framework. We are aware that the following me-

ta-model is not a complete model that represents details and

relationships in the system, which will be our aim in the future

as it holds further challenges. The following model simply

shows the components exist in the framework. Dependency

diagram contains five components which are constraint, re-

source, actor, goal, and task. The same resource and actor are

also belonged to MSC to describe the sequences, which also

have Control that is divided into two type (IF and LOOP).

MSC’s Control is designed depending on the condition get from

Constraint in Dependency Diagram. Moreover, the Actor’s Hi-

erarchy diagram have three components inside it which are actor,

goal, and task, taken from the Dependency Diagram. Task from

the Dependency Diagram could have Risk and Solution, which

will be described in the obstacle analysis.

Fig. 3. Simplified Meta-Model of Integrated Framework

4.1 Case Study

This paper uses the Barbados Car Crash Management System

(bCMS) [3] as an application example to implement the use of

our framework. The proposed system is intended to coordinate

the communication between a fire station coordinator (FSC) and

a police station coordinator (PSC) to handle crises in a timely

manner. However, not all of the modeling steps are discussed in

our paper because of the lack of space, the complete discussion

is available in [4] Implementation of our framework on other

case study is written in [10].

Fig. 4. Dependency Diagram

 IPSJ/SIGSE Software Engineering Symposium (SES2016)

 174

 ソフトウェアエンジニアリングシンポジウム 2016

 ©2016 Information Processing Society of Japan

4.2 Implementation to bCMS

 First of all, we describe the dependency diagram of the sys-

tem with all of its actors as shown in figure 4 below. We recog-

nized 4 actors exist in the system, Victim, PSC, FSC, and the

computer system which will be developed in the project. The

diagram in figure 4 is focused on describing the dependency

relationships between those four actors. Moreover, the direction

of half-circles on lines that connect actors shows the connection

of who depends on who, this concept is taken from i* frame-

work’s concept, as also the diagram.

Fig. 5. Actor’s Hierarchy

 In figure 4, we can see that, for example, PSC depends on

Victim on providing the Crisis Detail and Computer depends on

FSC for the “agreement” resource which computer cannot pro-

vide by itself without FSC. These kinds of dependencies are

vital as requirements to know how the whole system works and

who are involved in the system. Requirement constraints is

drawn as a dotted blue circle, and it constraints the re-source

“Route Plan” in such that a Route Plan must be agreed by both

PSC and FSC to be valid. These constraints will later affect the

making of message sequence chart for describing the scenario in

the system.

Fig. 6. Message Sequence Chart

 The next step is to analyze and describe the goal and task

hierarchy inside each actor in the previous diagram. Figure 5

shows one of the examples of actor FSC’s inside hierarchy.

FSC’s main goal is to assist help in crisis, and to achieve that,

there are several tasks that need to be done, provide constraints,

agree to route plan suggested by the computer system, and fi-

nally send fire vehicle to the victim’s location.

 As it has already stated in the early pages of this paper that

dependency diagram cannot explain the timely order of how

resources flow in the system, thus we make use of message

sequence chart to explain the scenarios of the system. Figure 6

shows the chart, after also taking constraints described early into

consideration. First, victim sends crisis details to PSC then PSC

forwards it to the computer. After that, both PSC and FSC are

asked to provide their constraints to computer system, then it

mocks up a route plan draft and send it to both PSC and FSC. As

explained in the requirement constraints in the dependency

diagram, both parties (PSC and FSC) need to agree on the draft

suggested by the computer in order for it to become a working

route plan and the crisis resolving can start, or else the computer

have to reconsider the draft and propose another one until it is

approved. After route plan is agreed, PSC and FSC will then be

able to operate and send the necessary helps for victim accord-

ing to the agreed route plan.

Fig. 7. Obstacle Analysis Diagram

 The next step of our framework is to analyze obstacle that

might exists in the sys-tem and possible solutions for each of

those obstacles/risks. Figure 7 will take an example of a task

that is considered risky from FSC’s circle, the task of “Send Fire

Vehicle”. Task “Send Fire Vehicle” has the risk of fire vehicle is

not on scene when it is needed. The cause of this risk can be

several things, so we decomposed it into three possible causes.

Among those three, we tried to focus on the cause of when fire

vehicle get in wrong direction and decomposed it again into

several risks. Finally, we analyze the possible solution for each

risk. As shown in figure 7, an example of possible solutions for

the risk “Fire Vehicle Destination Confused”.

 Among those possible solution, engineers need to decide

which solution can be done by the software and which cannot be.

Solutions that can be done by the will-be-developed software

will then be inserted to upgrade the earlier dependency diagram.

Moreover, because dependency diagram is changed the message

sequence chart also needs to be reconsidered for changes.

5. Support Tool

 Combining several methods into one integrated framework

has its own trade-offs. The connections between diagrams

caused some objects to be drawn more than one time, the actors

 IPSJ/SIGSE Software Engineering Symposium (SES2016)

 175

 ソフトウェアエンジニアリングシンポジウム 2016

 ©2016 Information Processing Society of Japan

in dependency diagram and MSC, for example. Integrating

methods has the possibility of redundancy of work for the engi-

neer. Furthermore, using the proposed framework, there will be

several diagrams to be drawn, as a result the difficulty and com-

plexity to hand-write all of them accurately are also increased.

Requirements analysis is a process done by both engineers and

stakeholders exist in the system, thus the complexity of the

diagrams can make people who are not used to requirements

engineering to have difficulty in understanding what the dia-

grams mean.

Fig. 8. Dependency Diagram Editor

 In order to overcome those disadvantages, our research also

develops the support tool to make it easier for engineers to use

our framework and to help user to get better understanding of

the diagrams. Our support tool offers help to draw diagrams

with computer on a web application, so engineers do not have to

hand-write all of the diagrams which means that it can reduce

work.

Fig. 9. Dependency Diagram with Req. Constraints

 Figure 8 shows the main interface of our support tool to draw

the dependency diagram. User can select the tools on the left

side of the program to draw shapes, and shapes will be drawn in

the right hand side of the screen. Tools on the left panel are

divided into three categories. The first category is the main

diagram editor tools, in this part, there are five buttons, actor,

goal, resource, task, and constraint button. Constraint button is

the button to draw requirement constraint after the dependency

diagram is created. After shapes are drawn, user can adjust the

position of the shapes and connect lines between them by click-

ing and dragging left-mouse click. Lines drawn from actors are

straight lines with half-circle indicating the dependency direc-

tion, while lines drawn from requirement constraints are

blue-dotted lines with arrows pointing to the tasks that are con-

strained, as shown in figure 9.

The second category consists of the tools used for drawings in

the message sequence chart. MSC can be generated from the

dependency diagram, but even after generated and re-arranged,

there are occasions where user needs to add new messages or

resources. Furthermore, after analyzing requirement constraints,

there are possibilities that loops or if statements are needed.

Using the loop symbol and if button, user can add them into the

MSC. The tools in the third category, obstacle analysis, are used

to draw risks and their possible solutions. User then can click

and drag the risks or solutions to draw arrows connecting them.

Fig. 10. Problem Frames View

As already said earlier in section 3, requirement constraints in

this framework is taken from problem frames’ idea that focuses

on the real world. Besides that, the resources in the dependency

diagram can also be compared to the domain concept in problem

frames, and the computer actor, which is the software that is

being developed, can be treated as machine domain in problem

frames’ concept. Our tool also enable user to see the relationship

between the actors, seen as domain in the PF’s concept, that are

involved in a constrained task or resource. Figure 10 shows an

example of a problem frames’ view of the constrained resource,

“routePlan”, between the PSC, FSC, and COMP actors, drawn

in a simple problem diagram.

Fig. 11. Actor’s Hierarchy Editor

 IPSJ/SIGSE Software Engineering Symposium (SES2016)

 176

 ソフトウェアエンジニアリングシンポジウム 2016

 ©2016 Information Processing Society of Japan

Moreover, actors on the diagram can be enlarged by double

clicking them and user will be able to edit or view the goal and

task hierarchy inside each actor, as shown in figure 11. The

resources drawn outside the actor’s circle are representing the

resources that it depends on other actors or that are depended on

them by other actors. Tasks inside and outside each actor can be

marked as risky by right-clicking them for further analysis in the

later process of the framework.

The proposed support tool will also enable diagram au-

to-generation from dependency diagram into MSC. This is pos-

sible because actors and resources presented in the dependency

diagram can be reused in MSC to explain their behavior. First,

the tasks and actors from dependency diagram are imported just

as they are ordered in the dependency diagram, as shown in

figure 12.

Fig. 12. Auto-Generated MSC

 After they are all generated, user can re-arrange the timely

order of the tasks by clicking and dragging the resources drawn

on the diagram, so the ideal scenario of the system can be un-

derstood, which is critical in analyzing requirements. The

re-arranged MSC is shown in figure 13. Furthermore, using the

tools in the left panel, user can also add loops or if statements

according to the constraints exist in the environment as stated by

the earlier diagram.

Fig. 13. Re-arranged MSC

Furthermore, by clicking “obstacle diagram” from the “gen-

erate” menu bar located on the top of the display, tasks that were

marked as risky task in the dependency diagram can be further

analyzed by importing them to the obstacle analysis. In this part,

only task’s name is imported with the polygonal shapes around

it. Figure 14 shows an example of an obstacle diagram, the risky

task is “send fire vehicle”, which was already shown also in

figure 11, as one of the tasks of FSC. From here, user needs to

analyze the risks that might happen in the future and add them

using the obstacle button in red color from the left panel into the

canvas. Risks are then decomposed into smaller and more

clearly defined risks, and then possible solutions are added too.

Solutions can be added using the solution button colored in blue

from the left panel.

Fig. 14. Risky Actor Imported from Dependency Diagram

Figure 15 shows the risk analysis for the particular task. It is

considered that there is a risk of fire vehicle is not on scene

when it is needed. Then this risk is decomposed into several

smaller risks that can be the cause of it. Here, it is decomposed

into three main causes, which are, fire vehicle stopped, fire

vehicle retracted for solving crisis, and fire vehicle in wrong

direction. Particularly for the problem of fire vehicle in wrong

direction, we can further analyze the reasons of why it is in the

wrong direction. One of the reasons is that the fire vehicle is

confused of the destination. Then, possible solutions are consid-

ered and drawn on the diagram.

Fig. 15. Obstacle Diagram Editor

 To avoid fire vehicles from being confused of their destina-

tion, one of the ways is to avoid them from being in an unfamil-

iar area. Other way considered in this study is to give route

indication when trucks lost their way or confused and to dis-

 IPSJ/SIGSE Software Engineering Symposium (SES2016)

 177

 ソフトウェアエンジニアリングシンポジウム 2016

 ©2016 Information Processing Society of Japan

patch other fire vehicle to the scene. After these risks are ana-

lyzed, to mitigate them, solutions that are considered can be

done by the will-be-developed software can be added into the

dependency diagram as new tasks or resources. By adding new

tasks or resources into the diagram, actor’s hierarchy and MSC

also might need changes, so it is important to recheck them too

for consistency.

 By using the support tool, it makes it easier for the user to do

consistency check, because some of the variables are au-

to-generated so it will be consistent, and other variables can be

easily check because it is just one or two click away to change

view from one diagram and the other.

 Diagrams can be saved, and user can also load existing dia-

gram into the software. Auto-generation can be done by clicking

the “generate” panel on top of the screen, and there will be

options whether user wants to generate MSC or obstacle dia-

gram.

6. Conclusion and Future Work

This research proposes a new integrated framework in soft-

ware requirements analysis, taking advantages from existing

methods which are i* framework, Message Sequence Chart,

KAOS, and Problem Frames, which are currently used sepa-

rately even though they all used for the same purpose which is

to elicit requirements. By combining the advantages of those

methods, this research is expected to be able to cover each

methods’ disadvantages, and by doing so, requirements can be

described suitably and clearly. This paper explains the early

result of our research, which is the integrated framework. We

also show the applicability of our framework by implementing it

on the case study of Barbados Car Crash Management System.

In order to answer the research question RQ1, by using the

integrated framework, the dependency relations between actors

in the system are made clear, and the constraints in the real

world that are limiting resource(s) are also described clearly by

implementing the problem frame concept which is absent in the

goal based requirements engineering methods. Furthermore, the

hierarchies inside each actor were described, goals and tasks. In

addition, the orders of messages in the system, which we could

not know by describing the dependency diagram only, can be

clearly described using the message sequence chart along with

the constraints constraining resource(s) that can be expressed

using if and/or loop statement. Lastly, obstacle analysis is also

conducted in this framework to mitigate future risks and help

analyst to provide possible solutions that might or might not be

implemented in the system.

However, integrating several methods into one framework

holds some setbacks. The framework consists of several meth-

ods in its implementation which can cause the diagrams to be

complicated and difficult to understand. Moreover, there are

some intersection points between each approach in the frame-

work, for example, tasks in the dependency diagram and obsta-

cle diagram, which draw the possibility of inconsistency and

redundancy if they are manually drawn. To mitigate those set-

backs in using our framework, our research also aims to develop

a support tool to assist user in implementing the integrated

framework.

This support tool can auto-generate diagrams from known

variables in order to mitigate redundant drawings, consistency

checks, and to provide easier control to display each diagram in

its complexity, which answer research question RQ2. Moreover,

by using this support tool, it would also be easier for users to

analyze requirements while adapting to the fast-changing envi-

ronments which software are built in.

 The future of our work will include the completion of the

support tool, mainly because the current tool is still in its proto-

type version. After the support tool is completed, it needs to be

tested and evaluated by having users to actually use the tool to

analyze requirements and get their critics and comments to

better improve the build of support tool software. Moreover, it is

also interesting to have real industrial people to implement our

framework into their work and get inputs from them, so that our

framework can be evaluated in the actual world, not only from

case study.

Reference

[1] Bray, I. K. : An Introduction To Requirement Engineering. Addi-

son Wesley (2002).

[2] Broy, M. : The Essence of Message Sequence Chart. In : Proceed-

ings of the International Symposium on Multimedia Software En-

gineering, pp. 42-47. IEEE (2000).

[3] Cailliau, A., et al. : Modeling Car Crash Management with KAOS.

In : Proceedings of the 3rd International Comparing Requirements

Modeling Approaches (CMA@RE), pp. 19-24. IEEE (2013).

[4] Cailliau, A., et al. : Modeling Car Crash Management with KAOS,

UCL (2013), kaos.info.ucl.ac.be/bcms.html.

[5] Jackson, M. : Problem Frames : Analysing and Structuring Soft-

ware Development Problems. Pearson Education (2001).

[6] Lamsweerde, A.v., Requirement Engineering : From System Goals

to UML Models to Soft-ware Specifications, John Wiley & Sons

(2009).

[7] Mohammadi, N.G., et al. : A Framework for Combining Problem

Frame and Goal Models to Support Context Analysis during Re-

quirement Engineering. In : Availability, Reliability, and Security

in Information Systems and HCI, vol. 8127 of Lecture Notes in

Computer Science, pp. 272-288. Springer (2013).

[8] Nuseibeh, B. and Easterbrook, S. : Requirements engineering: a

roadmap. In : Proceedings of Conference on the Future of Software

Engineering, pp. 35–46. ACM (2000).

[9] Ogheneovo, E. E. : Software Dysfunction: Why Do Software Fail?

In : Journal of Computer and Communications, 2, 25-35 (2014).

[10] Rusli, A., Shigo, O. : Integrated Framework for Software Re-

quirement Analysis. In : REFSQ Workshop (2016).

http://ceur-ws.org/Vol-1564/paper11.pdf.

[11] Tsumaki, T. and Tamai. T. : A Framework for Matching Require-

ment Engineering Techniques to Project Characteristics and Situa-

tion Changes. In : Proceedings of SREP’05, Paris, France. (2005).

[12] Yu, E. : Towards Modelling and Reasoning Support for Ear-

ly-Phase Requirement Engineer-ing. In : Proceedings of the Third

IEEE International Symposium on Requirement Engineer-ing, pp.

226-235. (1997).

 IPSJ/SIGSE Software Engineering Symposium (SES2016)

 178

 ソフトウェアエンジニアリングシンポジウム 2016

 ©2016 Information Processing Society of Japan

	paper 12

